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Chapitre V

COURBES HOLOMORPHES NON COMPACTES

Dans tout ce chapitre, on désigne par X une courbe holomorphe connexe
non compacte (dénombrable à l'infini) et par n un fibré vectoriel holomorphe
sur X.

§ 1. Théorème de Behnke-Stein

Pour tout ensemble compact K de X, on désigne par BK (X, n) le sous-

espace fermé de L\ (X, n) défini par

Bk(X,ti) — {v e Lk(X,ti) \ v\i est holomorphe }

(chap. I, § 1, théorème 1, corollaire 4).

Lemme 1. Considérons la forme bilinéaire

A :Ll(X,7i®Q°>1) x L|(X, n*®Qlt0) -> C

Pour qu'une section u de (X, 7i®Q0,1) appartienne à l'image de

l'opérateur différentiel
d'' : Hk(X, ri) -> L*(X,n®Q0>1)

il suffit qu 'elle soit A-orthogonale au sous-espace BK (X, 7i*®Q1,0).
Désignons par X une forme linéaire continue sur L\ (X, tc®Q0,1) nulle

sur l'image de dPar dualité, il existe une section v de L| (X, n^®Q1,0) et

une seule telle que
X A( ,v).

o

En particulier, pour toute section h de ^^ {K, n), on a

A(d"h,v) X(d"h) 0.

Le théorème de régularité (chap. III, § 1, théorème 2, corollaire) montre que
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v appartient à BK (X, 7r* ® £21,0) et l'on conclut en remarquant que l'image
de d" est fermée (chap. III, § 2, proposition 2).

Lemme 2. SözY un ensemble compact de X dont le complémentaire

n \a pas de composante connexe relativement compacte dans X et soit K2

un voisinage compact de Kx. On désigne par E (resp. F) le sous-espace de

L\y (X, 71) formé des sections de la forme Xki u ou u est une section de

BKo (X, n) (resp. une section de (X, n) holomorphe au voisinage de

K1). Alors l'espace E est dense dans l'espace F pour la topologie induite

par L2Kl (X, n).

D'après le théorème de Hahn-Banach, il suffit de montrer que toute
forme linéaire X continue sur L^ (X, 71) et nulle sur E s'annule sur F. Par

dualité, il existe une section v de (X, 71* (x)^1'1) et une seule telle que

/l A ,v).

Montrons que v est dans l'image de l'opérateur différentiel

d" : (X, n* ®Q1'0) - L|2 (X, ® fi1-1).

Pour cela, il suffit de montrer que v est d-orthogonale à BK2 (X, n) (lemme 1).

Or, pour toute section u de cet espace, on a

A(u ,v)|x(«,d) $x(xKlu,v) A(xKim) 0.

Il existe donc une section w de (X, 7t*®ß1,0) telle que

f d 'vv

Le théorème de régularité montre que w est holomorphe sur X\ä:1 et
puisque toutes les composantes connexes de X\K1 rencontrent X\K2, le

principe du prolongement analytique montre que le support de iv est contenu
dans Kx.

Pour toute section u de ^ (X, n) holomorphe au voisinage de on a

-UXki") h(u>d'w)- w) 0

ce qui démontre le lemme.

Théorème 1 (Behnke-Stein). Pour tout ensemble ouvert U de X dont
le complémentaire n'a pas de composante connexe compacte, l'application de
restriction de G (X, 71) dans G (U,n) est d'image dense.
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Il faut montrer que pour toute section u de 0 (U9 n), tout ensemble

compact K de U et tout nombre réel s strictement positif, il existe une
section v de 0 (X, 7i) telle que

1 V — U I L2>k < S

la semi-norme || \\lz,k étant relative à des métriques hermitiennes sur Q1

et u. On peut supposer que le complémentaire de K n'a pas de composante
connexe relativement compacte dans X et qu'il existe une suite exhaustive

(Kj)JeN de parties compactes de X ayant la même propriété, telle que K
soit égal à K0 (appendice II, lemmes 5 et 6). Posons

w0 Xk0U •

Le lemme 2 montre qu'il existe une section u1 de BK2 (X, n) telle que

Il Ul — U0 ||L2,X0 < ^2 *

Pour tout entier j strictement positif, on construit de la même manière une
section Uj de Bkj + i (X n) telle que

Il UJ - Ui~ 1 II L2,Kj-1 < 27+1
«

Pour tout entier n, la suite (XKnuj)j^n esI une suite Cauchy dans

BKn (X, n). On désigne par vn sa limite. Il est clair que les sections vn se

recollent en une section v de 0 (X, n). Il existe un entier n tel que

G

Il v — Un I L2,K <
2 '

On a alors

Il V ~ U II L2,K < I V W/i I] L2,K + i Un "" U I L2,K < S

ce qui démontre l'assertion.

