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pour toute forme différentielle holomorphe v montre que la classe de w

dans H1 (X, Cx) est nulle (théorème de dualité, chap. III, § 2). On en
déduit que le fibré principal associé à u est trivial, ce qui démontre le
théorème (chap. I, § 3, proposition 3).

§ 3. Théorème de Riemann-Roch

Pour tout fibré vectoriel holomorphe n sur X, les espaces vectoriels

complexes H° (X, n) et H1 (X, n) sont de dimension finie (chap. III, §2,
proposition 2, corollaire). On pose

X (n) dimcH° (X, n) - din^H1 (X, n).

Le théorème de dualité (loc. cit.) montre que l'on a aussi

X(n) dimcH° (X, n) - dimcH° (X, n* ®ß1*0).

Proposition 1. Désignons par n un fibré vectoriel holomorphe de rang p
sur X et par p un fibré en droites holomorphe associé à un diviseur u de

X. On a alors

X(n®p) i(n) + p 0(u).

On se ramène aisément au cas où u est de la forme

u 1 - x

pour un certain point x de X. Désignons par s une section holomorphe
de p ayant u pour diviseur. Le diagramme suivant est commutatif

(*)

<îf00 (X, n)

d"

rëa> (X,n®p)

d"

Pour tout fibré vectoriel différentiel a sur X, le passage aux germes
induit un diagramme commutatif

0 >(X,a)
0s

®sx

ëœ(X,<j ®p) V(ct) - 0

1 1 "
Aœx(o®p) -> W(a) 0
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où V (fi) et W fi) désignent les conoyaux de 0 s et 0 sx respectivement.

La section s ne s'annulant qu'au point x, les lignes de ce diagramme sont

exactes et l'application a est un isomorphisms. Ceci montre que le

diagramme (*) se complète en un diagramme commutatif

0 Ve0 (X, n)—V°(X,1 -*W(i - o

d" ßd"

0 -> ^(X^QQ0-1) — —- (X,®ß0'1 -> Pf(7r®ß0'1) - 0

On a alors (diagramme du serpent),

Xfi) - x(n®P) + dimcKer(/?) - dimcCoker (ß) 0

et il suffit de vérifier les égalités

dimcKer (ß) p et dimcCoker (ß) 0.

Ceci étant un problème de germes, on peut supposer que x est l'origine
dans C, que n est le fibré produit de rang p et p le fibré produit de rang 1.

L'application
ß: (A<syis0(A<sy-*(A%yis0(A%y

d
étant induite par l'opérateur différentiel —-, elle est surjective (chap. III,

ô z
§ 1, remarque 2). D'autre part, pour tout germe u de (Aq)p vérifiant la
relation

du

^ s°v
dz

pour un certain v, on peut écrire

d
/— (u - s0 w) 0

dz

pour un certain w (loc. cit.). Le germe u - s0 w étant holomorphe, il
existe un germe h de (A q)p tel que

u — s0w — u (0) s0h

Ceci montre que le noyau de ß est constitué des germes d'applications
constantes de C dans Cp ce qui achève la démonstration de la proposition.

Corollaire. Tout fibré en droites holomorphes n sur X est associé à

un diviseur.
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Pour tout fibré en droites holomorphes p sur X associé à un diviseur ur
on a

dimcH° (X, n®p) > x(n®P) xi71) + °(w) •

Si l'ordre de u est bien choisi, le fibré n ® p possède une section holomorphe
non nulle s. On en déduit que le fibré % est associé au diviseur (s) — u.

Théorème 1 (Riemann-Roch). Pour tout fibré en droites holomorphe

n sur X, on a

X (ji) 1 - g + ch (tî)

où g désigne le genre de X.
On peut supposer que n est associé à un diviseur u (proposition 1,

corollaire). On a donc

X(n) x(Cx) + 0(u) 1 - + ch(¥>

(proposition 1 et § 1, proposition 3), ce qui démontre l'assertion.

Corollaire. Pour tout fibré en droites holomorphe % sur X, on a la
relation

ch(7i*®£21,0) 2g — 2 — ch(7i).

En particulier, la classe de Chern du fibré Q1,0 est égale à 2g — 2.

Il suffit de remarquer que l'on a

X(7Z*0ÜUO) ~x(n) -(l-0+ch(70)
et d'appliquer le théorème de Riemann-Roch.

Proposition 2. Pour tout fibré en droites holomorphe it sur X, on a

les relations suivantes :

(1 ch (71) < 0 => dimcH° (X, 71) 0.

dimcH° (X, 71) 0 si tc n'est pas (holo-
morphiquement) trivial.

dimcH° (X, 71) 1 si n est (holo-
morphiquement) trivial.

dimcH° (X, 71) g — 1 si n n 'est pas iso¬

morphe à O1'0.

dimcH° (X, 71) g si % est isomorphe à
Q1'0.

(4) ch (71) > Içj 2 => dimcH° (X, n) 1 - ch (n).

(2) ch (n) 0

(3) ch (71)
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Les deux premières assertions ont déjà été démontrées (§ 1, proposition

3). Pour démontrer les deux dernières, il suffit de remarquer que l'on
a

dimcH° (X, 7i) 1 -g + ch(7i) + dimcH° (X, n* ®QU°)

et d'appliquer ce qui précède au fibré n* ® Q1,0.

Remarque 1.

Pour tout diviseur u sur X, on pose

L{u) {he jf (X) | h 0 ou (h) > — u }

I (u) { s e (X, ß1'0) | s 0 ou (5) > u }

Désignons par n un fibré en droites holomorphes associé à u. Nous avons

vu que l'espace vectoriel L (<u) (resp. I (u)) est canoniquement isomorphe à

l'espace H° (X, 71) (resp. H° (X, 71* ®£21,0)) (chap. I, § 3). En désignant sa

dimension par l (u) (resp. i (u)), le théorème de Riemann-Roch prend la
forme plus classique suivante:

/ (u) — i (u) 1—0+0 (m)

Théorème 2 (Riemann-Hurwitz). Soient X et Y deux courbes

holomorphes compactes connexes de genre g (X) et g (Y) respectivement et
soit h une application holomorphe non constante de X dans Y. On a la
formule

2g (X) — 2 — deg(A) (2g (F) -2) + v (h)

où v (h) désigne l'indice de ramification de h x).

Désignons par u une forme différentielle méromorphe non nulle sur Y.

On a

0(/î* («)) X 0x(h*(u)) X (v,CO + l)0Mx)(u) +
xsX x£ X

(chap. I, § 4, lemme 2) et par conséquent

0 (h* («)) X £ (v, (Ä) +1)) 0, (m) + v (Ä) deg (Ä) 0 (u) + v (Ä)
jeF xeu-l(y)

et l'on conclut en remarquant que l'ordre de A* (u) (resp. u) est égal à
2g (X) - 2 (resp. 2g (Y) - 2) (théorème 1, corollaire).

Corollaire. Pour qu 'il existe une application holomorphe non constante
de X dans Y, ilfaut que le genre de Y soit au plus égal au genre de X.

0 C'est à dire la somme des indices de ramification de h aux différents points de X
(chap. I, § 4).
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