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et 'on a

Sinon g est au plus égal a

/
[m(l———;—ﬂ:m—q—l)m——l—m;l =(m—1)(1-——§>

ce qui établit 'assertion.
On en déduit que

0(a,) = m(2g—=2) + >, l:m (1 ——1—)}

xeX px

>m (29 —2) +(m—1) ), (1 —i>

xeX Px
ou encore
1
0(a,) =>(m-—1) <2g—-2+ Y (1 — ;)) +29 — 2.
xeX X

Si m est au moins égal a 2, le résultat est donc une conséquence du lemme 3

§ 7. VARIETES DE PICARD ET DE JACOBI

Désignons par E un espace vectoriel complexe de dimension finie n et
par I' un réseau de E (i.e. un sous-groupe abélien de rang 2n). L’appli-
cation canonique © de E dans E/I" est un revétement. On munit E/I" de
I'unique structure holomorphe faisant de 7 un isomorphisme local. On
appelle fore complexe toute variété holomorphe isomorphe a une variété
de la forme E/T.

Soit T (resp. T") un tore complexe de la forme E/I" (resp. E'/T"’) et soit u
un isomorphisme de 7 sur 7’. On désigne par = (resp. ©") P'application
canonique de E dans T (resp. de E’ dans T”). Quitte a modifier # par un
automorphisme de 7', on peut supposer que ’on a

u(n (0)) = 7'(0).
11 existe alors un isomorphisme v de E sur E’ et un seul tel que
0 =0 e #n"'v=u-xm.

Pour tout élément y de I', 'image v (y) est un élément " de I'" et ’on vérifie
aisément que 'on a

v(z+y) =v(z) +7’

L’Enseignement mathém., t. XXI, fasc. 2-3-4. 19
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pour tout point z de E. En particulier, la dérivée de v est I'-invariante. Elle
est donc constante en vertu du principe du maximum.

I1 résulte de ce qui précéde que T et T’ sont isomorphes si et seulement si
il existe un isomorphisme C-linéaire v de E sur E’ tel que |

v(l) =1
(chap. I, § 5, numéro 3).

LeMME 1. Désignons par Q une matrice de M (n,2n; C) et par I' le
sous-groupe de C" engendré par les vecteurs colonnes de Q. Les conditions
suivantes sont équivalentes :

(1) Le sous-groupe I est un réseau de C".
Q
(2) La matrice (?j) est inversible.

(3) Le vecteur nul est le seul vecteur (z, ..., z,) de C" tel que le vecteur

(24, .0y 2,) Q
soit réel.

La démonstration est un simple exercice d’algebre linéaire.

LEMME 2. Désignons par Q (resp. Q') une matrice de M (n, 2n; C)
et par I' (resp. I'') le sous-groupe de C" engendré par les vecteurs colonnes
de Q (resp. Q). On suppose que I' et I'' sont des réseaux. Pour que les

tores complexes C"|I' et C"/I"’ soient isomorphes, il faut et il suffit qu'’il
existe une matrice M de G (n; C) et une matrice Ade G (2n;Z) telles que

Q =MQA.

C’est une conséquence immédiate de ce qui précede.

Rappelons que 'on a une suite exacte

0—H°(X, Q") H (X,0)—L-H!' (X,Cy)— 0

(§ 1, proposition 2). On sait d’autre part que H' (X, R) s’identifie & un sous-
espace vectoriel réel de H* (X, C).

LemMME 3. Par restriction, [’application [ induit un isomorphisme
R-linéaire de H' (X, R) sur H' (X, Cy).
Toute forme différentielle (réelle) de ¥~ (X, Q') s’écrit

u =9 +7v
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avec v dans €% (X, Q). En effet, pour toute carte ¢ de domaine U dans
X,ona
uly = udey + uyde,,

en désignant par ¢, et ¢, les parties réelle et imaginaire de ¢. Il suffit alors
de poser

v

| ) 1 o
U=§(u1—iu2)d¢ et v|U=§(u1+m2)d¢.

