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Corollaire 2. Toute courbe holomorphe compacte connexe X plongée
dans un espace projectif Pn est le lieu des zéros d'une famille de polynômes
homogènes.

Désignons par a l'idéal des polynômes de C [r0, TJ qui s'annulent

sur xj/'1 (X), où \// est la projection canonique de Crt+1\0 dans P", et par Y
le lieu des zéros de a dans PM. Puisque \(X) est connexe, l'idéal a est

premier. Le corps k (Y) des fonctions rationnelles sur Y est un sous-corps
de XC (X). Le théorème 1 montre alors que Y est une courbe algébrique
de P". Désignons par Y0 l'ensemble des points réguliers de Y et posons

X0 Y0 n X

L'ensemble X0 est à la fois ouvert et fermé dans Y0. Comme ce dernier
ensemble est connexe (chap. I, § 5, théorème 4), on en déduit que X est

égal à Y, d'où l'assertion.

Théorème 2. Toute courbe holomorphe compacte connexe X se plonge
dans P3.

Soit / une fonction méromorphe non constante de degré r sur X. On

désigne par y une valeur régulière def par xu..., xr les points de / _1 (y),

par xr+1, xn les points critiques de/. Il existe une fonction méromorphe

g sur X séparant les points xl9 xr et possédant un zéro simple aux

points xr+l9xn (lemme 1). Désignons par n l'application (f:g) de X dans
P2 et par Y son image. L'application n est partout de rang 1 et le couple

(X, n) est une normalisation de Y (théorème 1). Soit A l'ensemble des

points singuliers de Y et soit h une fonction méromorphe sur X séparant
les points de 7i_1 (A) (lemme 1). On montre aisément que l'application
(f:g:h) est un plongement de X dans P3.

§ 6. Formes automorphes

Pour tout automorphisme y du disque unité D, on définit une fonction
holomorphe sur D en posant

dy
Jy =Tz'

Pour tout couple (y, y') d'automorphismes et tout point z de D, on a

jy'y(Z)jy'(jz)jy0) •
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Nous supposerons désormais que X est le quotient de D par un groupe

proprement discontinu F (chap. I, § 5, numéro 3) et nous désignerons par
7i la projection canonique de D dans X.

Soit m un entier relatif. On appelle forme automorphe de poids m relative

à F toute fonction méromorphe/ sur D telle que

f-v h mf

pour tout automorphisme y de F. On désigne par Jf (m, F) (resp. (9 {m, F))
l'ensemble des formes automorphes (resp. des formes automorphes
holomorphes) de poids m relatives à F.

Fixons une fois pour toutes une forme différentielle méromorphe non
nulle co sur X. La forme différentielle tz* (co) s'écrit

%* (co) fdz
où / est une fonction méromorphe sur D. Pour tout automorphisme y de

F et tout point z de D, on a

f(z)dz 7i* (co) (z) 7z* (co) (yz) f (yz)jy(z) dz

ce qui montre que / est une forme automorphe de poids 1 relative à T.
Pour toute forme automorphe u de poids m relative à F, la fonction

méromorphe uf~m est F-invariante. On en déduit que l'application Wm

de (X) dans Sf (m, F) définie par

0

est un isomorphisme pour tout entier m.
Nous allons chercher à quelles conditions une fonction méromorphe

v sur X fournit une forme automorphe holomorphe sur D.
Pour une telle fonction, on a

0, {¥m (v)) 0Z (ti* (v)) + m 0Z (k* (œ)) > 0

pour tout point z de D. Cette condition équivaut à

1

0* W > ~ m 0X (co) - m 1 —

Px;
x)

pour tout point x de X, où px désigne le cardinal du groupe d'isotropie de
F en tout point de 7i_1 (x). On définit un diviseur am sur X en posant

b Pour tout nombre réel c, on désigne par [c] la partie entière de c, i.e. l'entier
relatif défini par

[c] sup {n e Z I n < c}
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am(x) [mOx(co) + ^m^l - ^ X

On voit donc que Wm induit un isomorphisme de L («am) sur 0 (m, f) (§ 3,

remarque 1).

Pour toute fonction holomorphe u sur D et pour tout entier relatif m,
la série

pr(u,m) £ («7)7
yer

s'appelle la série de Poincaré associée à u.

Lemme 1. Si u est bornée et m au moins égal à 2, la série de Poincaré

pr 0u, m) converge uniformément sur tout compact vers une fonction de

0 (m, r).
Pour montrer que la série pr (u, m) converge, il suffit de montrer que la

série

E/v
yer

converge dans L\oc (D, C) (chap. I, § 1, théorème 1, corollaire 4). Désignons

par z un point de D et par K un voisinage compact de z dans D tel que

yK K si y ePz

yK n K 0 si y $TZ

(chap. I, § 5, lemme 3). La formule du changement de variable dans le&

intégrales doubles montre que l'on a

Il J y
il il.JK JkIÂI 2dß(yK),

et par conséquent

I 17vI|n.* E V(yK) Card (A)( ^ p(yK))
yer yer yero

en désignant par T0 un système de représentants de Pjrz. Ceci démontre
l'assertion puisque les ensembles (yK)yero sont deux à deux disjoints et

contenus dans D.
Montrons maintenant que pr (u, m) est une fonction automorphe de.

poids m. Pour tout automorphisme y de JT et tout point z de D, on a

pr(u, m) (yz) £ u (y'yz)j, (yz) j;m(z) £ u(y'yz)j,y(z)
y'eC y'er

jym(z) Pr(u,m)(z)ce qui démontre l'assertion.
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Lemme 2. Pour m suffisamment grand, / 'espace vectoriel (9 (m, T)
öfe dimension au moins 2.

