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I

Sinon qest au plus égal à —7— et I on a
l

^1 - yjj m - q -
ce qui établit l'assertion.

On en déduit que

1 > m — 1 —
m — 1

(m — 1) 1 — -

0(am) m(2g— 2) 4- £
xeX

m 1 —

> m (2g— 2) + (m — 1) £ 1

xeX \ P.

ou encore

0(flm)>(rn-l)^-2+ £ (1-^))
Si m est au moins égal à 2, le résultat est donc une conséquence du lemme 3

§ 7. Variétés de Picard et de Jacobi

Désignons par E un espace vectoriel complexe de dimension finie n et

par r un réseau de E (i.e. un sous-groupe abélien de rang 2n). L'application

canonique n de E dans E/T est un revêtement. On munit E/T de

l'unique structure holomorphe faisant de n un isomorphisme local. On

appelle tore complexe toute variété holomorphe isomorphe à une variété
de la forme E/T.

Soit T (resp. T') un tore complexe de la forme E/T (resp. E'/T') et soit u

un isomorphisme de T sur T'. On désigne par n (resp. n') l'application
canonique de E dans T (resp. de E' dans T'). Quitte à modifier u par un
automorphisme de T\ on peut supposer que l'on a

u (n (0)) n (0)

Il existe alors un isomorphisme v de E sur E' et un seul tel que

v (0) 0 et n' - v u • n

Pour tout élément y de T, l'image v (y) est un élément y' de J" et l'on vérifie
aisément que l'on a

v(z+y) v(z) + y'
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pour tout point z de E. En particulier, la dérivée de v est r-invariante. Elle
est donc constante en vertu du principe du maximum.

Il résulte de ce qui précède que T et T'sont isomorphes si et seulement si

il existe un isomorphisme C-linéaire v de E sur E' tel que

(chap. I, § 5, numéro 3).

Lemme 1. Désignons par Q une matrice de M (n, 2n ; C) et par r le

sous-groupe de Cn engendré par les vecteurs colonnes de Q. Les conditions
suivantes sont équivalentes :

(1 Le sous-groupe T est un réseau de Gn.

(3) Le vecteur nul est le seid vecteur (zl5 z„) de Cn tel que le vecteur

La démonstration est un simple exercice d'algèbre linéaire.

Lemme 2. Désignons par Q (resp. Q') une matrice de M (n, 2n; C)

et par r (resp. E') le sous-groupe de Cn engendré par les vecteurs colonnes

de Q (resp. Q'). On suppose que r et r' sont des réseaux. Pour que les

tores complexes Cn/T et Cn\E' soient isomorphes, il faut et il suffit qu 'il
existe une matrice M de G (n; C) et une matrice A de G (:2n; Z) telles que

C'est une conséquence immédiate de ce qui précède.

Rappelons que l'on a une suite exacte

0 * H° (X, a1'0) H1 (X, C) H1 (X, Cx) > 0

(§ 1, proposition 2). On sait d'autre part que H1 (X, R) s'identifie à un sous-

espace vectoriel réel de H1 (X, C).

Lemme 3. Par restriction, l'application ß induit un isomorphisme
Pi-linéaire de H1 (X, R) sur H1 (X, Cx).

Toute forme différentielle (réelle) de ^°° (X, Q1) s'écrit

u v + v

v (r) r'

(2) La matrice est inversible.

(zu zn)Q
soit réel.

Q' M Q A
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avec v dans ^°° (X, Q1,0). En effet, pour toute carte </> de domaine U dans

X, on a

M |[7 U1d(f)l -f- U2d(p2 9

en désignant par </>! et (j)2 les parties réelle et imaginaire de 4>. Il, suffit alors

de poser

v \ u ^ (u1 — iu2) dcj) et v | v - («i + w2) d(ß

Supposons de plus w fermée. L'image par ß de la classe de u n'est autre que
la classe de v. Si cette classe est nulle, on a

u v + v d'f + d f
pour une certaine fonction /de ^°° (X, C). Il résulte de cette équation que
la fonctionf — J est harmonique, donc constante. On en déduit que

u d'f + d"f df
ce qui démontre l'assertion.