Supposons de plus u fermée. L’image par f de la classe de u n’est autre que
la classe de v. Si cette classe est nulle, on a

u=v+v=df+df

pour une certaine fonction fde €% (X, C). Il résulte de cette équation que
la fonction f — f est harmonique, donc constante. On en déduit que

u=df+df=df

ce qui démontre I’assertion.

Il résulte en particulier du lemme 3 que 'image par  du sous-groupe
H' (X, Z) est un réseau de H! (X, Cy) (chap. 0, § 5, théoréme 1, corollaire 2).
Notons que I'image par f de la classe d’un élément 4 de €% (X, C*) est la
classe de la différentielle

1 d'h
2in h
PROPOSITION 1. La suite de groupes abéliens et d’homomorphismes

0—H'(X,Z)-£~ H' (X, Cy) *— Pic(X,C¥) <", Z 0

est exacte 1).

Pour toute forme différentielle u de € (X, Q%1), il existe un recou-
vrement ouvert (U),; de X et, pour chaque indice 1, une fonction f, de
€ (U,, C) telle que

uly, =d'f,.

Les fonctions définies sur U, n U, par
flCl =f1c "—fl et 9 =exp(2infkl)

sont holomorphes et la famille (g,,) est un cocycle de rang 1 subordonnée 2
(U,) dont la classe dans Pic (X, C*) est précisément 'image par 0 de la

1) La définition de 0 a été donnée au paragraphe 2.
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classe de u. Désignons par 7 un fibré en droites holomorphe sur X corres- ‘
pondant & ce cocycle. Les fonctions exp (2in f,) se recollent en une section
partout non nulle fde € (X, n) ce qui montre déja que la classe de Chern de
7 est nulle.
Si u est de la forme ‘
1 d'h
U o= — —
2in
pour une certaine fonction 4 de ¥® (X, C*), la section 2~ f de = est holo-
morphe et partout non nulle ce qui montre que 7 est trivial.
Réciproquement, si 7 est trivial, il existe pour tout indice 7 une fonction
holomorphe inversible g, sur U, telle que

9 =9 9,

Les fonctions exp (2in f)) g~,' se recollent en une fonction # de ¥* (X, C*)
et 'on a

- - d” — .
2it h U, fl ! IUl

Ceci montre que la classe de u est dans I'image de .

Il reste & voir que tout fibré en droites holomorphe 7 sur X dont la classe
de Chern est nulle provient d’un élément de H' (X, Cy). Désignons par
(U)o un recouvrement ouvert de X par des ensembles simplement connexes
et par (g,,) un cocycle holomorphe de rang 1 subordonné a (U,), repré-
sentant . Le fibré = étant différentiablement trivial (chap. 0, § 5, théo-
réme 4), il existe pour tout indice 1 une fonction g, de €~ (U, C*) telle
que

Ie = 99 -

Puisque U, est simplement connexe, il existe une fonction f, de €” (U,, C)
telle que
g, = exp2inf).

Il résulte de ces définitions que ’on a

) 1 dﬂ . 1 du . )
df,=—=2 = e af,.
2in g, 2it g,

Autrement dit, les formes différentielles d”’ f, se recollent en une forme u
de % (X, Q%) ayant toutes les propriétés requises.
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Le noyau de ch s’identifie au quotient de H' (X, Cx) par le réseau Imp.
Ce noyau est donc un tore complexe de dimension g que I'on appelle la
variété de Picard de X et que I’on désigne par Pic (X).

Désignons par G le groupe fondamental de X en un point base x, et par
Cyy ...y Co, des lacets de X en xg dont les classes forment une base du

Z-module libre G (chap. 0, § 5, théoréme 3).

Pour tout entier j compris entre 1 et 2g, il existe par dualité un élément u;
de H' (X, R) tel que

Lk up = O

pour tout entier k compris entre 1 et 2g (chap. 0, § 5, théoréme 2, corol-
laire 2).

