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Exemple 2.

Le genre d'une courbe elliptique X (chap. I, § 5, numéro 3) est égal à 1.

En effet, toute forme différentielle holomorphe sur X se relève en une forme

différentielle holomorphe u dz sur C. La fonction u étant invariante, elle

est constante, ce qui démontre l'assertion.

Proposition 3. La classe de Chern d'un fibré en droites holomorphe n

sur X est un entier relatif égal à l'ordre de toute section méromorphe de %.

En particulier, si la classe de Chern est strictement négative, l 'espace vectoriel

H° (X, n) est nul. Si la classe de Chern est nulle, le fibré n est dijférentiable-

ment trivial. S'il est holomorphiquement trivial, / 'espace vectoriel H° (X, n)

est de dimension 1, sinon il est nul.

Ces résultats sont énoncés ici pour mémoire (chap. I, § 4, lemme 1).

§ 2. Problèmes de Cousin

Soit n un fibré vectoriel holomorphe sur X. Nous avons vu (chap. I,
§ 3, proposition 2), qu'il existe une suite exacte

X (X, n) tltJ x,n)——> H1 n)

permettant de trouver sous quelles conditions il existe une section
méromorphe de 7i ayant une partie principale donnée.

Soit u une partie principale de n et soit v une section holomorphe de

7i* ® ß1'0. On vérifie aisément que la classe de (wx9 vx) dans â (ß1'0)^ ne

dépend pas de la section méromorphe w de % représentant u au voisinage
de x. On définit ainsi une partie principale de ß1'0 que l'on désigne par
(w, v) et l'on pose

Rés(u,v) Yj Rés((w,2/),x)
jcel

On a alors la solution suivante au premier problème de Cousin.

Théorème 1. Soit n un fibré vectoriel holomorphe sur X. Pour qu'une
partie principale u de n provienne d'une section méromorphe, il faut et il
suffit que la forme linéaire Rés (u, soit identiquement nulle sur
(P(X, 71* ®ß1'°).

Rappelons tout d'abord la construction de <5 (u) (chap. I, § 3, proposition

2). Désignons par xl9..., xn les points de X pour lesquels le germe ux
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n'est pas nul et par (Uj)0^j^n un recouvrement ouvert de X vérifiant les

conditions suivantes:

(1) Pour tout entier j compris entre 1 et n, l'ensemble Uj est le domaine
d'une carte 4>j centrée au point Xj.

(2) Les ensembles Ul9 Un sont deux à deux disjoints.

(3) L'ensemble U0 est égal à X\{xl9..., xn}.

Quitte à diminuer Ul9 Un9 on peut supposer qu'il existe une section

méromorphe Uj de n sur Uj représentant u\v.. On désigne par u0 la fonction
nulle sur U0. Pour tout entier j compris entre 0 et n, il existe une section

s j de ^°° (Uj9 7i) telle que

Uk - Uj Sk - Sj

(chap. 0, § 2, lemme 1). En particulier, les d"sj se recollent en une section t
de ^°° (X, n®Q0,1) dont la classe dans H1 (X, n) est précisément ô (u).

En vertu du théorème de dualité, il suffit de montrer que l'on a

1

lin
(i9v) Rés (u,v)

pour toute section holomorphe v de 7r* (g) Q1,0.

Les sections Sj — Uj se recollent en une section h de #°° (U09 n) et l'on a

d h 11[/0.
On en déduit que

1

2in

1

(t,v) lim —
x e^O l-171

(d"h,v)= J] limrr- f (M)
X\ U Vj,e e^O 2-ln JdVj,e

où Vj £ désigne le disque de centre Xj et de rayon s dans (j)j. D'autre part,

n—1 f (sj,<
0 2Î7E JdVj,s

on a

lim —^
I (sj9v) — 0

car Sj est continue au point Xj et

1

lim —
£->o 2/7c

ce qui démontre l'assertion.

n f (Uj,v) Rés
0 2171

JdVj,8



267 —

Exemple 1.

Le genre de P1 étant nul, toute partie principale u de CPi provient d'une

fonction méromorphe, résultat qu'il est d'ailleurs facile de démontrer

directement (chap. I, § 5, lemme 2).

Exemple 2.

Supposons que X soit une courbe elliptique. Pour qu'une partie principale

u de Cx provienne d'une fonction méromorphe, il faut et il suffit que

l'on ait
Rés (u,dz) 0

(§ 1, exemple 2) (que le lecteur se souvienne de la fonction elliptique p de

Weierstrass!).

Exemple 2.

Si X est une courbe holomorphe quelconque, la condition nécessaire et

suffisante pour qu'une partie principale u de ß1'0 provienne d'une forme
différentielle méromorphe est que l'on ait

Rés (u, 1) 0

Parmi les formes différentielles méromorphes, on distingue les espèces

suivantes :

(1) Les formes différentielles holomorphes ou formes différentielles
abéliennes de première espèce.

(2) Les formes différentielles méromorphes dont les seules singularités
sont des pôles d'ordre au moins 2 à résidu nul ou formes différentielles
abéliennes de deuxième espèce.

(3) Les formes différentielles méromorphes ayant comme seules
singularités un nombre pair de pôles d'ordre 1, groupés deux par deux de résidus

opposés, ou formes différentielles abéliennes de troisième espèce.

Avant d'aborder le deuxième problème de Cousin pour les courbes

holomorphes compactes, il nous faut introduire quelques notions.
Pour toute forme différentielle w de ^°° (X, ß0'1), il existe un recouvrement

ouvert (UfieI de X et, pour chaque indice z, une fonction hl de

^°° (Uv C) telle que
d"ht w\Vi.

