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CHAPITRE V

COURBES HOLOMORPHES NON COMPACTES

Dans tout ce chapitre, on désigne par X une courbe holomorphe connexe
non compacte (dénombrable a I’infini) et par n un fibré vectoriel holomorphe
sur X.

§ 1. THEOREME DE BEHNKE-STEIN

Pour tout ensemble compact K de X, on désigne par By (X, n) le sous-
espace fermé de LZ (X, n) défini par

Bx(X,m) = {veLg(X,n) | v|g est holomorphe }

(chap. I, § 1, théoréme 1, corollaire 4).

LEMME 1. Considérons la forme bilinéaire
A:LE(X,n@0%) x L (X, n1*®Q%% - C.

Pour qu’une section u de L (X,n®Q%Y) appartienne a I’image de 1’opé-
rateur différentiel
d":Hg(X,n) » Lg (X, nQQ%")

il suffit qu’elle soit A-orthogonale au sous-espace By (X, n* ® Q1:°).
Désignons par A une forme linéaire continue sur Lz (X, 7® Q%) nulle
sur I’image de d”. Par dualité, il existe une section v de Lg (X, n* @ Q1°) et

une seule telle que
A =A4( ,v).

En particulier, pour toute section 4 de €% (K, %), on a
A(d'h,v) = A(d'h) = 0.

Le théoréme de régularité (chap. III, § 1, théoréme 2, corollaire) montre que
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v appartient a By (X, n* ® Q") et 'on conclut en remarquant que 'image
de d” est fermée (chap. 111, § 2, proposition 2).

LEMME 2. Soit K, un ensemble compact de X dont le complémentaire
n’a pas de composante connexe relativement compacte dans X ‘et soit K,
un voisinage compact de K,. On désigne par E (resp. F) le sous-espace de
Lf(l (X, ) formé des sections de la forme yyx, u ot u est une section de
By, (X, ) (resp. une section de %% (X, n) holomorphe au voisinage de
K,). Alors ’espace E est dense dans l’espace F pour la topologie induite
par L12<1 (X, n).

D’aprés le théoréme de Hahn-Banach, il suffit de montrer que toute
forme linéaire A continue sur L}’;l (X, n) et nulle sur E s’annule sur F. Par
dualité, il existe une section v de Lﬁl (X, n* Q") et une seule telle que

A=4(,v).
Montrons que v est dans I'image de 'opérateur différentiel
d":Hg, (X, n1*®@Q"%) > Lz (X,n*@Q"").

Pour cela, 1l suffit de montrer que v est 4-orthogonale a By, (X, n) (lemme 1).
Or, pour toute section # de cet espace, on a

A(uav) = jX(Ll,‘U) - jX(XKluav) = )'(XK]_H) = 0.
Il existe donc une section w de H,1<2 (X, 1* @ Q) telle que
v =d'w.

Le théoréme de régularit¢ montre que w est holomorphe sur X\K, et
puisque toutes les composantes connexes de X\K, rencontrent X\K,, le

principe du prolongement analytique montre que le support de w est contenu
dans K.

Pour toute section u de €7 (X, n) holomorphe au voisinage de K, on a
A(XKlu) = IX(U,U) = IX(Mad”W) = - jX(d"ua W) = O

ce qui démontre le lemme.

THEOREME 1 (Behnke-Stein). Pour tout ensemble ouvert U de X dont
le complémentaire n’a pas de composante connexe compacte, I’application de
restriction de O (X, n) dans 0 (U, n) est d’image dense.
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Il faut montrer que pour toute section u de O (U, n), tout ensemble
compact K de U et tout nombre réel ¢ strictement positif, il existe une sec-
tion v de 0 (X, n) telle que

|v —uex<e

la semi-norme || || L2 étant relative & des métriques hermitiennes sur Q'
et 7. On peut supposer que le complémentaire de K n’a pas de composante
connexe relativement compacte dans X et qu’il existe une suite exhaustive
(K;) jen de parties compactes de X ayant la méme propriété, telle que K
soit égal a K, (appendice II, lemmes 5 et 6). Posons

Ug = XK()u +
Le lemme 2 montre qu’il existe une section u; de By, (X, 7) telle que

&
Juy = to | r2.xo < 52

Pour tout entier j strictement positif, on construit de la méme mani€re une
section u; de BKJ. ., (X, ) telle que
€

luy —ujy | L2Kj_1 S 57571 ¢

Pour tout entier n, la suite (xg u;);~., est une suite de Cauchy dans
By, (X, m). On désigne par v, sa limite. Il est clair que les sections v, se
recollent en une section v de O (X, n). Il existe un entier #n tel que

v~ sl < 5

On a alors
lo —ulex <|v—tnf2g + |t —uflex<e

ce qui démontre I’assertion.