Désignons encore par v, ..., v, une base de I'espace vectoriel H® (X, 2°)
des formes différenticlles holomorphes. On pose

Wjx = j‘c,c v; et Q= (0p)1=jzg1=k=z2g

=) =YL =R

Remarquons que I’'on a par définition

v, =Y Wp .
1=k=2g

Autrement dit, la matrice *Q est la matrice de I'application o exprimée
dans les bases vy, ..., U, €t uy, ..., Uy,
LEMME 4. Les vecteurs colonnes de Q engendrent un réseau de C°.
Tout vecteur (z4, ..., z;) de C? tel que le vecteur

(21500 2y Q

soit réel est nul. En effet, cette condition signifie que la forme différentielle
holomorphe

zVy + ... + 20,

est réelle. L’assertion est donc une conséquence des lemmes 3 et 1.

Le tore complexe de dimension g défini par la matrice Q s’appelle la
variété de Jacobide X et se désigne par Jac (X). On notera que cette variété

est définie a isomorphisme prés par le choix d’une base de & et d’une base
de H® (X, Q9.
Pour tout couple (j, k) d’entiers compris entre 1 et 2g, on pose

A’jk = jxuj A uk et A = (}‘jk)léj,kéZg'




— 290 —

La matrice A n’est autre que la matrice d’intersection de X (chap. 0, § 5,
remarque 3). Elle appartient donc & G (2¢g; Z).

THEOREME 1 (Riemann). (/) La matrice QA*Q est nulle (égalités de
Riemann). |

(2) La matrice hermitienne iQA'Q est positive non dégénérée (inégalités
de Riemann).

Conservons les notations précédentes. Pour tout couple d’entiers (J, k)
compris entre 1 et g, la forme différentielle v; A v, est identiquement nulle
(puisque de bidegré (2, 0)). On a donc

0 = jxvj ATy = Z CUjpwkqjxup AUy = Z @;p Apg Dy
1=p,q=29 1=p,q=29
ce qui démontre la premiére assertion.

Pour toute forme différentielle holomorphe v sur X, la forme diffé-
rentielle iv A v est positive (ceci se vérifie aisément dans une carte). Dési-
gnons par zy, ..., z, les coordonnées de v dans la base v;, ..., v,. Les formes
différentielles u, ..., u,, étant réelles, on a

1=j,k=yg
= Z Z 1200 5y DiegZi

1=jk=g9g 1<=p,q=2g

L’égalité ne pouvant apparaitre que si v est nulle, ceci démontre la seconde
assertion.

Désignons par Q' la matrice de f dans la base u;, ..., u,, et dans une base
quelconque de H! (X, Cy). Cette matrice est de rang g et ’on a

Q-0 =0.

De plus, les vecteurs colonnes de Q' engendrent un réseau de H' (X, Cy)
et le quotient de H' (X, Cy) par ce réseau n’est autre que Pic (X) (en effet,
les vecteurs colonnes de Q' sont les images par f des €léments u,, ..., u,,).

LEMME 5. Les variétés Pic (X) et Jac (X) sont isomorphes.
Posons

P=iQA'Q e Q=2Q"'Q.

La matrice P est inversible (inégalités de Riemann). Montrons qu’il en est
de méme de Q. Les égalités de Riemann montrent que 'on a
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t Q . —
Q' (..) = (Q"'Q Q"Q) = (0 Q")
Q

d’ol Iassertion puisque Q' est de rang g et (‘Q ‘.5) de rang 2g. On a alors

) @) - @)= =)

et par conséquent

@ o))

M = iQP~!.

Q-—l Q'
(o)

I

Posons

Il résulte de ce qui précéde que 'on a
o a—l g_zl . -1 Ql ,
MQA = MQA('Q Q) 0 @ = MO —iP)| __ = Q

ce qui démontre I’assertion.

Notons qu’un isomorphisme v de Jac (X) sur Pic (X) est induit par
I’isomorphisme de C? sur lui-méme associé¢ a la matrice M.

Pour tout point x de X, on désigne par &, le fibré principal associ€ au
diviseur 1 + x. On définit une application Z de X dans Pic (X) en posant

Par définition méme, la classe dans Jac (X) du vecteur

(Jevys oo Jov,)

ne dépend pas du chemin c joignant x, a x. Cette classe se désigne par
Y (x). On définit ainsi une application Y de X dans Jac (X).