C'est une conséquence immédiate du lemme de Grothendieck (chap. III,
§ 1, remarque 2). Sur Ul n UK, la fonction définie par

^Kl ^fC hl
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est holomorphe et l'on vérifie aisément que la famille (gKl) avec

9 Ki exp(2/7zhKl)

est un cocycle holomorphe de rang 1 subordonné à (U))ieI dont la classe

dans Pic (Z, C*) ne dépend que de la classe de w dans H1 (Z, Cx). On
obtient ainsi un homomorphisme canonique

6: H1 (Z, Cx) -> Pic(Z, C*)

Soit u un diviseur d'ordre 0 sur Z. On peut l'écrire sous la forme (chap. I,
§ 4, lemme 3)

u I yi -
1

où xi9..., xn, y u yn sont des points de X (non nécessairement distincts).
On appelle chaîne bordant u toute famille (c/)i^y^« où Cj est un chemin

joignant Xj à yj dans X.

Le lemme suivant est à rapprocher d'un résultat démontré précédemment
(chap. O, § 5, proposition 1).

Lemme 1. Soit u un diviseur d'ordre 0 sur X et soit (cj)l^j^n une
chaîne bordant u. Il existe une forme différentielle w de ^ (X, £20,1)

vérifiant les conditions suivantes :

(1) L 'image par 6 de la classe de w est le fibré principal associé à u.

(2) Pour toute forme différentielle holomorphe v sur X, on a

v A W J] JcyW.
l^j^n

On se ramène aisément au cas d'un seul chemin c joignant un point z0
à un point zt dans le domaine U0 d'une carte </> de X dont l'image est un
disque de C. Il n'y a pas ici de problème de lissage (loc. cit.).

On désigne par Wet V deux disques de (j) tels que W soit relativement

compact dans V et V relativement compact dans U0 et tels que l'image de

c soit contenue dans W. Le diviseur u est représenté sur U0 par la fonction
méromorphe (f)(z)0 (ZX)

Uo(z)
<l> (z) - 0 Oo)

et sur le complémentaire U1 de F par la fonction constante 1.

Désignons par a une fonction de ^°° (Z, R) égale à 1 sur X\V, à 0 sur
W et par h un logarithme de u0 sur U0\W. La forme différentielle définie par
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w 0 sur (X\U0)u W

w — d" (ah) sur U0\W
2m

appartient à ^°° (X, Q0'1).

La propriété (1) résulte immédiatement des définitions. Pour démontrer

(2), on remarque que la restriction de v à U0 est exacte. On a donc

1

VA W
2in

v a d "
(ah) — I df a d(cch)

y 2in

où/ est une fonction holomorphe sur U0. Il résulte alors de la formule
de Stokes que l'on a

1

VA W —
2m

du of— =/(Zi) -/(zo)

ce qui démontre l'assertion.

Théorème 2 (Abel). Pour qu'un diviseur u d'ordre 0 soit le diviseur

d'une fonction méromorphe, z7 /awf et il suffit qu 'il existe une chaine

bordant u telle que

Z L« °

pour toute forme différentielle holomorphe v sur X.
Montrons que la condition est nécessaire. On peut supposer u non nul.

On désigne par h une fonction méromorphe sur X dont u est le diviseur,

par n le degré de h (chap. I, § 4) et par B l'ensemble des valeurs critiques
de h.

Soit c un chemin joignant (0:1) à (1:0) dans P1, ne rencontrant pas B,
sauf peut-être en ses extrémités. Il existe n chemins distincts cu cn

relevant c, chacun joignant un pôle de h à un zéro de h. La chaîne (cfi 1

borde u et l'on a

X icjV icK(v)
1

(chap. I, § 4, proposition 3). On conclut en remarquant que h* (v) est nulle
(§ 1, exemple 1).

Montrons maintenant que la condition est suffisante. Désignons par
w une forme différentielle de ^ (X, ß0'1) vérifiant les conditions du
lemme 1. La relation

\XV A W 0

L'Enseignement mathém., t. XXI, fasc. 2-3-4. 18
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pour toute forme différentielle holomorphe v montre que la classe de w

dans H1 (X, Cx) est nulle (théorème de dualité, chap. III, § 2). On en
déduit que le fibré principal associé à u est trivial, ce qui démontre le
théorème (chap. I, § 3, proposition 3).

§ 3. Théorème de Riemann-Roch

Pour tout fibré vectoriel holomorphe n sur X, les espaces vectoriels

complexes H° (X, n) et H1 (X, n) sont de dimension finie (chap. III, §2,
proposition 2, corollaire). On pose

X (n) dimcH° (X, n) - din^H1 (X, n).

Le théorème de dualité (loc. cit.) montre que l'on a aussi

X(n) dimcH° (X, n) - dimcH° (X, n* ®ß1*0).

Proposition 1. Désignons par n un fibré vectoriel holomorphe de rang p
sur X et par p un fibré en droites holomorphe associé à un diviseur u de

X. On a alors

X(n®p) i(n) + p 0(u).

On se ramène aisément au cas où u est de la forme

u 1 - x

pour un certain point x de X. Désignons par s une section holomorphe
de p ayant u pour diviseur. Le diagramme suivant est commutatif

(*)

<îf00 (X, n)

d"

rëa> (X,n®p)

d"

Pour tout fibré vectoriel différentiel a sur X, le passage aux germes
induit un diagramme commutatif

0 >(X,a)
0s

®sx

ëœ(X,<j ®p) V(ct) - 0

1 1 "
Aœx(o®p) -> W(a) 0
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