§ 2. CALCUL DE QUELQUES GROUPES DE COHOMOLOGIE

LEMME 1. Pour tout point x de X, il existe une fonction méromorphe h
sur X, holomorphe sur X\{x} possédant un péle simple au point x.

Désignons par p un fibré en droites holomorphe sur X et par s une sec-
tion holomorphe de p dont le diviseur est 1 * x. Il résulte du théoréme de
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Behnke-Stein qu’il existe une section holomorphe ¢ de p non nulle au point x.

4
11 suffit alors de prendre pour 4 la fonction - -
S

Remarque 1.

On conserve les notations du lemme 1. La fonction méromorphe /
définit une application holomorphe de X dans P! de rang 1 au point x,
telle que

Rt (h(x) = {x}.

Pour tout voisinage U relativement compact de x dans X, il existe un voisi-
nage ouvert ¥ de x dans U vérifiant les conditions suivantes:

(1) La restriction de 4 a V est un isomorphisme de V sur un voisinage
ouvert de (0:1) dans P

(2) La trace de h™" (2 (V)) sur U est égale a V.

En effet, supposons qu’il existe un systéme fondamental de voisinage
ouverts (V) ;o de x dans U et, pour chaque entier j, un point x; de V;
et un point y; de U\V; tels que

h(x) = h(y).

On peut toujours supposer que la suite (y;);o converge vers un point y
de U et 'on a
h(y) =limh(y;) =limh(x;) = (0:1).
Jj— o Jj= o
Ceci montre que 'on a
y =limy; =x

Jj— oo

ce qui est absurde puisque /4 est de rang 1 au point x.

LEMME 2. On désigne par U un ensemble ouvert relativement compact de
X. Pour toute forme différentielle u de L% (U, Q°Y), il existe une fonction f
de HL_ (U, C) telle que
d'f=u.

Pour tout point x de U, il existe une application holomorphe 4 de X
dans P! et un voisinage ouvert ¥ de x dans U vérifiant les conditions de la
remarque 1. Par partition de 1'unité, on se raméne aisément au cas ou le
support de u est contenu dans V. On définit alors une forme différentielle v
de L? (P!, Q%% en posant

{ v(z) = (hly) W (2) si zeh(V)
v(z) =0 si zePN\R (V).
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Comme P! est de genre 0, il existe une fonction g de H! (P!, C) telle que

v =4dyg.
11 suffit alors de poser

f=@hly.

THEOREME 1. L ‘espace vectoriel H' (X, Cy) est nul.

Désignons par (K;),.x une suite exhaustive de parties compactes de X
dont les complémentaires n’ont pas de composante connexe relativement
compacte. Soit  une forme différentielle de L: (X, Q°1). Pour tout entier
J, on pose

Uj = XK, U-

I1 existe une fonction f; de H, ! (X, C) telle que

loc

XKJ-Hd”fj = U;
(lemme 2). En particulier, la fonction

XKj,Fl(fj+1 _fj)
appartient a BKJ.+1(X, C,) et le théoréme de Behnke-Stein montre qu’il
existe une fonction holomorphe g; sur X telle que
1
? s
la semi-norme étant relative & une métrique hermitienne sur Q. Pour tout
entier »n, la série

| fie1 =i = 5]l 2k, <

z XKn(fj+1 —fj_gj)

J=n
converge vers un élément de By (X, Cyx) et 'on pose

Wo = Xk, (fa=Go— - —Gu-0) + X Ak, (i1 =S =97

J=n

I est clair que les fonctions w, se recollent en une fonction w de H,.. (X, C)
et I'on a

d'w =u
ce qui démontre 1’assertion.

COROLLAIRE. Tout fibré en droites holomorphe p sur X est trivial. En
particulier, I’espace vectoriel H' (X, p) est nul.

On sait qu’il existe une section indéfiniment dérivable s de p partout non
nulle (chap. 0, § 2, théoréme 1, corollaire). Désignons par (U,),.; un recou-
vrement de X par des domaines de cartes de p et par (g,,) un cocycle holo-
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morphe de rang 1 subordonné a ce recouvrement représentant p. La sec-
tion s est représentée par des fonctions s, vérifiant les relations

Sl =glKSK'

Sy

En particulier, les formes différentielles se recollent en une forme u

2ins,
de ¢> (X, Q°"). Le théoréme 1 montre qu’il existe une fonction f de
¢ (X, C) telle que
d’ f = u

et un calcul élémentaire montre que la section exp (—2inf)s de p est
holomorphe et partout non nulle ce qui démontre I’assertion.

PROPOSITION 1. L ’espace vectoriel H' (X, C) s’identifie canoniquement
au conoyau de l’opérateur différentiel

d':0(X) - 0(X,Q".