§ 2. Calcul de quelques groupes de cohomologie

Lemme 1. Pour tout point x de X, il existe une fonction méromorphe h

sur X, holomorphe sur ^\{x} possédant un pôle simple au point x.
Désignons par p un fibré en droites holomorphe sur X et par s une

section holomorphe de p dont le diviseur est 1 • .x. Il résulte du théorème de
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Behnke-Stein qu'il existe une section holomorphe t de p non nulle au point x.

t
11 suffit alors de prendre pour h la fonction - •

5

Remarque 1.

On conserve les notations du lemme 1. La fonction méromorphe h

définit une application holomorphe de X dans P1 de rang 1 au point x,
telle que

h'1(h(x)){x}
Pour tout voisinage U relativement compact de x dans X, il existe un voisinage

ouvert F de x dans U vérifiant les conditions suivantes :

(1) La restriction de A à F est un isomorphisme de F sur un voisinage
ouvert de (0:1) dans P1.

(2) La trace de h_1 (h (F)) sur Ü est égale à F.

En effet, supposons qu'il existe un système fondamental de voisinage
ouverts (Vj)jeN de x dans U et, pour chaque entier j, un point Xj de V}
et un point yj de Ü\Vj tels que

h (xj) h (yj).
On peut toujours supposer que la suite (yj)jeN converge vers un point y
de U et l'on a

h (y) lim h (yy) lim h (.Xj) =(0:1).
j~> ce j-+oo

Ceci montre que l'on a

y lim yj x
oo

ce qui est absurde puisque h est de rang 1 au point x.

Lemme 2. On désigne par U un ensemble ouvert relativement compact de

X. Pour touteforme différentielle u de L2C(U, ß0,1), il existe une fonction f
de Hlc U,C)telle que

d'f u

Pour tout point x de U, il existe une application holomorphe de Idans P1 et un voisinage ouvert F de x dans U vérifiant les conditions de la
remarque 1. Par partition de l'unité, on se ramène aisément au cas où le

support de u est contenu dans F. On définit alors une forme différentielle v
de L2 (P1, ß0,1) en posant

f v(z) (h\y)t (u)(z) si (F)
\ v(z)0 si zeP1\fi(F).
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Comme P1 est de genre 0, il existe une fonction g de H1 (P1, C) telle que

v d'g
11 suffit alors de poser

/ (9'h)\v.

Théorème 1. L'espace vectoriel H1 (X, Cx) est nul.

Désignons par (Kj)jeN une suite exhaustive de parties compactes de X
dont les complémentaires n'ont pas de composante connexe relativement

compacte. Soit u une forme différentielle de Lfoc (X, £20,1). Pour tout entier

j\ on pose

UJ Xkj + !«
Il existe une fonction de H^oc (X, C) telle que

XKj + 1d"fj Uj

(lemme 2). En particulier, la fonction

Xkj + i (fj + i - fj)
appartient à BKj + l(X9Cx) et le théorème de Behnke-Stein montre qu'il
existe une fonction holomorphe gj sur X telle que

\\fj+i ~ fj ~ 9j\^,Kj < ^7 »

la semi-norme étant relative à une métrique hermitienne sur ß1. Pour tout
entier n, la série

Z %Kn (fj+1 —fj —Qj)
j^n

converge vers un élément de BKn (X, Cz) et l'on pose

W„ lKn{fn~9o+ Z -fj-Sj)-
j^n

Il est clair que les fonctions wn se recollent en une fonction w de H*oc (X, C)
et l'on a

dw — u

ce qui démontre l'assertion.

Corollaire. Tout fibré en droites holomorphe p sur X est trivial. En

particulier, l'espace vectoriel H1 (X, p) est nul.

On sait qu'il existe une section indéfiniment dérivable s de p partout non
nulle (chap. 0, § 2, théorème 1, corollaire). Désignons par (un
recouvrement de X par des domaines de cartes de p et par (gKl) un cocycle holo-
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morphe de rang 1 subordonné à ce recouvrement représentant p. La
section s est représentée par des fonctions st vérifiant les relations

$1 9 IK SK •

d's tEn particulier, les formes différentielles se recollent en une forme u
2insl

de ^°° (X, Q0,1). Le théorème 1 montre qu'il existe une fonction / de

^°° (X, C) telle que
d 'f u

et un calcul élémentaire montre que la section exp — 2inf) s de p est

holomorphe et partout non nulle ce qui démontre l'assertion.