Il résulte en particulier du lemme 3 que l'image par ß du sous-groupe
H1 (X, Z) est un réseau de H1 (X, Cx) (chap. 0, § 5, théorème 1, corollaire 2).
Notons que l'image par ß de la classe d'un élément h de ^°° (X, C*) est la
classe de la différentielle

1 d"h

2in h

Proposition 1. La suite de groupes abéliens et d'homomorphismes

o H1 (X, Z) J-+ H1 {X, Cx)Pic(X, C*) z > 0

est exacte 1).

Pour toute forme différentielle u de "if® (X, jQ0>1), il existe un
recouvrement ouvert de X et, pour chaque indice une fonction de
Ve0 (C/„ C) telle que

« lu, d"f
Les fonctions définies sur (7, n UKparfKi f k fi=oxp (2

sont holomorphes et la famille (gKl) est un cocycle de rang 1 subordonnée à
U,) dont la classe dans Pic (X,C*)est précisément l'image par 9 de la

x) La définition de 0 a été donnée au paragraphe 2.
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classe de u. Désignons par n un fibré en droites holomorphe sur X
correspondant à ce cocycle. Les fonctions exp (lin/) se recollent en une section

partout non nulle/de 00 (X, n) ce qui montre déjà que la classe de Chern de

n est nulle.
Si u est de la forme

1 à"h

lin h

pour une certaine fonction h de ^°° (X, C*), la section h~xf de n est

holomorphe et partout non nulle ce qui montre que n est trivial.
Réciproquement, si n est trivial, il existe pour tout indice i une fonction

holomorphe inversible gt sur Ul telle que

9K 9ki 91 •

Les fonctions exp (lin/) g"1 se recollent en une fonction h de ^°° (X, C*)
et l'on a

1 d"h

lin h
d" f% u\Ut.

Ui

Ceci montre que la classe de u est dans l'image de ß.

Il reste à voir que tout fibré en droites holomorphe n sur X dont la classe

de Chern est nulle provient d'un élément de H1 (X, Cz). Désignons par
(Ut)iel un recouvrement ouvert de X par des ensembles simplement connexes

et par (gKl) un cocycle holomorphe de rang 1 subordonné à (Ut),
représentant 7i. Le fibré n étant différentiablement trivial (chap. 0, § 5, théorème

4), il existe pour tout indice i une fonction gt de ^ (£/„ C*) telle

que
9K 9 ki9 i •

Puisque XJx est simplement connexe, il existe une fonction/ de ^°° (Ul9 C)
telle que

g, exp (2

Il résulte de ces définitions que l'on a

1 à"g,1 d"gK
ai,— — a t.lin gt lin gK

Autrement dit, les formes différentielles d"ft se recollent en une forme u

de ^°° (X, ß0'1) ayant toutes les propriétés requises.
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Le noyau de ch s'identifie au quotient de H1 (X, C^) par le réseau Im/?.

Ce noyau est donc un tore complexe de dimension g que l'on appelle la

variété de Picard de X et que l'on désigne par Pic (X).

Désignons par G le groupe fondamental de X en un point base x0 et par

cl9..., c2g des lacets de X en x0 dont les classes forment une base du

Z-module libre G (chap. 0, § 5, théorème 3).

Pour tout entierj compris entre 1 et 2g, il existe par dualité un élément uj
de H1 (X, R) tel que

L ô»

pour tout entier k compris entre 1 et 2g (chap. 0, § 5, théorème 2, corollaire

2).

Désignons encore par vu vg une base de l'espace vectoriel H° (X, ß1'0)

des formes différentielles holomorphes. On pose

(tijk ~ Vj ^ ^ ((tijk) 1 ^g,l ^2g •

Remarquons que l'on a par définition

Vj Z œjktik-

Autrement dit, la matrice (Q est la matrice de l'application oc exprimée
dans les bases vu vg et ut, u2g.

