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Exemple 2.

Le genre d’une courbe elliptique X (chap. I, § 5, numéro 3) est égal a 1.
En effet, toute forme différentielle holomorphe sur X se reléve en une forme
différentielle holomorphe u dz sur C. La fonction u étant invariante, elle
est constante, ce qui démontre I’assertion.

PROPOSITION 3. La classe de Chern d’un fibré en droites holomorphe
sur X est un entier relatif égal a l’ordre de toute section méromorphe de .
En particulier, si la classe de Chern est strictement négative, l’espace vectoriel
H° (X, n) est nul. Si la classe de Chern est nulle, le fibré m est différentiable-
ment trivial. S’il est holomorphiquement trivial, I’espace vectoriel H° (X, m)
est de dimension 1, sinon il est nul.

Ces résultats sont énoncés ici pour mémoire (chap. I, §4, lemme 1).

§ 2. PROBLEMES DE COUSIN

Soit 7 un fibré vectoriel holomorphe sur X. Nous avons vu (chap. I,
§ 3, proposition 2), qu’il existe une suite exacte

X om0 H (X, m)

permettant de trouver sous quelles conditions il existe une section méro-
morphe de © ayant une partie principale donnée.

Soit u une partie principale de 7 et soit v une section holomorphe de
n* ® QV°, On vérifie aisément que la classe de (w,, v,) dans 2 (2''°), ne
dépend pas de la section méromorphe w de m représentant u au voisinage
de x. On définit ainsi une partie principale de Q''° que I’on désigne par
(u, v) et 'on pose

Rés(u,v) = Y Rés((u,v),x).

xeX

On a alors la solution suivante au premier probléme de Cousin.

THEOREME 1. Soit nn un fibré vectoriel holomorphe sur X. Pour qu’une
partie principale u de m provienne d’une section méromorphe, il faut et il
suffit que la forme linéaire Rés (u, ) soit identiquement nulle sur
0 (X, n*®Q0"°).

Rappelons tout d’abord la construction de § (u) (chap. 1, § 3, propo-
sition 2). Désignons par x4, ..., x, les points de X pour lesquels le germe u,
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n’est pas nul et par (U;)y_;—, un recouvrement ouvert de X vérifiant les
conditions suivantes:

(1) Pour tout entier j compris entre 1 et n, ’'ensemble U; est le domaine
d’une carte ¢ ; centrée au point x;.

(2) Les ensembles Uy, ..., U, sont deux a deux disjoints.

(3) L’ensemble U, est égal a X\{xy, ..., x,}.

Quitte a diminuer U4, ..., U,, on peut supposer qu’il existe une section

méromorphe u; de = sur U; représentant ul U} On désigne par u, la fonction

nulle sur U,. Pour tout entier j compris entre 0 et », il existe une section
s;de €% (U;, n) telle que

uk“'uj=sk“‘Sj

(chap. 0, § 2, lemme 1). En particulier, les d"'s; se recollent en une section ¢
de 4% (X, n®Q%!) dont la classe dans H' (X, n) est précisément & (u).
En vertu du théoréme de dualité, il suffit de montrer que ’on a

1
. (l,’l)) = RéS (u,v)
2im |y
pour toute section holomorphe v de n* ® Q°,
Les sections s; — u; se recollent en une section 2 de % (Ugy, n) et 'on a

d'h = t|y,.
On en déduit que
1 A | , .o —1
— | (o) =lim— @hv)= Y lim_—| (k)
2im X e=0 <IT | x\ U Vj,e 1=j=ne-0 T an,e
1=j<n

ou ¥V , désigne le disque de centre x; et de rayon & dans ¢ ;. D’autre part,
on a

—1
lim — (s;,v) =0
g—0 2iT oVj,e ‘

car §; est continue au point x; et

1
lim — (u;,v) = Rés((u,v),x;)

e—0 2in 6Vj,a

ce qui démontre I’assertion.
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Exemple 1.

Le genre de P! étant nul, toute partie principale u de Cp1 provient d’une
fonction méromorphe, résultat qu’il est d’ailleurs facile de démontrer
directement (chap. I, § 5, lemme 2).

Exemple 2.

Supposons que X soit une courbe elliptique. Pour qu’une partie princi-
pale u de Cx provienne d’une fonction méromorphe, il faut et il suffit que
I’on ait

Rés(u,dz) =0
(§ 1, exemple 2) (que le lecteur se souvienne de la fonction elliptique p de
Weierstrass!).

Exemple 3.

Si X est une courbe holomorphe quelconque, la condition nécessaire et
suffisante pour qu’une partie principale u de Q"° provienne d’une forme
différentielle méromorphe est que I'on ait

Rés(u,1) = 0.

Parmi les formes différentielles méromorphes, on distingue les especes
suivantes:

(1) Les formes différentielles holomorphes ou formes différentielles
abéliennes de premicére espéce.

(2) Les formes différentielles méromorphes dont les seules singularités
sont des poles d’ordre au moins 2 a résidu nul ou formes différentielles
abéliennes de deuxieme espece.

(3) Les formes différentielles méromorphes ayant comme seules singu-

larités un nombre pair de pdles d’ordre 1, groupés deux par deux de résidus
opposes, ou formes différentielles abéliennes de troisieme espéce.

Avant d’aborder le deuxi€éme probléme de Cousin pour les courbes
holomorphes compactes, il nous faut introduire quelques notions.

Pour toute forme différentielle w de €= (X, Q%1), il existe un recouvre-
ment ouvert (U,)),; de X et, pour chaque indice 1, une fonction A, de
€ (U, C) telle que

d'h, = wly,.

