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§ 4. Fibres amples

Dans tout ce paragraphe, on désigne par g le genre de X et par n un
fibré en droites holomorphes sur X.

Soient .y0,sn des sections holomorphes de n dont l'une au moins
n'est pas nulle. Pour tout entier j compris entre 0 et n, on pose

Xj {xeX\ sj(x) ^ 0}
et l'on définit une application holomorphe de Xj dans P" par la formule

4>j (x) (j- (x):j (x)j

Par définition même, les 4>j se recollent en une application holomorphe <fi

de u Xj dans P". Pour tout point xdel\ u Xj9 il existe un voisinage

ouvert U de x, une fonction holomorphe h sur U et des sections holomorphes

Sq, s'n de n sur U dont l'une au moins ne s'annule pas au point x, vérifiant
les relations suivantes

s0 hs'0,s„hs'n.

Supposons par exemple s] (x) non nul. On prolonge l'application en

posant

<l>(x) (-, (x): (x)\
Vj SJ J

L'application holomorphe (j) de X dans P" ainsi obtenue se désigne par
(s0: ...:sn).

On dit que le fibré n est ample si pour toute base (s0,..., sn) de l'espace
vectoriel H° (X, n), l'application (.y0: sn) est un plongement de X
dans PM.

Remarque 1.

Désignons par hu hn des fonctions méromorphes sur X dont l'une

au moins n'est pas nulle. On définit un diviseur u sur X en posant

u —inf^/îj),(h0)
Soit p un fibré en droites holomorphes sur X et soit ^ une section

holomorphe de p ayant u pour diviseur. Les sections de p définies par

si •••> sn hnso
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sont holomorphes et l'une d'entre elles au moins n'est pas nulle. L
application 00: ...:sn) se désigne (abusivement) par (h1:

Proposition 1. Si la classe de Chern de n est au moins égale à 2g, les

sections holomorphes de n n 'ont pas de zéro commun.

Raisonnons par l'absurde en supposant qu'il existe un point x de X où

toutes les sections holomorphes de n s'annulent. Désignons par p un fibré

en droites holomorphes sur X et par £ une section holomorphe de p dont

le diviseur est l-x. L'application

0s: H° (X, n 0p*) ->H°(X57i)

est injective. Elle est surjective en vertu de l'hypothèse faite sur x. D'autre

part, la proposition 2 du paragraphe 3 montre que l'on a

dimcH°(X,7i0p*) l-p+ch(7i0p*) ch(n)-g
et

dimcH° (X, tz) l+ch(n)-g
ce qui est absurde.

Corollaire 1. On suppose que la classe de Chern de tz est au moins

égale à 2g. Pour tout ensemble fini A de X, il existe une section holomorphe
de n qui ne s'annule en aucun point de A.

Il résulte en effet de la proposition 1 que l'ensemble des sections

holomorphes de % qui s'annulent en un point de X forment un hyperplan de

H° (X, n).

Corollaire 2. On suppose que la classe de Chern de tz est au moins

égale à 2g + 1.

(1 Pour tout couple (x, y) de points distincts de X, il existe une section

holomorphe de tz qui s'annule au point x et ne s'annule pas au point y.

(2) Pour tout point x de X, il existe une section holomorphe de tz

qui possède un zéro simple au point x.

On désigne par p un fibré en droites holomorphes sur X et par s une
section holomorphe de p dont le diviseur est 1 • x. La classe de Chern du
fibré 7r 0 p* est au moins égale à 2g et la proposition 1 montre qu'il existe

une section holomorphe t de ce fibré qui ne s'annule pas au point y (resp. x).
La section t 0 s vérifie la condition (1) (resp. (2)).

Théorème 1. Si sa classe de Chern est au moins égale à 2g + 1, le fibré
tz est ample.
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Désignons par (s0, sn) une base de H° (X, n). Pour tout couple
(x, y) de points de X, il existe un entier j compris entre 0 et n tel que Sj ne
s'annule pas sur {x, y) (proposition 1, corollaire 1). Par définition, la
relation

(s0: ...: sn) (x) (s0: ...: s„) (y)

signifie qu'il existe un nombre complexe A non nul tel que

5°(x),...,^(x)) a(^(y),...,$(y)).
sj J \ sj sj J

Ceci n'est possible que si x et y coïncident (proposition 1, corollaire 2) et

par conséquent l'application (s0: ...: sn) est injective.
Il reste à montrer qu'elle est de rang 1. Désignons par x un point de X

et par s une section holomorphe de n possédant un zéro simple au point x
(loc. cit.). On a

s 205o + + Ansn

et il existe un entier j compris entre 0 et n tel que Sj (x) soit non nul. On a
donc

- A0- + +

et par conséquent

^j(x) Â0d(x)+ + Xnd(^j(x)

Le membre de gauche étant non nul, il existe un entier k compris entre 0

sk
et n tel que d — (x) soit non nul ce qui achève la démonstration du

théorème.

Corollaire. Toute courbe holomorphe compacte connexe de genre g se

plonge dans P9+1. En particulier, toute courbe holomorphe compacte connexe
de genre 0 est isomorphe à P1 et toute courbe elliptique se plonge dans P2.

Il suffit d'appliquer le théorème 1 au fibré en droites holomorphe
associé à un diviseur d'ordre 2g + 1 et de remarquer que l'on a alors

dimcH° (X, n) g + 2

(§ 3, proposition 2).
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