L’injection canonique de O (X, Q%°) dans ¥~ (X, Qé) définit par pas-
sage au quotient une application linéaire « de H® (X, Q':°) dans H! (X, C).
Cette application est surjective. En effet, toute forme différentielle u de
€ (X, Qé) s’écrit
u = uy + d”f

avec u, de bidegré (1, 0) et f dans € (X, C). Posons
v=u —df.

On peut écrire
u=9v+df.

Si de plus u est fermée, la forme différentielle v est holomorphe ce qui

démontre Iassertion. Il reste & voir que le noyau de « est égal 4 'image de
d'. Cest immédiat.

§ 3. FONCTIONS HOLOMORPHES SUR UNE COURBE HOLOMORPHE NON COMPACTE

Pour tout ensemble 4 de X, on pose

A

A={xeX]| |fx)]< | /|4 pour tout feO0(X)}.

A
On dit que 4 est holomorphiquement convexe s’il est égal a A.
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A ~
LEMME 1. Pour tout ensemble compact K de X, les ensembles K et K
sont égaux ).

Soit x un point de K\K et soit V' la composante connexe (relativement
compacte) de x dans X\K. Il est clair que 0V est contenu dans K et le prin-
cipe du maximum montre que I’on a

1f(x)] < ”fHaV < Hf”K
pour toute fonction holomorphe f sur X. Ceci montre que K~ est contenu

A
dans K. N
Réciproquement, soit x un point de X\K. On vérifie aisément que I’on a

(Ku {x})~ - Ku 1%}

Le lemme 5 de I’appendice 1I et le théoréme de Behnke-Stein montrent que
la fonction qui vaut 0 au voisinage de K et 1 au voisinage de x peut étre

uniformément approchée sur K U {x} par une fonction holomorphe f
sur X. Si ’approximation est bonne, on a

[fllx < [/f]% <1/G) ]

ce qui montre que x n’appartient pas a K.

THEOREME 1 (Runge). Pour tout ensemble compact K de X, les conditions
suivantes sont équivalentes :

(1) L’ensemble K est holomorphiquement convexe.

(2) L’ensemble X\K n’a pas de composante connexe relativement
compacte dans X.

(3) Toute fonction holomorphe au voisinage de K peut étre uniformément
approchée sur K par des fonctions holomorphes sur X.

L’équivalence des deux premiéres conditions résulte du lemme 1. Le
lemme 5 de 'appendice 1I et le théoréme de Behnke-Stein montrent qu’elles
impliquent la troisiéme.

Supposons (3) vérifiée et raisonnons par I’absurde en supposant qu’il
existe une composante connexe ¥ de X\K relativement compacte dans X.
On désigne par x un point de V et par 4 une fonction méromorphe sur X,
holomorphe sur X\{x}, possédant un pdle simple au point x (§ 2, lemme 1)
Cette fonction peut étre uniformément approchée sur K par des fonctions

1) Pour la définition de K, voir ’appendice II.
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holomorphes sur X et puisque dV est contenu dans K, le principe du maxi-
mum montre que / peut étre uniformément approchée sur K U ¥ par des
fonctions holomorphes sur X, ce qui est absurde.

THEOREME 2. (1) Les fonctions holomorphes sur X séparent les points.

(2) Pour tout point x de X, il existe une fonction holomorphe sur X
de rang 1 au point Xx. N

(3) Pour tout ensemble compact K de X, [’ensemble K est compact.

On désigne par x et y des points distincts de X. Il est clair que I'on a

x) ={x)

et la fonction qui vaut O (resp. 1) au point x (resp. y) peut étre uniformément
approchée sur {x, y} par une fonction holomorphe sur X. Sil’approximation
est bonne, elle prend des valeurs distinctes en x et y, ce qui démontre (1).

On désigne par x un point de X et par ¢ une carte de X dont le domaine
contient x. Il existe un voisinage compact K de x dans le domaine de ¢ tel
que X'\K n’ait pas de composante connexe relativement compacte dans X,
La fonction ¢ peut étre uniformément approchée sur K par une fonction
holomorphe f'sur X. Si 'approximation est bonne, la fonction fest de rang 1
au point x (chap. I, § 1, théoréme 1, corollaire 4), ce qui démontre (2).

La derniere assertion résulte immédiatement du lemme 1 (appendice 11,
lemme 2).

Remarque 1.

On appelle variété de Stein toute variété holomorphe Y de dimension
pure n, dénombrable a Iinfini, vérifiant les conditions suivantes:

(1) Les fonctions holomorphes séparent les points de Y.

(2) Pour tout point x de Y, il existe une application holomorphe de Y
dans C" de rang »n au point x.