Proposition 1. L'espace vectoriel H1 (X, C) s'identifie canoniquement
au conoyau de l'opérateur différentiel

d': (9 (X) -*0(X, Quo).

L'injection canonique de G (X, ß1'0) dans ^°° (X, Q*) définit par
passage au quotient une application linéaire oc de H° (X, Q1,0) dans H1 (X, C).
Cette application est surjective. En effet, toute forme différentielle u de

^°° (X, ß*) s'écrit

u — u^ -f- d f
avec u1 de bidegré (1, 0) et/dans ^°° (X, C). Posons

v =11^ — d'f.
On peut écrire

u v + df.
Si de plus u est fermée, la forme différentielle v est holomorphe ce qui
démontre l'assertion. Il reste à voir que le noyau de oc est égal à l'image de
d\ C'est immédiat.

§ 3. Fonctions holomorphes sur une courbe holomorphe non compacte

Pour tout ensemble A de X, on pose
A

A{xeX|I/O) | < I/||A pour tout

On dit que A est holomorphiquementconvexes'il est égal à A.
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Lemme 1. Pour tout ensemble compact K de X, les ensembles K et K
sont égaux 1).

Soit x un point de K\K et soit V la composante connexe (relativement
compacte) de x dans X\K. Il est clair que dV est contenu dans K et le principe

du maximum montre que l'on a

i/(*) i < \\f\U<ll/iu
pour toute fonction holomorphe / sur X. Ceci montre que K est contenu

A
dans K.

Réciproquement, soit x un point de X\K. On vérifie aisément que l'on a

(Kvj {x}) K u {x}

Le lemme 5 de l'appendice II et le théorème de Behnke-Stein montrent que
la fonction qui vaut 0 au voisinage de K et 1 au voisinage de x peut être

uniformément approchée sur K u {x} par une fonction holomorphe /
sur X. Si l'approximation est bonne, on a

H/IU« |/||ï < l/(*)l
A

ce qui montre que x n'appartient pas à K.

Théorème 1 (Runge). Pour tout ensemble compact K de X, les conditions

suivantes sont équivalentes :

(1) L 'ensemble K est holomorphiquement convexe.

(2) L'ensemble X\K n'a pas de composante connexe relativement

compacte dans X.

(3) Toute fonction holomorphe au voisinage de K peut être uniformément
approchée sur K par des fonctions holomorphes sur X.

L'équivalence des deux premières conditions résulte du lemme 1. Le

lemme 5 de l'appendice II et le théorème de Behnke-Stein montrent qu'elles

impliquent la troisième.

Supposons (3) vérifiée et raisonnons par l'absurde en supposant qu'il
existe une composante connexe V de X\K relativement compacte dans X.
On désigne par x un point de V et par h une fonction méromorphe sur X,
holomorphe sur X\{x}, possédant un pôle simple au point x (§ 2, lemme 1)

Cette fonction peut être uniformément approchée sur K par des fonctions

*) Pour la définition de K, voir l'appendice II.
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holomorphes sur X et puisque ôV est contenu dans K, le principe du maximum

montre que h peut être uniformément approchée sur K u V par des

fonctions holomorphes sur X, ce qui est absurde.

Théorème 2. (1) Les fonctions holomorphes sur X séparent les points.

(2) Pour tout point x de X, il existe une fonction holomorphe sur X
de rang 1 au point x. A

(3) Pour tout ensemble compact K de X, l 'ensemble K est compact.

On désigne par x et y des points distincts de X. Il est clair que l'on a

{x,y}={x,y}

et la fonction qui vaut 0 (resp. 1) au point x (resp. y) peut être uniformément

approchée sur {x, par une fonction holomorphe sur X. Si l'approximation
est bonne, elle prend des valeurs distinctes en x et y, ce qui démontre (1).

On désigne par x un point de X et par 0 une carte de X dont le domaine
contient x. Il existe un voisinage compact K de x dans le domaine de (j> tel

que X\K n'ait pas de composante connexe relativement compacte dans X.
La fonction </> peut être uniformément approchée sur K par une fonction
holomorphe/sur X. Si l'approximation est bonne, la fonction/est de rang 1

au point x (chap. I, § 1, théorème 1, corollaire 4), ce qui démontre (2).
La dernière assertion résulte immédiatement du lemme 1 (appendice II,

lemme 2).

Remarque L

On appelle variété de Stein toute variété holomorphe Y de dimension

pure n, dénombrable à l'infini, vérifiant les conditions suivantes :

(1) Les fonctions holomorphes séparent les points de Y.

