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CHAPITRE V

COURBES HOLOMORPHES NON COMPACTES

Dans tout ce chapitre, on désigne par X une courbe holomorphe connexe
non compacte (dénombrable a I’infini) et par n un fibré vectoriel holomorphe
sur X.

§ 1. THEOREME DE BEHNKE-STEIN

Pour tout ensemble compact K de X, on désigne par By (X, n) le sous-
espace fermé de LZ (X, n) défini par

Bx(X,m) = {veLg(X,n) | v|g est holomorphe }

(chap. I, § 1, théoréme 1, corollaire 4).

LEMME 1. Considérons la forme bilinéaire
A:LE(X,n@0%) x L (X, n1*®Q%% - C.

Pour qu’une section u de L (X,n®Q%Y) appartienne a I’image de 1’opé-
rateur différentiel
d":Hg(X,n) » Lg (X, nQQ%")

il suffit qu’elle soit A-orthogonale au sous-espace By (X, n* ® Q1:°).
Désignons par A une forme linéaire continue sur Lz (X, 7® Q%) nulle
sur I’image de d”. Par dualité, il existe une section v de Lg (X, n* @ Q1°) et

une seule telle que
A =A4( ,v).

En particulier, pour toute section 4 de €% (K, %), on a
A(d'h,v) = A(d'h) = 0.

Le théoréme de régularité (chap. III, § 1, théoréme 2, corollaire) montre que




— 295 —

v appartient a By (X, n* ® Q") et 'on conclut en remarquant que 'image
de d” est fermée (chap. 111, § 2, proposition 2).

LEMME 2. Soit K, un ensemble compact de X dont le complémentaire
n’a pas de composante connexe relativement compacte dans X ‘et soit K,
un voisinage compact de K,. On désigne par E (resp. F) le sous-espace de
Lf(l (X, ) formé des sections de la forme yyx, u ot u est une section de
By, (X, ) (resp. une section de %% (X, n) holomorphe au voisinage de
K,). Alors ’espace E est dense dans l’espace F pour la topologie induite
par L12<1 (X, n).

D’aprés le théoréme de Hahn-Banach, il suffit de montrer que toute
forme linéaire A continue sur L}’;l (X, n) et nulle sur E s’annule sur F. Par
dualité, il existe une section v de Lﬁl (X, n* Q") et une seule telle que

A=4(,v).
Montrons que v est dans I'image de 'opérateur différentiel
d":Hg, (X, n1*®@Q"%) > Lz (X,n*@Q"").

Pour cela, 1l suffit de montrer que v est 4-orthogonale a By, (X, n) (lemme 1).
Or, pour toute section # de cet espace, on a

A(uav) = jX(Ll,‘U) - jX(XKluav) = )'(XK]_H) = 0.
Il existe donc une section w de H,1<2 (X, 1* @ Q) telle que
v =d'w.

Le théoréme de régularit¢ montre que w est holomorphe sur X\K, et
puisque toutes les composantes connexes de X\K, rencontrent X\K,, le

principe du prolongement analytique montre que le support de w est contenu
dans K.

Pour toute section u de €7 (X, n) holomorphe au voisinage de K, on a
A(XKlu) = IX(U,U) = IX(Mad”W) = - jX(d"ua W) = O

ce qui démontre le lemme.

THEOREME 1 (Behnke-Stein). Pour tout ensemble ouvert U de X dont
le complémentaire n’a pas de composante connexe compacte, I’application de
restriction de O (X, n) dans 0 (U, n) est d’image dense.
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Il faut montrer que pour toute section u de O (U, n), tout ensemble
compact K de U et tout nombre réel ¢ strictement positif, il existe une sec-
tion v de 0 (X, n) telle que

|v —uex<e

la semi-norme || || L2 étant relative & des métriques hermitiennes sur Q'
et 7. On peut supposer que le complémentaire de K n’a pas de composante
connexe relativement compacte dans X et qu’il existe une suite exhaustive
(K;) jen de parties compactes de X ayant la méme propriété, telle que K
soit égal a K, (appendice II, lemmes 5 et 6). Posons

Ug = XK()u +
Le lemme 2 montre qu’il existe une section u; de By, (X, 7) telle que

&
Juy = to | r2.xo < 52

Pour tout entier j strictement positif, on construit de la méme mani€re une
section u; de BKJ. ., (X, ) telle que
€

luy —ujy | L2Kj_1 S 57571 ¢

Pour tout entier n, la suite (xg u;);~., est une suite de Cauchy dans
By, (X, m). On désigne par v, sa limite. Il est clair que les sections v, se
recollent en une section v de O (X, n). Il existe un entier #n tel que

v~ sl < 5

On a alors
lo —ulex <|v—tnf2g + |t —uflex<e

ce qui démontre I’assertion.

§ 2. CALCUL DE QUELQUES GROUPES DE COHOMOLOGIE

LEMME 1. Pour tout point x de X, il existe une fonction méromorphe h
sur X, holomorphe sur X\{x} possédant un péle simple au point x.

Désignons par p un fibré en droites holomorphe sur X et par s une sec-
tion holomorphe de p dont le diviseur est 1 * x. Il résulte du théoréme de
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