Lemme 4. Les vecteurs colonnes de Q engendrent un réseau de C9.

Tout vecteur (zl9..., zg) de C9 tel que le vecteur

(zl9 ...,zg)Q

soit réel est nul. En effet, cette condition signifie que la forme différentielle
holomorphe

ztv± + + zgvg

est réeile. L'assertion est donc une conséquence des lemmes 3 et 1.

Le tore complexe de dimension g défini par la matrice Q s'appelle la
variété de Jacobi de X et se désigne par Jac {X). On notera que cette variété

est définie à isomorphisme près par le choix d'une base de G et d'une base
de H° (X, Quo).

Pour tout couple (y, k) d'entiers compris entre 1 et 2g, on pose

A/fc §XUJ ^ ^ A — (^jk)l^j,k^2g •
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La matrice A n'est autre que la matrice d'intersection de X (chap. 0, § 5,

remarque 3). Elle appartient donc à G (2g; Z).

Théorème 1 (Riemann). (1) La matrice QAfQ est nulle (égalités de

Riemann

(2) La matrice hermitienne iQA(Q est positive non dégénérée inégalités
de Riemann).

Conservons les notations précédentes. Pour tout couple d'entiers (J, k)
compris entre 1 et g, la forme différentielle Vj a vk est identiquement nulle
(puisque de bidegré (2, 0)). On a donc

0 $xvJ A vk £ œjp<°kq$xUpA£
l^p,q^2g l^P,q^2g

ce qui démontre la première assertion.

Pour toute forme différentielle holomorphe v sur X, la forme
différentielle iv a v est positive (ceci se vérifie aisément dans une carte).
Désignons par zu zg les coordonnées de v dans la base v1, vg. Les formes
différentielles ul9 u2g étant réelles, on a

0 < i\xvA vY, zjïk1 hvj A %
1 ^j,k^g

X S ÎZjfàjp^pqfàkqZk
l^j,k^g i^p,q^2g

L'égalité ne pouvant apparaître que si v est nulle, ceci démontre la seconde

assertion.

Désignons par Q' la matrice de ß dans la base uu u2g et dans une base

quelconque de H1 (X, Cx). Cette matrice est de rang g et l'on a

Q' 0.

De plus, les vecteurs colonnes de Q' engendrent un réseau de H1 (X, Cz)
et le quotient de H1 (X, Cx) par ce réseau n'est autre que Pic (X) (en effet,
les vecteurs colonnes de Q' sont les images par ß des éléments ul9..., u2g).

Lemme 5. Les variétés Pic (X) et Jac (X) sont isomorphes.

Posons

P i QAtQ et Q QnQ

La matrice P est inversible (inégalités de Riemann). Montrons qu'il en est

de même de Q. Les égalités de Riemann montrent que l'on a
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ü' '(Yj (fl"ß (0 Q"Q)

d'où l'assertion puisque Q' est de rang g et (*Q *Q) de rang 2g. On a alors

et par conséquent

VûV1
_

/0 Q-^/Û'X (Q-'Q')
\q) Vô"1 0 Vô"1«'/

Posons

M iQP~l

Il résulte de ce qui précède que l'on a

-/ß"1^ (QT1 ß'\
Mßd MÖ^'O M(° "/P)(ß-i 0J °

ce qui démontre l'assertion.

Notons qu'un isomorphisme v de Jac (.X) sur Pic (X) est induit par
l'isomorphisme de C9 sur lui-même associé à la matrice M.

Pour tout point x de X, on désigne par Çx le fibré principal associé au
diviseur 1 • x. On définit une application S de X dans Pic (X) en posant

s(x)

Par définition même, la classe dans Jac (X) du vecteur

(Je ^15 * • • Je Vg)

ne dépend pas du chemin c joignant x0 à x. Cette classe se désigne par
Y (x). On définit ainsi une application Y de X dans Jac (X).