(2) Pour tout point x de 7, il existe une application holomorphe de Y
dans Cn de rang n au point x.

(3) Pour toute partie compacte K de Y, l'ensemble

A

K {xe| | (x) | < u IK pour tout u 6 (9 (Y) }

est compact.
Le théorème 2 montre donc que toute courbe holomorphe ouverte

dénombrable à l'infini est une variété de Stein.

T 'Fngpmnpmpnt matVipm t WT faor» 9_9_4
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§ 4. Fonctions méromorphes sur une courbe holomorphe non compacte

Théorème 1 (Mittag-Leffler). Toute partie principale d'un fibré en droites

holomorphe sur X provient d'une section méromorphe.

C'est une conséquence immédiate du corollaire du théorème 1 du
paragraphe 2 (chap. I, § 3, proposition 2).

Remarque 1.

En fait, le théorème 1 est valable pour tout fibré vectoriel holomorphe
sur X (voir théorème 3 ci-dessous).

Théorème 2 (Weierstrass). Tout diviseur de X est le diviseur d'une fonction

méromorphe.

C'est une conséquence immédiate du corollaire du théorème 1 du
paragraphe 2 (chap. I, § 3, proposition 3).

Corollaire. Toute fonction méromorphe h sur X est le quotient de deux

fonctions holomorphes ne s'annulant pas simultanément.

Il existe une fonction holomorphe v sur X dont le diviseur est

sup (- (A), 0). La fonction u définie par

u — vh

est holomorphe et ne s'annule pas en même temps que v, d'où l'assertion.

Proposition 1. Soit A un ensemble fermé discret de X et soit f une

fonction à valeurs complexes définie sur A. Il existe alors une fonction
holomorphe h sur X prolongeant f

Désignons par u une fonction holomorphe sur X dont le diviseur est

donné par la formule
(«) E 1 ' *

xeA

(théorème 2) et par v une fonction méromorphe sur X vérifiant les relations

vx — f{x) u ~1 e d)x si xe A

vx e(Px si x eX\A

(théorème 1). Il suffit alors de poser

h uv
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Proposition 2. Désignons par n un fibré vectoriel holomorphe sur X
et par o le fibré quotient de n par un sous-fibré en droites holomorphe p.

Pour toute section holomorphe t de cr, il existe une section holomorphe s

de n relevant t.

Par définition même du fibré quotient (chap. 0, § 2, exemple 3), il existe

un recouvrement ouvert (Ut)ieI de X et, pour chaque indice z, une section

holomorphe sx de n sur Ut relevant t\uv La section sKl définie sur Ux n UK

par
$Kl

prend ses valeurs dans p. Il existe donc pour chaque indice z une section fx
de ^°° (Uv p) telle que

Ski =fi -fn
(chap. 0, § 2, lemme 1). Comme sKl est holomorphe, les formes différentielles
d" ft se recollent en une forme différentielle u de (X, pt&Q0'1). Il existe

donc une section / de ^°° (X, p) telle que

d'f u

(§2, théorème 1, corollaire). Ceci montre que les sections st — ft + f\v
qui se recollent en une section s de n sont holomorphes. Comme elles relèvent

t\ut, ceci démontre l'assertion.

Théorème 3. Tout fibré vectoriel holomorphe % sur X est trivial.

On va raisonner par récurrence sur le rang p de %. Si p est égal à 1,

l'assertion résulte du corollaire du théorème 1 du paragraphe 2. Supposons p
au moins égal à 2 et le théorème démontré pour p — 1.

Nous allons tout d'abord construire une section holomorphe s1 de n

partout non nulle. Le théorème de Behnke-Stein montre qu'il existe une
section holomorphe s de n non identiquement nulle. Pour toute carte $
de n ayant pour domaine un ensemble connexe U, on a

s0 (ml5

où uu up sont des fonctions holomorphes sur U dont l'une au moins
n'est pas nulle. On vérifie aisément que le diviseur v défini par

v\v inf (m
1
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est indépendant de et l'on désigne par / une fonction holomorphe sur X
ayant v pour diviseur (théorème 2). Il est clair que la section

s

est holomorphe et partout non nulle.

Désignons par p le fibré en droites holomorphe engendré par sx et par g
le fibré quotient de n par p. Par hypothèse de récurrence, il existe des

sections holomorphes t29 tp de a qui engendrent la fibre en tout point. Ces

sections se relèvent en des sections holomorphes s2> -, Sp de n (proposition

2). Il est clair que slt sp engendrent la fibre de n en tout point, ce qui
démontre l'assertion.
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