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Chapitre IV

COURBES HOLOMORPHES COMPACTES

Dans tout ce chapitre, on désigne par X une courbe holomorphe compacte
et connexe.

§ 1. Théorème de décomposition de Weyl

Proposition 1. Pour toute forme différentielle u de ^°° (X, Q1,0)

(resp. ^°° (X, Q0,1)), il existe une fonction v de ^°° (X, C) telle que
u + d'v (resp. u — d" v) soit fermée.

Pour qu'une forme différentielle de ^°° (X, Q1,1) appartienne à l'image
de l'opérateur d'• d", il faut et il suffit que son intégrale soit nulle (chap. III,
§ 3, proposition 4). La formule de Stokes montre qu'il en est ainsi de la
forme différentielle du. Il existe par conséquent une fonction v de ^°° (X, C)
telle que

du (d'-d")(v) - (d"'d')(v)

ce qui démontre l'assertion.

Corollaire. Les opérateurs différentiels

d: ^ X,Qlc)-)• Qc) Ö1'1)

d" : <r°(X, Q1'0)-» ^œ(X,Qul)etd' d" : V (X, C) ^ (X, Q1'1)

ont même image.
En particulier, l'intégration des formes différentielles de degré 2 induit

des isomorphismes canoniques

JT1 (X) H1 (X, ß1'0) H2 (X, C) C

Les inclusions
Im (d'-d") c= lm(d") c Im (d)

sont évidentes. Réciproquement, toute forme différentielle u de ^°° (X, Qç)
s'écrit

u ut + u2
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avec u1 de bidegré (1, 0) et u2 de bidegré (0, 1). La proposition 1 montre

qu'il existe des fonctions v1 etv2 de ^°° (X, C) telles que

d(u1+d'v1) =0 et d(u2—d"v2) 0.

On en déduit que

du — du1 T du2 — (d'd )(^h 2)

ce qui démontre le corollaire.

Remarque 1.

On vient de donner une autre démonstration du fait que H2 (X, C) est

canoniquement isomorphe à C pour une surface différentielle compacte
connexe sous-jacente à une courbe holomorphe (chap. 0, § 4, théorème 3).

Théorème 1 (Weyl). Toute forme différentielle fermée u de ^°° (X, Q£)
s 'écrit d'une manière et d'une seule

u u1 + u2 + dv

où u1 et u2 sont des formes différentielles fermées de ^°° (X, ß1'0) et
#°° (X, Q0,1) respectivement et v une fonction de ^°° (X, C).

Montrons tout d'abord l'existence de la décomposition. On peut écrire

u u1 + u2

avec u[ de bidegré (1, 0) et u2 de bidegré (0, 1). Il existe une fonction v de

^°° (X, C) telle que
d (u[ —d'v) 0

(proposition 1). Il suffit alors de poser

ui ui ~ d'v et u2 u2 — d 'v

Pour montrer l'unicité, on suppose que l'on a

ut 4- u2 + dv 0.

En appliquant l'opérateur différentiel d'aux deux membres de cette équation,

on voit que v est harmonique, donc constante, ce qui démontre la
proposition.

Toute forme différentielle holomorphe de degré 1 étant fermée, l'inclusion
canonique de <9 (X, Q1'0) dans ^°° (X, ß£) induit par passage au quotient
une application linéaire a de H° (X, ß1,0) dans H1 (X, C).
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Désignons par Z (Z, Qq) l'ensemble des formes différentielles fermées

de #00 (Z, Qç). On définit une application linéaire ß de Z (Z, Qq) dans

^ (Z, ß0'1) en associant à toute forme fermée sa composante de bidegré
(0, 1). Par passage aux quotients, cette application définit une application
linéaire ß de H1 (Z, C) dans H1 (Z, C*).

Proposition 2. La suite d'espaces vectoriels et d'applications linéaires

est exacte.

La surjectivité de ß résulte de la proposition 1, et le seul point non
absolument trivial est de démontrer que tout élément u de Z (Z, Qq) dont

l'image par ß est de la forme d"v est équivalent à une forme différentielle
holomorphe. Or, la relation

u ux + d'v

avec u1 homogène de bidegré (1,0) peut s'écrire

La forme différentielle ux — d'v étant fermée et homogène de bidegré
(1,0), elle est holomorphe ce qui démontre l'assertion.

