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Chapitre V

COURBES HOLOMORPHES NON COMPACTES

Dans tout ce chapitre, on désigne par X une courbe holomorphe connexe
non compacte (dénombrable à l'infini) et par n un fibré vectoriel holomorphe
sur X.

§ 1. Théorème de Behnke-Stein

Pour tout ensemble compact K de X, on désigne par BK (X, n) le sous-

espace fermé de L\ (X, n) défini par

Bk(X,ti) — {v e Lk(X,ti) \ v\i est holomorphe }

(chap. I, § 1, théorème 1, corollaire 4).

Lemme 1. Considérons la forme bilinéaire

A :Ll(X,7i®Q°>1) x L|(X, n*®Qlt0) -> C

Pour qu'une section u de (X, 7i®Q0,1) appartienne à l'image de

l'opérateur différentiel
d'' : Hk(X, ri) -> L*(X,n®Q0>1)

il suffit qu 'elle soit A-orthogonale au sous-espace BK (X, 7i*®Q1,0).
Désignons par X une forme linéaire continue sur L\ (X, tc®Q0,1) nulle

sur l'image de dPar dualité, il existe une section v de L| (X, n^®Q1,0) et

une seule telle que
X A( ,v).

o

En particulier, pour toute section h de ^^ {K, n), on a

A(d"h,v) X(d"h) 0.

Le théorème de régularité (chap. III, § 1, théorème 2, corollaire) montre que
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v appartient à BK (X, 7r* ® £21,0) et l'on conclut en remarquant que l'image
de d" est fermée (chap. III, § 2, proposition 2).

Lemme 2. SözY un ensemble compact de X dont le complémentaire

n \a pas de composante connexe relativement compacte dans X et soit K2

un voisinage compact de Kx. On désigne par E (resp. F) le sous-espace de

L\y (X, 71) formé des sections de la forme Xki u ou u est une section de

BKo (X, n) (resp. une section de (X, n) holomorphe au voisinage de

K1). Alors l'espace E est dense dans l'espace F pour la topologie induite

par L2Kl (X, n).

D'après le théorème de Hahn-Banach, il suffit de montrer que toute
forme linéaire X continue sur L^ (X, 71) et nulle sur E s'annule sur F. Par

dualité, il existe une section v de (X, 71* (x)^1'1) et une seule telle que

/l A ,v).

Montrons que v est dans l'image de l'opérateur différentiel

d" : (X, n* ®Q1'0) - L|2 (X, ® fi1-1).

Pour cela, il suffit de montrer que v est d-orthogonale à BK2 (X, n) (lemme 1).

Or, pour toute section u de cet espace, on a

A(u ,v)|x(«,d) $x(xKlu,v) A(xKim) 0.

Il existe donc une section w de (X, 7t*®ß1,0) telle que

f d 'vv

Le théorème de régularité montre que w est holomorphe sur X\ä:1 et
puisque toutes les composantes connexes de X\K1 rencontrent X\K2, le

principe du prolongement analytique montre que le support de iv est contenu
dans Kx.

Pour toute section u de ^ (X, n) holomorphe au voisinage de on a

-UXki") h(u>d'w)- w) 0

ce qui démontre le lemme.

Théorème 1 (Behnke-Stein). Pour tout ensemble ouvert U de X dont
le complémentaire n'a pas de composante connexe compacte, l'application de
restriction de G (X, 71) dans G (U,n) est d'image dense.
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Il faut montrer que pour toute section u de 0 (U9 n), tout ensemble

compact K de U et tout nombre réel s strictement positif, il existe une
section v de 0 (X, 7i) telle que

1 V — U I L2>k < S

la semi-norme || \\lz,k étant relative à des métriques hermitiennes sur Q1

et u. On peut supposer que le complémentaire de K n'a pas de composante
connexe relativement compacte dans X et qu'il existe une suite exhaustive

(Kj)JeN de parties compactes de X ayant la même propriété, telle que K
soit égal à K0 (appendice II, lemmes 5 et 6). Posons

w0 Xk0U •

Le lemme 2 montre qu'il existe une section u1 de BK2 (X, n) telle que

Il Ul — U0 ||L2,X0 < ^2 *

Pour tout entier j strictement positif, on construit de la même manière une
section Uj de Bkj + i (X n) telle que

Il UJ - Ui~ 1 II L2,Kj-1 < 27+1
«

Pour tout entier n, la suite (XKnuj)j^n esI une suite Cauchy dans

BKn (X, n). On désigne par vn sa limite. Il est clair que les sections vn se

recollent en une section v de 0 (X, n). Il existe un entier n tel que

G

Il v — Un I L2,K <
2 '

On a alors

Il V ~ U II L2,K < I V W/i I] L2,K + i Un "" U I L2,K < S

ce qui démontre l'assertion.

§ 2. Calcul de quelques groupes de cohomologie

Lemme 1. Pour tout point x de X, il existe une fonction méromorphe h

sur X, holomorphe sur ^\{x} possédant un pôle simple au point x.
Désignons par p un fibré en droites holomorphe sur X et par s une

section holomorphe de p dont le diviseur est 1 • .x. Il résulte du théorème de
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