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e DR

COROLLAIRE 2. Toute courbe holomorphe compacte connexe X plongée
dans un espace projectif P" est le lieu des zéros d’une famille de polynémes
homogénes.

Désignons par a I'idéal des polynémes de C [T, ..., T,] qui s’annulent
sur =1 (X), ol ¥ est la projection canonique de C"**\0 dans P", et par Y
le lieu des zéros de a dans P". Puisque ¥~ ' (X) est connexe, I'idéal a est
premier. Le corps k (Y) des fonctions rationnelles sur Y est un sous-corps
de " (X). Le théoréme 1 montre alors que Y est une courbe algébrique
de P". Désignons par Y, I’ensemble des points réguliers de Y et posons

XO = YomX.

D’ensemble X, est a la fois ouvert et fermé dans Y,. Comme ce dernier
ensemble est connexe (chap. I, § 5, théoréme 4), on en déduit que X est
égal 4 Y, d’ou I’assertion.

THEOREME 2. Toute courbe holomorphe compacte connexe X se plonge
dans P3.

Soit f une fonction méromorphe non constante de degré r sur X. On
désigne par y une valeur réguliére de f, par xi, ..., x, les points de /1 (),
par x,.4, ..., X,, les points critiques de f. 1l existe une fonction méromorphe
g sur X séparant les points xi, ..., x, et possédant un zéro simple aux
points x,. ¢, ..., X, (lemme 1). Désignons par n ’application (f:g) de X dans
P? et par Y son image. L’application « est partout de rang 1 et le couple
(X, m) est une normalisation de Y (théoréme 1). Soit 4 I'ensemble des
points singuliers de Y et soit 4 une fonction méromorphe sur X séparant
les points de ! (4) (lemme 1). On montre aisément que I’application
(f:g:h) est un plongement de X dans P>.

§ 6. FORMES AUTOMORPHES

Pour tout automorphisme y du disque unité D, on définit une fonction
holomorphe sur D en posant

| dy
fr = 0z
Pour tout couple (y, ") d’automorphismes et tout point z de D, on a

jy’y (Z) = jy’ ('))Z)]y (Z) v
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Nous supposerons désormais que X est le quotient de D par un groupe
proprement discontinu I" (chap. I, § 5, numéro 3) et nous désignerons par
7 la projection canonique de D dans X.

Soit m un entier relatif. On appelle forme automorphe de poids m relative
a T toute fonction méromorphe f sur D telle que

fr=5ip"f
pour tout automorphisme y de I'. On désigne par /4 (m, I') (resp. O (m, I'))
’ensemble des formes automorphes (resp. des formes automorphes holo-
morphes) de poids m relatives a I'.

Fixons une fois pour toutes une forme différentielle méromorphe non
nulle w sur X. La forme différentielle 7n* (w) s’écrit

n*(w) = fdz

ou f est une fonction méromorphe sur D. Pour tout automorphisme y de
I' et tout point z de D, on a

f(2)dz = n*(w)(2) = n*(0) (yz) = f(y2)],(2)dz

ce qui montre que f est une forme automorphe de poids 1 relative a I'.

Pour toute forme automorphe u de poids m relative a I', la fonction
méromorphe uf ™ est I'-invariante. On en déduit que l’application ¥,
de A (X) dans 2" (m, I') définie par

¥, (@) = (n)f"

est un isomorphisme pour tout entier m.

Nous allons chercher a quelles conditions une fonction méromorphe
v sur X fournit une forme automorphe holomorphe sur D.

Pour une telle fonction, on a

0, (¥, () = 0,(n* () + m 0, (n* () > 0
pour tout point z de D. Cette condition équivaut a

0,(®) > —m0, (0) — [m (1 — —~1—>J h
P,

7/

pour tout point x de X, ou p, désigne le cardinal du groupe d’isotropie de
I' en tout point de 7~ (x). On définit un diviseur a,, sur X en posant

.1) Poqr tout nombre réel ¢, on désigne par [c] la partie entiére de c, i.e. I’entier
relatif défini par

[c] =sup (neZ|n<cy.
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a,(x) = (m 0,(w) + |:m (1 — l_)1_>:l> X .

On voit donc que ¥,, induit un isomorphisme de L (a,,) sur O (m, I') (§ 3,
remarque 1).

Pour toute fonction holomorphe u sur D et pour tout entier relatif m,
la série

vell

s’appelle la série de Poincaré associée a u.

LEMME 1. Si u est bornée et m au moins égal a 2, la série de Poincaré

pr (u, m) converge uniformément sur tout compact vers une fonction de
O (m, TI).

Pour montrer que la série p (u, m) converge, il suffit de montrer que la

série
.2
> T
yell

converge dans L, . (D, C) (chap. I, § 1, théoréme 1, corollaire 4). Désignons.
par z un point de D et par K un voisinage compact de z dans D tel que

yK = K si yel,
yKNnK =g si y¢rl,

(chap. I, § 5, lemme 3). La formule du changement de variable dans les.
intégrales doubles montre que ’on a

“Jzy ”Ll,K = jK ij > dp = p(yK),
et par conséquent

zll 175 ek = ZF p(yK) = Card (I')( ), u(¥K))

yel'g

en désignant par I', un systéeme de représentants de I'/I",. Ceci démontre:
Passertion puisque les ensembles (yK),r, sont deux a deux disjoints et
contenus dans .