On appelle genre de X la dimension de l'espace vectoriel complexe
H° (Z, O1'0). Par dualité (chap. III, § 2, proposition 2, corollaire), c'est
aussi la dimension de l'espace H1 (Z, Cx). La proposition 2 montre que
c'est un invariant différentiel (et même topologique): c'est la moitié de la
dimension de l'espace H1 (Z, C) (chap. 0, § 5, remarque 2).

Exemple 1.

Le genre de P1 est nul. En effet, désignons par u une forme différentielle

holomorphe sur P1. Pour chacune des cartes usuelles de P1, on peut écrire

«4o vodz et «4i vidz

où et sont des fonctions holomorphes sur C. Par changement de

cartes, on voit que l'on a

0 H° (Z, G1'0) H1 (Z, C) -U H1 (Z, Cx) 0

u — ux — d'v + dv

en tout point z de C*. Ceci n'est possible que si v0 et v1 sont nulles.
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Exemple 2.

Le genre d'une courbe elliptique X (chap. I, § 5, numéro 3) est égal à 1.

En effet, toute forme différentielle holomorphe sur X se relève en une forme

différentielle holomorphe u dz sur C. La fonction u étant invariante, elle

est constante, ce qui démontre l'assertion.

Proposition 3. La classe de Chern d'un fibré en droites holomorphe n

sur X est un entier relatif égal à l'ordre de toute section méromorphe de %.

En particulier, si la classe de Chern est strictement négative, l 'espace vectoriel

H° (X, n) est nul. Si la classe de Chern est nulle, le fibré n est dijférentiable-

ment trivial. S'il est holomorphiquement trivial, / 'espace vectoriel H° (X, n)

est de dimension 1, sinon il est nul.

Ces résultats sont énoncés ici pour mémoire (chap. I, § 4, lemme 1).

§ 2. Problèmes de Cousin

Soit n un fibré vectoriel holomorphe sur X. Nous avons vu (chap. I,
§ 3, proposition 2), qu'il existe une suite exacte

X (X, n) tltJ x,n)——> H1 n)

permettant de trouver sous quelles conditions il existe une section
méromorphe de 7i ayant une partie principale donnée.

Soit u une partie principale de n et soit v une section holomorphe de

7i* ® ß1'0. On vérifie aisément que la classe de (wx9 vx) dans â (ß1'0)^ ne

dépend pas de la section méromorphe w de % représentant u au voisinage
de x. On définit ainsi une partie principale de ß1'0 que l'on désigne par
(w, v) et l'on pose

Rés(u,v) Yj Rés((w,2/),x)
jcel

On a alors la solution suivante au premier problème de Cousin.

Théorème 1. Soit n un fibré vectoriel holomorphe sur X. Pour qu'une
partie principale u de n provienne d'une section méromorphe, il faut et il
suffit que la forme linéaire Rés (u, soit identiquement nulle sur
(P(X, 71* ®ß1'°).

Rappelons tout d'abord la construction de <5 (u) (chap. I, § 3, proposition

2). Désignons par xl9..., xn les points de X pour lesquels le germe ux
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n'est pas nul et par (Uj)0^j^n un recouvrement ouvert de X vérifiant les

conditions suivantes:

(1) Pour tout entier j compris entre 1 et n, l'ensemble Uj est le domaine
d'une carte 4>j centrée au point Xj.

(2) Les ensembles Ul9 Un sont deux à deux disjoints.

(3) L'ensemble U0 est égal à X\{xl9..., xn}.

Quitte à diminuer Ul9 Un9 on peut supposer qu'il existe une section

méromorphe Uj de n sur Uj représentant u\v.. On désigne par u0 la fonction
nulle sur U0. Pour tout entier j compris entre 0 et n, il existe une section

s j de ^°° (Uj9 7i) telle que

Uk - Uj Sk - Sj

(chap. 0, § 2, lemme 1). En particulier, les d"sj se recollent en une section t
de ^°° (X, n®Q0,1) dont la classe dans H1 (X, n) est précisément ô (u).

En vertu du théorème de dualité, il suffit de montrer que l'on a

1

lin
(i9v) Rés (u,v)

pour toute section holomorphe v de 7r* (g) Q1,0.