C’est une conséquence immédiate du lemme de Grothendieck (chap. III,
§ 1, remarque 2). Sur U, n U,, la fonction définie par

hKl = hrc —hl
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est holomorphe et ’on vérifie aisément que la famille (g,,) avec

gx, = exp(2inh,,)

est un cocycle holomorphe de rang 1 subordonné a (U)),.; dont la classe
dans Pic (X, C*) ne dépend que de la classe de w dans H! (X, Cx). On
obtient ainsi un homomorphisme canonique

0: H' (X, Cy) - Pic(X, C¥) .

Soit # un diviseur d’ordre O sur X. On peut I’écrire sous la forme (chap. I,
§ 4, lemme 3)

u= ) Y=

1=j=n

OU X1, «oey Xpy V15 ---» Yy SONt des points de X (non nécessairement distincts).
On appelle chaine bordant u toute famille (¢;);_;_, ou c; est un chemin
joignant x; a y; dans X.

Le lemme suivant est a rapprocher d’un résultat démontré précédemment
(chap. O, § 5, proposition 1).

LEMME 1. Soit u un diviseur d’ordre 0 sur X et soit (¢;)y_—;—, une
chaine bordant u. 1l existe une forme différentielle w de €% (X, Q%)
vérifiant les conditions suivantes :

(1) L’image par 0 de la classe de w est le fibré principal associé a u.

(2) Pour toute forme différentielle holomorphe v sur X, on a

ijAW= Z jcjv'

l=j=n

On se ramene aisément au cas d’un seul chemin ¢ joignant un point z,,
a un point z, dans le domaine U, d’'une carte ¢ de X dont I'image est un
disque de C. Il n’y a pas ici de probleme de lissage (loc. cit.). -

On désigne par W et V deux disques de ¢ tels que W soit relativement
compact dans V et V relativement compact dans U, et tels que 'image de
¢ soit contenue dans W. Le diviseur u est représenté sur U, par la fonction
méromorphe

¢ (z) — ¢ (zy)
¢ (z) — ¢ (20)
et sur le complémentaire U, de ¥ par la fonction constante 1.

Désignons par o une fonction de €* (X, R) égale a4 1 sur X\V, a O sur
W et par & un logarithme de u, sur Uy\W. La forme différentielle définie par

ug(z) =
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J w =0 sur (X\Uy)u W
1 __

1 w=—d (ah) sur Uy\W

2im

appartient 3 €% (X, Q%1).
La propriété (1) résulte immédiatement des définitions. Pour démontrer
(2), on remarque que la restriction de v a U, est exacte. On a donc

1 ., 1
[v/\w:—fJ‘v/\d(och)szdf/\d(och)
Jx 2in |y 2in |y

ol f est une fonction holomorphe sur U,. Il résulte alors de la formule
de Stokes que 'on a

d
f » J £ =z =1z

ce qui démontre I’assertion.

THEOREME 2 (Abel). Pour qu’un diviseur u d’ordre 0 soit le diviseur
d’une fonction méromorphe, il faut et il suffit qu’il existe une chaine (¢;); —;_n
bordant u telle que

pour toute forme différentielle holomorphe v sur X.

Montrons que la condition est nécessaire. On peut supposer # non nul.
On désigne par & une fonction méromorphe sur X dont u est le diviseur,
par n le degré de 4 (chap. I, § 4) et par B ’ensemble des valeurs critiques
de 4.

Soit ¢ un chemin joignant (0:1) & (1:0) dans P*, ne rencontrant pas B,
sauf peut-€tre en ses extrémités. Il existe n chemins distincts cq, ..., ¢,
relevant ¢, chacun joignant un p6le de & & un zéro de 4. La chaine (¢;); _—;_,

borde u et ’on a
Z jc‘jv = jchﬁc (‘Z))

l=j<n
(chap. I, § 4, proposition 3). On conclut en remarquant que 4, (v) est nulle
(§ 1, exemple 1).
Montrons maintenant que la condition est suffisante. Désignons par

w une forme différentielle de € (X, Q%) vérifiant les conditions du
lemme 1. La relation

fxv Aw=0

L’Enseignement mathém., t. XXI, fasc. 2-3-4. 18
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pour toute forme différentielle holomorphe » montre que la classe de w
dans H' (X, Cy) est nulle (théoréme de dualité, chap. III, §2). On en
déduit que le fibré principal associé a u est trivial, ce qui démontre le
théoréme (chap. I, § 3, proposition 3).

§ 3. THEOREME DE RIEMANN-ROCH

Pour tout fibré vectoriel holomorphe = sur X, les espaces vectoriels
complexes H® (X, n) et H' (X, n) sont de dimension finie (chap. III, § 2,
proposition 2, corollaire). On pose

x(n) = dimcH® (X, n) — dimcH (X, 7).
Le théoréme de dualité (loc. cit.) montre que ’on a aussi
x(n) = dimcH® (X, n) — dimcH (X, n* @ Q1) .
PROPOSITION 1. Désignons par © un fibré vectoriel holomorphe de rang p

sur X et par p un fibré en droites holomorphe associé a un diviseur u de
X. On a alors

x(m®p) = x(@ +p0(w).
On se rameéne aisément au cas ou u est de la forme
u =1-x

pour un certain point x de X. Désignons par s une section holomorphe
de p ayant u pour diviseur. Le diagramme suivant est commutatif

¢ (X,m) — 25 . ¢ (X, 2®p)
o |-
€° (X, nQ0% _®s g (X, 102% ®p).

Pour tout fibré vectoriel différentiel o sur X, le passage aux germes
induit un diagramme commutatif

0 — 4°(X,0) — 25 . 4°(X,6®p) - V(6) — 0

l l | =

0 5 42(@) —25. A42(6®p) - W) - 0
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