Montrons maintenant que p, (u, m) est une fonction automorphe de:
poids m. Pour tout automorphisme y de I' et tout point z de D, on a

pr(u, m)(yz) = Zru(v’VZ)j;'f (vz) =j, " (2) Zru(v’vZ)j;’fy(Z)
V'e Ve
= j, " (2) pr (u ,m)(2)

ce qui démontre ’assertion.
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LEMME 2. Pour m suffisamment grand, l’espace vectoriel O (m,I’) est
de dimension au moins 2.

On désigne par z, un point de D qui n’est pas un point fixe de I' (i.e. un
point régulier de Papplication n) et par K un voisinage compact de z, tel
que

yKNn K =g

pour tout automorphisme de I" différent de I'identité.
Le lemme 1 montre qu’il existe un nombre fini d’automorphismes
Vi -er ¥p de I, différents de I'identité tels que

1
[ foe =

pour tout automorphisme y de I'\{1, y4, ..., 7,}. On pose

Zy = Py (ZO)

pour tout entier v compris entre 1 et p. Soit u une fonction holomorphe
bornée sur D. Pour tout entier m au moins égal a 2, on peut écrire

prl,m —u— Y @yt = Y @
1=v=p yel’
ol I’on a posé
F, —_ F\{ 1,')71, ...,'yp} .

Sur le compact K on a donc

” Pr (u’ m) —u - Z (u')’v)]):: ” L®,K

1=v=p

<27 ufpop ¥ [, | fex-
yel”

Le membre de droite converge vers 0 lorsque m tend vers infini. Supposons
que u posséde un zéro d’ordre au moins 2 en chaque point z4, ..., z,. Pour

tout nombre réel ¢ strictement positif et pour tout entier m suffisamment
grand, on a

e m) () — u(z) | < & et ﬁp’é—(“’@w-a—”(zo) <
z 0z

e du .
(inégalités de Cauchy). Comme u(z,) et a—(zo) sont arbitraires, ceci
z

démontre I’assertion.
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LeMME 3. Désignons par g le genre de X. Le nombre réel

29 — 2 + Z(l——l—>

xeX Px
est strictement positif.

Désignons par m un entier suffisamment grand pour vérifier les condi-
tions suivantes:

(1) L’espace vectoriel O (m, I') est de dimension au moins 2.
(2) Pour tout point x de X, I’entier p, divise m.

Désignons par m,, un fibré en droites holomorphe associé au diviseur a,,.
Pour toute section holomorphe non nulle v de =, on a

ch(x,) = 0(a,) = 0(v) > 0.

Si I’ordre de a,, est nul, le fibré =, est trivial ce qui contredit (1). Il est donc
strictement positif et la condition (2) montre que I'on a

0(a,) = m (O(a)) + > (1 —;}))

ce qui démontre I’assertion (§ 3, théoréme 1, corollaire).

THEOREME 1. Pour tout entier m au moins égal a 2, on a la relation

1
dim.O(m, I') = Cm—-1)(g—1) + Y |:m (1 - —>:|
xeX Px
o g désigne le genre de X.

D’aprés la proposition 2 du paragraphe 3, il suffit de montrer que ’ordre
de a,, est strictement supérieur a 2g — 2.
Tout d’abord, pour tout couple (m,/) d’entiers strictement positifs,

on a
3 i
[m(l— Zﬂ >(m—1)(1—7> .

En effet, on peut écrire
m=ql +r

ou g et r sont des entiers naturels tels que r soit compris entre 0 et / — 1.

Sirestnul, ona
1 1
m{l—=)l=m{l—-
(0=2)] = (3)
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et 'on a

Sinon g est au plus égal a

/
[m(l———;—ﬂ:m—q—l)m——l—m;l =(m—1)(1-——§>

ce qui établit 'assertion.
On en déduit que

0(a,) = m(2g—=2) + >, l:m (1 ——1—)}

xeX px

>m (29 —2) +(m—1) ), (1 —i>

xeX Px
ou encore
1
0(a,) =>(m-—1) <2g—-2+ Y (1 — ;)) +29 — 2.
xeX X

Si m est au moins égal a 2, le résultat est donc une conséquence du lemme 3

§ 7. VARIETES DE PICARD ET DE JACOBI

Désignons par E un espace vectoriel complexe de dimension finie n et
par I' un réseau de E (i.e. un sous-groupe abélien de rang 2n). L’appli-
cation canonique © de E dans E/I" est un revétement. On munit E/I" de
I'unique structure holomorphe faisant de 7 un isomorphisme local. On
appelle fore complexe toute variété holomorphe isomorphe a une variété
de la forme E/T.

Soit T (resp. T") un tore complexe de la forme E/I" (resp. E'/T"’) et soit u
un isomorphisme de 7 sur 7’. On désigne par = (resp. ©") P'application
canonique de E dans T (resp. de E’ dans T”). Quitte a modifier # par un
automorphisme de 7', on peut supposer que ’on a

u(n (0)) = 7'(0).
11 existe alors un isomorphisme v de E sur E’ et un seul tel que
0 =0 e #n"'v=u-xm.

Pour tout élément y de I', 'image v (y) est un élément " de I'" et ’on vérifie
aisément que 'on a

v(z+y) =v(z) +7’
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