Les sections Sj — Uj se recollent en une section h de #°° (U09 n) et l'on a

d h 11[/0.
On en déduit que

1

2in

1

(t,v) lim —
x e^O l-171

(d"h,v)= J] limrr- f (M)
X\ U Vj,e e^O 2-ln JdVj,e

où Vj £ désigne le disque de centre Xj et de rayon s dans (j)j. D'autre part,

n—1 f (sj,<
0 2Î7E JdVj,s

on a

lim —^
I (sj9v) — 0

car Sj est continue au point Xj et

1

lim —
£->o 2/7c

ce qui démontre l'assertion.

n f (Uj,v) Rés
0 2171

JdVj,8
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Exemple 1.

Le genre de P1 étant nul, toute partie principale u de CPi provient d'une

fonction méromorphe, résultat qu'il est d'ailleurs facile de démontrer

directement (chap. I, § 5, lemme 2).

Exemple 2.

Supposons que X soit une courbe elliptique. Pour qu'une partie principale

u de Cx provienne d'une fonction méromorphe, il faut et il suffit que

l'on ait
Rés (u,dz) 0

(§ 1, exemple 2) (que le lecteur se souvienne de la fonction elliptique p de

Weierstrass!).

Exemple 2.

Si X est une courbe holomorphe quelconque, la condition nécessaire et

suffisante pour qu'une partie principale u de ß1'0 provienne d'une forme
différentielle méromorphe est que l'on ait

Rés (u, 1) 0

Parmi les formes différentielles méromorphes, on distingue les espèces

suivantes :

(1) Les formes différentielles holomorphes ou formes différentielles
abéliennes de première espèce.

(2) Les formes différentielles méromorphes dont les seules singularités
sont des pôles d'ordre au moins 2 à résidu nul ou formes différentielles
abéliennes de deuxième espèce.

(3) Les formes différentielles méromorphes ayant comme seules
singularités un nombre pair de pôles d'ordre 1, groupés deux par deux de résidus

opposés, ou formes différentielles abéliennes de troisième espèce.

Avant d'aborder le deuxième problème de Cousin pour les courbes

holomorphes compactes, il nous faut introduire quelques notions.
Pour toute forme différentielle w de ^°° (X, ß0'1), il existe un recouvrement

ouvert (UfieI de X et, pour chaque indice z, une fonction hl de

^°° (Uv C) telle que
d"ht w\Vi.

C'est une conséquence immédiate du lemme de Grothendieck (chap. III,
§ 1, remarque 2). Sur Ul n UK, la fonction définie par

^Kl ^fC hl
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est holomorphe et l'on vérifie aisément que la famille (gKl) avec

9 Ki exp(2/7zhKl)

est un cocycle holomorphe de rang 1 subordonné à (U))ieI dont la classe

dans Pic (Z, C*) ne dépend que de la classe de w dans H1 (Z, Cx). On
obtient ainsi un homomorphisme canonique

6: H1 (Z, Cx) -> Pic(Z, C*)

Soit u un diviseur d'ordre 0 sur Z. On peut l'écrire sous la forme (chap. I,
§ 4, lemme 3)

u I yi -
1

où xi9..., xn, y u yn sont des points de X (non nécessairement distincts).
On appelle chaîne bordant u toute famille (c/)i^y^« où Cj est un chemin

joignant Xj à yj dans X.

Le lemme suivant est à rapprocher d'un résultat démontré précédemment
(chap. O, § 5, proposition 1).

Lemme 1. Soit u un diviseur d'ordre 0 sur X et soit (cj)l^j^n une
chaîne bordant u. Il existe une forme différentielle w de ^ (X, £20,1)

vérifiant les conditions suivantes :

(1) L 'image par 6 de la classe de w est le fibré principal associé à u.

(2) Pour toute forme différentielle holomorphe v sur X, on a

v A W J] JcyW.
l^j^n

On se ramène aisément au cas d'un seul chemin c joignant un point z0
à un point zt dans le domaine U0 d'une carte </> de X dont l'image est un
disque de C. Il n'y a pas ici de problème de lissage (loc. cit.).

On désigne par Wet V deux disques de (j) tels que W soit relativement

compact dans V et V relativement compact dans U0 et tels que l'image de

c soit contenue dans W. Le diviseur u est représenté sur U0 par la fonction
méromorphe (f)(z)0 (ZX)

Uo(z)
<l> (z) - 0 Oo)

et sur le complémentaire U1 de F par la fonction constante 1.

