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pour toute forme différentielle holomorphe » montre que la classe de w
dans H' (X, Cy) est nulle (théoréme de dualité, chap. III, §2). On en
déduit que le fibré principal associé a u est trivial, ce qui démontre le
théoréme (chap. I, § 3, proposition 3).

§ 3. THEOREME DE RIEMANN-ROCH

Pour tout fibré vectoriel holomorphe = sur X, les espaces vectoriels
complexes H® (X, n) et H' (X, n) sont de dimension finie (chap. III, § 2,
proposition 2, corollaire). On pose

x(n) = dimcH® (X, n) — dimcH (X, 7).
Le théoréme de dualité (loc. cit.) montre que ’on a aussi
x(n) = dimcH® (X, n) — dimcH (X, n* @ Q1) .
PROPOSITION 1. Désignons par © un fibré vectoriel holomorphe de rang p

sur X et par p un fibré en droites holomorphe associé a un diviseur u de
X. On a alors

x(m®p) = x(@ +p0(w).
On se rameéne aisément au cas ou u est de la forme
u =1-x

pour un certain point x de X. Désignons par s une section holomorphe
de p ayant u pour diviseur. Le diagramme suivant est commutatif

¢ (X,m) — 25 . ¢ (X, 2®p)
o |-
€° (X, nQ0% _®s g (X, 102% ®p).

Pour tout fibré vectoriel différentiel o sur X, le passage aux germes
induit un diagramme commutatif

0 — 4°(X,0) — 25 . 4°(X,6®p) - V(6) — 0

l l | =

0 5 42(@) —25. A42(6®p) - W) - 0
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ol V (0) et W (o) désignent les conoyaux de ® s et ® s, respectivement.
La section s ne s’annulant qu’au point x, les lignes de ce diagramme sont
exactes et I’application « est un isomorphisme. Ceci montre que le dia-
gramme (*) se compléte en un diagramme commutatif

Xs

0> ¥°X,n) €° (X,m®p) - W@ -0

v | v Y

05 4 (X, 102 —25 . &= (X, 7002% ®p) » Wr®Q") - 0
On a alors (diagramme du serpent),
x(n) — x(n®p) + dimcKer (f) — dimCoker () = 0
et il suffit de vérifier les égalités
dimKer(f) = p et dimcCoker(f) = 0.

Ceci étant un probléme de germes, on peut supposer que x est I’origine
dans C, que =« est le fibré produit de rang p et p le fibré produit de rang 1.
L’applicaticn

B (A75)%[s0 (AT)? — (A7)"[s0 (AT)"

0
étant induite par ’opérateur diﬁ“érentiel—a—-_—_ , elle est surjective (chap. IlI,
Z

§ 1, remarque 2). D’autre part, pour tout germe u de (A3)? vérifiant la
relation
ou

_— = Sov
0z
pour un certain v, on peut écrire

0

—Wm—=sow) =0
(=5 W)
pour un certain w (loc. cit.). Le germe u — s, w étant holomorphe, il
existe un germe A de (43)? tel que
u — sow —u(0) = syh.

Ceci montre que le noyau de f est constitué des germes d’applications
constantes de C dans C? ce qui achéve la démonstration de la proposition.

COROLLAIRE. Tout fibré en droites holomorphes m sur X est associé d
un diviseur.
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Pour tout fibré en droites holomorphes p sur X associ¢ a un diviseur u,
on a

dimcH® (X, n®p) > 2 (n®p) = x(n) + 0(u).

Si ’ordre de u est bien choisi, le fibré 7 @ p posseéde une section holomorphe
non nulle s. On en déduit que le fibré 7 est associ€ au diviseur (s) — w.

TorEOREME 1 (Riemann-Roch). Pour tout fibré en droites holomorphe
n sur X, ona

x(m) =1 —g + ch(m)

ou g designe le genre de X.

On peut supposer que 7 est associé a un diviseur u (proposition 1,
corollaire). On a donc

x(m) = y(Cx) + 0(u) =1 —g + ch(m)

(proposition 1 et § 1, proposition 3), ce qui démontre I’assertion.

COROLLAIRE. Pour tout fibré en droites holomorphe n sur X, on a la
relation
ch(z*®Q"°% = 2g — 2 — ch(n).

En particulier, la classe de Chern du fibré Q'° est égale a 2g — 2.
Il suffit de remarquer que 'on a

1(@* Q4% = —y(n) = — (1 —g +ch(n))

et d’appliquer le théoréme de Riemann-Roch.

PROPOSITION 2. Pour tout fibré en droites holomorphe m sur X, on a
les relations suivantes :
(1) ch(n) <O = dimcH° (X, ) = 0.

[ dimcH® (X, ) = 0 si m wnest pas (holo-
morphiquement ) trivial.
dim H° (X, 7) = 1 si 7 est (holo-
morphiquement ) trivial.

(2) ch(n) =0 =

L
' dimCHO (X,m) =g —1si =m n’est pas iso-
morphe a Q'°.
dimH® (X, 7) = ¢ si m est isomorphe a
QI,O
L .
(4) ch(m) >29 -2 = dimcH® (X, n) = 1 — g + ch (n).

(3) ch(n)= 29 — 2=,
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Les deux premiéres assertions ont déja été démontrées (§ 1, propo-
sition 3). Pour démontrer les deux derniéres, il suffit de remarquer que I’on
a

dimHO (X, 7) = 1 — g + ch(n) + dimcH® (X, n* @Q"°)
et d’appliquer ce qui précéde au fibré n* @ QLo

Remarque 1.
Pour tout diviseur « sur X, on pose

Lw) ={heA (X)|h=0 ou (h)> —u}
I(w) ={seX(X,2"%|s=0 ou (s)>u}.

Désignons par 7 un fibré en droites holomorphes associé¢ a u. Nous avons
vu que ’espace vectoriel L (u) (resp. I (u)) est canoniquement isomorphe a
Pespace H® (X, 7) (resp. H® (X, ¥ @ Q%)) (chap. I, § 3). En désignant sa
dimension par / (u) (resp. i (u)), le théoréme de Riemann-Roch prend la
forme plus classique suivante:

Iw) —i(u)y=1-g + 0(u).

THEOREME 2 (Riemann-Hurwitz). Soient X et Y deux courbes holo-
morphes compactes connexes de genre g (X) et g (Y) respectivement et
soit h une application holomorphe non constante de X dans Y. On ala
formule

29 (X) — 2 = deg(h) (29 (Y) —2) + v(h)

ou v (h) désigne l’indice de ramification de h').

Désignons par # une forme différentielle méromorphe non nulle sur Y.
On a

xeX

0(h* () = >, 0,(h* (w)) = ZX (ve (h) + 1) Oy () + v (h)
(chap. I, § 4, lemme 2) et par conséquent

0(h*w) = 3 (2 (e +1))0,(w) +v(h) = deg(h)0®w) + v(h)

yeY¥ xeu—1(y)

et 'on conclut en remarquant que I'ordre de A* (u) (resp. u) est égal a
2g (X) — 2 (resp. 2g (Y) — 2) (théoréme 1, corollaire).

COROLLAIRE. Pour qu’il existe une application holomorphe non constante
de X dans Y, il faut que le genre de Y soit au plus égal au genre de X.

1) Cest a dire la somme des indices de ramification de # aux différents points de X
(chap. I, § 4).
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