LEMME 6. Le diagramme suivant

X
Yy N, E
Jac (X) _v = Pic(X)
est commutatif.
Soit ¢ un chemin joignant x, & un point x de X. Le fibré principal

= (x) est associé au diviseur 1 - x — 1 - x,. Il existe donc une forme diffé-
rentielle w dans € (X, Q°') vérifiant les conditions suivantes:
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(1) L’image par 0 de la classe de w est le fibré principal = (x).
(2) Pour toute forme différentielle holomorphe v sur X, on a

fxv Aw=|,v

(§ 2, lemme 1). Il existe d’autre part une fonction f de € (X, C) telle que la
forme w + d" f soit fermée (§ 1, proposition 1). On a alors
wH+d'f= ) wiu
1=j=2g
ou wy, ..., Wy, sont des nombres complexes. Pour tout entier j compris entre
letg,ona

j.cvj = ,[ij AW = ijj A(w+d f) =1 Y Wk_’-X‘vj A Uy

= Z Wi @y Ay
1=k,l=2g
Ceci montre que Y (x) est la classe dans Jac (X) du vecteur QA (w+d"f).
Avec les notations du lemme 5, on a donc
. (é-1 Q'

QA(w+d f) = QA(Q 'Q) 0! Q’) (w+d"f)

= (0 —iP) (Q_ &

0! Q’) (w+d' f) = M™1Q" (w+d"f)

et I'on conclut en remarquant que la classe de Q' (w+d"” f) dans Pic (X)
n’est autre que = (x).

LEMME 7. Soit m un fibré en droites holomorphe sur X associé a un
diviseur de la forme 1-x. Si g est au moins égal a 1, la dimension de
H° (X, n) est égale a 1.

Supposons qu’il existe deux sections holomorphes s, et s; de = linéai-
rement indépendantes et considérons l’application holomorphe (sq :5;)
de X dans P!. Pour tout couple (14, ;) de nombres complexes non tous
deux nuls, la section 1,5, + 4,5, posséde un zéro et un seul. En effet, son
ordre est égal A la classe de Chern de n. On en déduit aisément que I’appli-
cation (s, : 5,) est un isomorphisme (chap. I, § 4, proposition 1, corollaire),
ce qui démontre ’assertion.

LEMME 8. Si g est au moins égal a 1, les formes différentielles holo-
morphes sur X n’ont pas de zéro commun.
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Pour tout point x de X il existe un fibré en droites holomorphe 7 sur X
et une section holomorphe s de n dont le diviseur associé est 1 - x. Il résulte
du théoréme de Riemann-Roch et du lemme 7 que 'on a

dim H° (X, n*®@Q"%) =g — 1.

D’autre part, application ® s induit un isomorphisme de H® (X, n* @ 2"°)
sur Pespace L (1-x) des formes différentielles holomorphes qui s’annulent
au point x. On en déduit que L (1-x) est distinct de H° (X, Q%) ce qui
démontre le lemme.

THEOREME 2. Si g est au moins égal a 1, [’application canonique = de
X dans Pic (X) est un plongement.

Conservons les notations précédentes. Soit U un ensemble ouvert sim-
plement connexe dans X. Il existe des fonctions holomorphes 44, ..., &
sur U telles que

g
vy |y = dhy,...,v, |y = dh,.
L’application holomorphe (k4, ..., h,) de U dans C’ est un relévement de
Y|y. Ceci montre déja que Y (et par conséquent =) est holomorphe et de
rang 1 (lemme 8).

Montrons que Z est injective. Raisonnons par ’absurde en supposant
qu’il existe deux points distincts x et y de X tels que &, et &, coincident.
Désignons par n un fibré en droites holomorphe correspondant au fibré
principal &,. La dimension de H® (X, #) est au moins égale & 2 ce qui est
absurde (lemme 7).

COROLLAIRE. Toute courbe holomorphe compacte connexe de genre 1 est
une courbe elliptique.
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