On désigne par z0 un point de D qui n'est pas un point fixe de r (i.e. un

point régulier de l'application n) et par K un voisinage compact de z0 tel

que

yK n K 0

pour tout automorphisme de r différent de l'identité.
Le lemme 1 montre qu'il existe un nombre fini d'automorphismes

yL, yp de r, différents de l'identité tels que

pour tout automorphisme y de f\{l, yl9..., yp}. On pose

7v (zo)

pour tout entier v compris entre 1 et p. Soit u une fonction holomorphe
bornée sur D. Pour tout entier m au moins égal à 2, on peut écrire

Pr(u, m) — u —Yj ("7v)J X ("7)j7
1 ysr'

où l'on a posé

r r\{l,yu...,yp}.
Sur le compact K on a donc

Il pr (u, m) - u - Y (»7 II L«,K
l^v^p v

< 2 m + 2 I M ||tcojD Y II ./y II •

yer

Le membre de droite converge vers 0 lorsque m tend vers l'infini. Supposons
que upossède un zéro d'ordre au moins 2 en chaque point zu Pour
tout nombre réel e strictement positif et pour tout entier m suffisamment
grand, on a

\pr(u,m)(z0) - u(z0) | < e et
dpr(u,m)

J- Oo) - T- (Z0)
o z d z

< e

r • r ÔU
(inégalités de Cauchy). Comme u (z0) et —— (z0) sont arbitraires, ceci

d z
démontre l'assertion.
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Lemme 3. Désignons par g le genre de X. Le nombre réel

2g — 2 + Y 1

xeX \ Pxj
est strictement positif.

Désignons par m un entier suffisamment grand pour vérifier les conditions

suivantes:

(1) L'espace vectoriel (9 (m, f) est de dimension au moins 2.

(2) Pour tout point x de X, l'entier px divise m.

Désignons par nm un fibré en droites holomorphe associé au diviseur am.

Pour toute section holomorphe non nulle v de nm, on a

chOO 0 (aj0(v)> 0.

Si l'ordre de am est nul, le fibré nm est trivial ce qui contredit (1). Il est donc
strictement positif et la condition (2) montre que l'on a

0 (aj m ^O(co) + £ ^1 - LJj

ce qui démontre l'assertion (§ 3, théorème 1, corollaire).

Théorème 1. Pour tout entier m au moins égal à 2, on a la relation

dimc (9 (m, V) — (2m — 1) (g — 1) + Y m 1 —
xeX __ \ J

où g désigne le genre de X.

D'après la proposition 2 du paragraphe 3, il suffit de montrer que l'ordre
de am est strictement supérieur à 2g —2.

Tout d'abord, pour tout couple (m, /) d'entiers strictement positifs,
on a

m 1 — > (m - 1) 1 - -)

En effet, on peut écrire

m gl + r

où q et r sont des entiers naturels tels que r soit compris entre 0 et / - 1.

Si r est nul, on a

m 7 m [ 1 — y
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I

Sinon qest au plus égal à —7— et I on a
l

^1 - yjj m - q -
ce qui établit l'assertion.

On en déduit que

1 > m — 1 —
m — 1

(m — 1) 1 — -

0(am) m(2g— 2) 4- £
xeX

m 1 —

> m (2g— 2) + (m — 1) £ 1

xeX \ P.

ou encore

0(flm)>(rn-l)^-2+ £ (1-^))
Si m est au moins égal à 2, le résultat est donc une conséquence du lemme 3

§ 7. Variétés de Picard et de Jacobi

Désignons par E un espace vectoriel complexe de dimension finie n et

par r un réseau de E (i.e. un sous-groupe abélien de rang 2n). L'application

canonique n de E dans E/T est un revêtement. On munit E/T de

l'unique structure holomorphe faisant de n un isomorphisme local. On

appelle tore complexe toute variété holomorphe isomorphe à une variété
de la forme E/T.

Soit T (resp. T') un tore complexe de la forme E/T (resp. E'/T') et soit u

un isomorphisme de T sur T'. On désigne par n (resp. n') l'application
canonique de E dans T (resp. de E' dans T'). Quitte à modifier u par un
automorphisme de T\ on peut supposer que l'on a

u (n (0)) n (0)

Il existe alors un isomorphisme v de E sur E' et un seul tel que

v (0) 0 et n' - v u • n

Pour tout élément y de T, l'image v (y) est un élément y' de J" et l'on vérifie
aisément que l'on a

v(z+y) v(z) + y'
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