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CHAPITRE IV

COURBES HOLOMORPHES COMPACTES

Dans tout ce chapitre, on désigne par X une courbe holomorphe compacte
et connexe.

§ 1. THEOREME DE DECOMPOSITION DE WEYL

PROPOSITION 1. Pour toute forme différentielle u de €~ (X, Q"°)
(resp. € (X, Q%Y)), il existe une fonction v de € (X,C) telle que
u+dov (resp. u—d'"v) soit fermée.

Pour qu’une forme différentielle de €~ (X, Q') appartienne a 'image
de lopérateur d’ - d"', il faut et il suffit que son intégrale soit nulle (chap. III,
§ 3, proposition 4). La formule de Stokes montre qu’il en est ainsi de la
forme différentielle du. Il existe par conséquent une fonction v de €% (X, C)
telle que

du = (d"d")(v) = —(d"d")(v)

ce qui démontre I’assertion.

COROLLAIRE. Les opérateurs différentiels
d: €° (X, Q0 = 6~ (X, Q% = ¢~ (X, Q")
d: (X, Q") - ¢* (X, Q") et d'-d": €° (X, C) —» €7 (X, ")
ont méme image.

En particulier, l’intégration des formes différentielles de degré 2 induit
des isomorphismes canoniques

HH(X) = H' (X, Q"% = H*(X,C) = C.
Les inclusions
Im(d’*d") « Im(d") = Im(d)
. sont évidentes. Réciproquement, toute forme différentielle u de €® (X, Q¢)
s’écrit
U =u; + U,
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avec u, de bidegré (1, 0) et u, de bidegré (0, 1). La proposition 1 montre
qu’il existe des fonctions v, et v, de ¥® (X, C) telles que
dw,+dv) =0 et d(u,—dv,) =0.
On en déduit que
du = du, + du, = (d'*d") (vy +v,)
ce qui démontre le corollaire.

Remarque 1.

On vient de donner une autre démonstration du fait que H? (X, C) est
canoniquement isomorphe 4 C pour une surface différentielle compacte
connexe sous-jacente a une courbe holomorphe (chap. 0, § 4, théoréme 3).

THEOREME 1 (Weyl). Toute forme différentielle fermée u de € (X, Q)
s ’écrit d’une maniere et d’une seule

U =u; +u, +dv

ot u, et u, sont des formes différentielles fermées de €* (X, Q''°) et
E* (X, Q%) respectivement et v une fonction de €% (X, C).

Montrons tout d’abord P’existence de la décomposition. On peut écrire
U = u; + u,

avec u, de bidegré (1, 0) et u, de bidegré (0, 1). Il existe une fonction v de
€ (X, C) telle que
d(u;—dv) =0

(proposition 1). 11 suffit alors de poser
u; =u; —dv et u, =u, —dv.
Pour montrer I'unicité, on suppose que I’on a
Uy +u, +dv =0.

En appliquant I’opérateur différentiel d’ aux deux membres de cette équa-

tion, on voit que v est harmonique, donc constante, ce qui démontre la
proposition.

Toute forme différentielle holomorphe de degré 1 étant fermée, 1’inclusion
canonique de 0 (X, Q™°) dans ¢~ (X, Q¢) induit par passage au quotient
une application linéaire « de H® (X, 2':°) dans H! (X, C).
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Désignons par Z (X, Q¢) 'ensemble des formes différentielles fermées

de € (X, Q¢). On définit une application linéaire f de Z (X, Q0) dans
%~ (X, Q%) en associant a toute forme fermée sa composante de bidegré

(0, 1). Par passage aux quotients, cette application définit une application
linéaire § de H' (X, C) dans H* (X, Cy).

PROPOSITION 2. La suite d’espaces vectoriels et d’applications linéaires

0-H'X, Q') H'(X,O)—L.-H'(X,Cy) -0
est exacte.
La surjectivité de B résulte de la proposition 1, et le seul point non
absolument trivial est de démontrer que tout élément u de Z (X, Q¢) dont

P’'image par f est de la forme d’’v est équivalent a une forme différentielle
holomorphe. Or, la relation
u =u; +dv

avec u, homogene de bidegré (1, 0) peut s’écrire
u =u; —dv+dv.
La forme différentielle u, — d’ v étant fermée et homogeéne de bidegré

(1,0), elle est holomorphe ce qui démontre I’assertion.

On appelle genre de X la dimension de I’espace vectoriel complexe
H° (X, Q"°). Par dualité (chap. III, § 2, proposition 2, corollaire), c’est
aussi la dimension de I’espace H' (X, Cy). La proposition 2 montre que
c’est un invariant différentiel (et méme topologique): c’est la moitié de la
dimension de P’espace H! (X, C) (chap. 0, § 5, remarque 2).

Exemple 1.

Le genre de P! est nul. En effet, désignons par « une forme différentielle
holomorphe sur P. Pour chacune des cartes usuelles de P, on peut écrire

Uy, = vodz et uy = vidz

ou v, et v, sont des fonctions holomorphes sur C. Par changement de

cartes, on voit que ’on a
1 1
U (2) = — v |-
z z

en tout point z de C*. Ceci n’est possible que si v, et v; sont nulles.



— 265 —

Exemple 2.

Le genre d’une courbe elliptique X (chap. I, § 5, numéro 3) est égal a 1.
En effet, toute forme différentielle holomorphe sur X se reléve en une forme
différentielle holomorphe u dz sur C. La fonction u étant invariante, elle
est constante, ce qui démontre I’assertion.

PROPOSITION 3. La classe de Chern d’un fibré en droites holomorphe
sur X est un entier relatif égal a l’ordre de toute section méromorphe de .
En particulier, si la classe de Chern est strictement négative, l’espace vectoriel
H° (X, n) est nul. Si la classe de Chern est nulle, le fibré m est différentiable-
ment trivial. S’il est holomorphiquement trivial, I’espace vectoriel H° (X, m)
est de dimension 1, sinon il est nul.

Ces résultats sont énoncés ici pour mémoire (chap. I, §4, lemme 1).

§ 2. PROBLEMES DE COUSIN

Soit 7 un fibré vectoriel holomorphe sur X. Nous avons vu (chap. I,
§ 3, proposition 2), qu’il existe une suite exacte

X om0 H (X, m)

permettant de trouver sous quelles conditions il existe une section méro-
morphe de © ayant une partie principale donnée.

Soit u une partie principale de 7 et soit v une section holomorphe de
n* ® QV°, On vérifie aisément que la classe de (w,, v,) dans 2 (2''°), ne
dépend pas de la section méromorphe w de m représentant u au voisinage
de x. On définit ainsi une partie principale de Q''° que I’on désigne par
(u, v) et 'on pose

Rés(u,v) = Y Rés((u,v),x).

xeX

On a alors la solution suivante au premier probléme de Cousin.

THEOREME 1. Soit nn un fibré vectoriel holomorphe sur X. Pour qu’une
partie principale u de m provienne d’une section méromorphe, il faut et il
suffit que la forme linéaire Rés (u, ) soit identiquement nulle sur
0 (X, n*®Q0"°).

Rappelons tout d’abord la construction de § (u) (chap. 1, § 3, propo-
sition 2). Désignons par x4, ..., x, les points de X pour lesquels le germe u,
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