(3) Pour toute partie compacte K de Y, ’ensemble

A

K ={xeY| |lu(x)| < | ufx pour tout ue0(Y)}

est compact.

Le théoréme 2 montre donc que toute courbe holomorphe ouverte
dénombrable a I'infini est une variété de Stein.

b 2 .
— 1 'Fnceionement mathém t XXT face 2.3.4 _
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§ 4. FONCTIONS MEROMORPHES SUR UNE COURBE HOLOMORPHE NON COMPACTE

THEOREME 1 (Mittag-Leffler). Toute partie principale d’un fibré en droites
holomorphe sur X provient d’une section méromorphe.

C’est une conséquence immédiate du corollaire du théoréme 1 du para-
graphe 2 (chap. I, § 3, proposition 2).
Remarque 1.

En fait, le théoréme 1 est valable pour tout fibré vectoriel holomorphe
sur X (voir théoréme 3 ci-dessous).

THEOREME 2 (Weierstrass). Tout diviseur de X est le diviseur d’une fonc-
tion méromorphe.

C’est une conséquence immeédiate du corollaire du théoréme 1 du para-
graphe 2 (chap. I, § 3, proposition 3).

COROLLAIRE. Toute fonction méromorphe h sur X est le quotient de deux
fonctions holomorphes ne s’annulant pas simultanément.

Il existe une fonction holomorphe » sur X dont le diviseur est
sup (— (h), 0). La fonction u définie par

u = vh

est holomorphe et ne s’annule pas en méme temps que v, d’ou ’assertion.

PRroOPOSITION 1. Soit A un ensemble fermé discret de X et soit f une
fonction a valeurs complexes définie sur A. 1l existe alors une fonction
holomorphe h sur X prolongeant f.

Désignons par u une fonction holomorphe sur X dont le diviseur est
donné par la formule

() = > 1-x

xed

(théoréme 2) et par v une fonction méromorphe sur X vérifiant les relations
v, —f(x)ulel, sixed
v, €0, si xeX\4

(théoréme 1). 11 suffit alors de poser

h = uv.
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PROPOSITION 2. Désignons par m un fibré vectoriel holomorphe sur X
et par o le fibré quotient de m par un sous-fibré en droites holomorphe p.
Pour toute section holomorphe t de o, il existe une section holomorphe s
de m relevant t.

Par définition méme du fibré quotient (chap. 0, § 2, exemple 3), il existe
un recouvrement ouvert (U,),.; de X et, pour chaque indice 1, une section
holomorphe s, de = sur U, relevant t[U,. La section s,, définie sur U, n U,
par

Ses = S, — Sy

prend ses valeurs dans p. Il existe donc pour chaque indice 1 une section f,
de €~ (U,, p) telle que

Sk1 =f1 _fx

(chap. 0, § 2, lemme 1). Comme s, est holomorphe, les formes différentielles
d" f, se recollent en une forme différentielle u de € (X, p ® Q%1). 1l existe
donc une section f de € (X, p) telle que

d'f =u

(§ 2, théoréme 1, corollaire). Ceci montre que les sections s, — 1, + f|y,
qui se recollent en une section s de © sont holomorphes. Comme elles relévent
t |y, ceci démontre I’assertion.

THEOREME 3. Tout fibré vectoriel holomorphe n sur X est trivial.

On va raisonner par récurrence sur le rang p de . Si p est égal a 1,
'assertion résulte du corollaire du théoréme 1 du paragraphe 2. Supposons p
au moins €gal a 2 et le théoréme démontré pour p — 1.

Nous allons tout d’abord construire une section holomorphe s; de =
partout non nulle. Le théoréme de Behnke-Stein montre qu’il existe une
section holomorphe s de n non identiquement nulle. Pour toute carte @
de m ayant pour domaine un ensemble connexe U, on a

S¢ = (ul, ...,up)

ou uy, ..., u, sont des fonctions holomorphes sur U dont ’'une au moins
n’est pas nulle. On vérifie aisément que le diviseur v défini par

leciz=p




304 —

est indépendant de @ et I’on désigne par f une fonction holomorphe sur X
ayant v pour diviseur (théoréme 2). Il est clair que la section

S
§; = -
f
est holomorphe et partout non nulle.

Désignons par p le fibré en droites holomorphe engendré par s, et par o
le fibré quotient de = par p. Par hypothése de récurrence, il existe des sec-
tions holomorphes 7,, ..., f, de ¢ qui engendrent la fibre en tout point. Ces
sections se relévent en des sections holomorphes s,, ..., s, de © (proposi-
tion 2). Il est clair que sy, ..., 5, engendrent la fibre de 7 en tout point, ce qui
démontre I’assertion.
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