Lemme 6. Le diagramme suivant

X
Y / \ 77

Jac (X) _v^ Pic (X)
est commutatif.

Soit c un chemin joignant x0 à un point x de X. Le fibré principal
S (x) est associé au diviseur 1 • x - 1 • x0. Il existe donc une forme
différentielle w dans ^°° (X, ß0'1) vérifiant les conditions suivantes:
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(1) L'image par 6 de la classe de w est le fibré principal S (x).

(2) Pour toute forme différentielle holomorphe v sur X, on a

A W JCV

(§ 2, lemme 1). Il existe d'autre part une fonction/de ^°° (X, C) telle que la
forme w + d"f soit fermée (§ 1, proposition 1). On a alors

w+d"f= Yj wj ui

où wu w2g sont des nombres complexes. Pour tout entier j compris entre
1 et g, on a

je«,- jxVj A W\xVj A (w)X A Uk

l^k^lg
Y Wk œjl AIk

l^k,l^2g

Ceci montre que Y (x) est la classe dans Jac (X) du vecteur QA (w + d"f).
Avec les notations du lemme 5, on a donc

- lQTx Q'\
QA (w+d f) QAÇQ fQ) *> + d /)

for1^
(0 -ÎP) Q/j (w+d f) M~ Qr (w + d /)

et l'on conclut en remarquant que la classe de Q' (w + d"f) dans Pic (X)
n'est autre que S (x;).

Lemme 7. Soit n un fibré en droites holomorphe sur X associé à un

diviseur de la forme 1 * x. Si g est au moins égal à 1, la dimension de

H° (X, n) est égale à 1.

Supposons qu'il existe deux sections holomorphes s0 et st de n
linéairement indépendantes et considérons l'application holomorphe (s0 :

de X dans P1. Pour tout couple (A0, 2X) de nombres complexes non tous
deux nuls, la section A0^o ^ ^isi possède un zéro et un seul. En effet, son

ordre est égal à la classe de Chern de n. On en déduit aisément que l'application

(s0 : S}) est un isomorphisme (chap. I, § 4, proposition 1, corollaire),
ce qui démontre l'assertion.

Lemme 8. Si g est au moins égal à 1, les formes différentielles
holomorphes sur X n 'ont pas de zéro commun.
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Pour tout point x de X il existe un fibré en droites holomorphe % sur X
et une section holomorphe s de it dont le diviseur associé est 1 • x. Il résulte

du théorème de Riemann-Roch et du lemme 7 que l'on a

dimcH° (X, 7i* ® Q1'0) g - 1.

D'autre part, l'application ® s induit un isomorphisme de H° (X, 7i* ® Q1*0)

sur l'espace L(l-x) des formes différentielles holomorphes qui s'annulent

au point x. On en déduit que L(l-x) est distinct de H° (X, Q1'0) ce qui
démontre le lemme.

Théorème 2. Si g est au moins égal à 1, l'application canonique S de

X dans Pic (X) est un plongement.

Conservons les notations précédentes. Soit U un ensemble ouvert
simplement connexe dans X. Il existe des fonctions holomorphes hu hg

sur U telles que
Vî\v ~ dhi, •••9Vg\u — dhg.

L'application holomorphe Qiu hg) de U dans C9 est un relèvement de

Y\v. Ceci montre déjà que Y (et par conséquent S) est holomorphe et de

rang 1 (lemme 8).

Montrons que S est injective. Raisonnons par l'absurde en supposant
qu'il existe deux points distincts x et y de X tels que Çx et ^ coïncident.
Désignons par n un fibré en droites holomorphe correspondant au fibré
principal Çx. La dimension de H° (X, ri) est au moins égale à 2 ce qui est
absurde (lemme 7).

Corollaire. Toute courbe holomorphe compacte connexe de genre 1 est

une courbe elliptique.
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