Désignons par a une fonction de ^°° (Z, R) égale à 1 sur X\V, à 0 sur
W et par h un logarithme de u0 sur U0\W. La forme différentielle définie par



— 269 —

w 0 sur (X\U0)u W

w — d" (ah) sur U0\W
2m

appartient à ^°° (X, Q0'1).

La propriété (1) résulte immédiatement des définitions. Pour démontrer

(2), on remarque que la restriction de v à U0 est exacte. On a donc

1

VA W
2in

v a d "
(ah) — I df a d(cch)

y 2in

où/ est une fonction holomorphe sur U0. Il résulte alors de la formule
de Stokes que l'on a

1

VA W —
2m

du of— =/(Zi) -/(zo)

ce qui démontre l'assertion.

Théorème 2 (Abel). Pour qu'un diviseur u d'ordre 0 soit le diviseur

d'une fonction méromorphe, z7 /awf et il suffit qu 'il existe une chaine

bordant u telle que

Z L« °

pour toute forme différentielle holomorphe v sur X.
Montrons que la condition est nécessaire. On peut supposer u non nul.

On désigne par h une fonction méromorphe sur X dont u est le diviseur,

par n le degré de h (chap. I, § 4) et par B l'ensemble des valeurs critiques
de h.

Soit c un chemin joignant (0:1) à (1:0) dans P1, ne rencontrant pas B,
sauf peut-être en ses extrémités. Il existe n chemins distincts cu cn

relevant c, chacun joignant un pôle de h à un zéro de h. La chaîne (cfi 1

borde u et l'on a

X icjV icK(v)
1

(chap. I, § 4, proposition 3). On conclut en remarquant que h* (v) est nulle
(§ 1, exemple 1).

Montrons maintenant que la condition est suffisante. Désignons par
w une forme différentielle de ^ (X, ß0'1) vérifiant les conditions du
lemme 1. La relation

\XV A W 0

L'Enseignement mathém., t. XXI, fasc. 2-3-4. 18
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pour toute forme différentielle holomorphe v montre que la classe de w

dans H1 (X, Cx) est nulle (théorème de dualité, chap. III, § 2). On en
déduit que le fibré principal associé à u est trivial, ce qui démontre le
théorème (chap. I, § 3, proposition 3).

§ 3. Théorème de Riemann-Roch

Pour tout fibré vectoriel holomorphe n sur X, les espaces vectoriels

complexes H° (X, n) et H1 (X, n) sont de dimension finie (chap. III, §2,
proposition 2, corollaire). On pose

X (n) dimcH° (X, n) - din^H1 (X, n).

Le théorème de dualité (loc. cit.) montre que l'on a aussi

X(n) dimcH° (X, n) - dimcH° (X, n* ®ß1*0).

Proposition 1. Désignons par n un fibré vectoriel holomorphe de rang p
sur X et par p un fibré en droites holomorphe associé à un diviseur u de

X. On a alors

X(n®p) i(n) + p 0(u).

On se ramène aisément au cas où u est de la forme

u 1 - x

pour un certain point x de X. Désignons par s une section holomorphe
de p ayant u pour diviseur. Le diagramme suivant est commutatif

(*)

<îf00 (X, n)

d"

rëa> (X,n®p)

d"

Pour tout fibré vectoriel différentiel a sur X, le passage aux germes
induit un diagramme commutatif

0 >(X,a)
0s

®sx

ëœ(X,<j ®p) V(ct) - 0

1 1 "
Aœx(o®p) -> W(a) 0
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où V (fi) et W fi) désignent les conoyaux de 0 s et 0 sx respectivement.

La section s ne s'annulant qu'au point x, les lignes de ce diagramme sont

exactes et l'application a est un isomorphisms. Ceci montre que le

diagramme (*) se complète en un diagramme commutatif

0 Ve0 (X, n)—V°(X,1 -*W(i - o

d" ßd"

0 -> ^(X^QQ0-1) — —- (X,®ß0'1 -> Pf(7r®ß0'1) - 0

On a alors (diagramme du serpent),

Xfi) - x(n®P) + dimcKer(/?) - dimcCoker (ß) 0

et il suffit de vérifier les égalités

dimcKer (ß) p et dimcCoker (ß) 0.

Ceci étant un problème de germes, on peut supposer que x est l'origine
dans C, que n est le fibré produit de rang p et p le fibré produit de rang 1.

L'application
ß: (A<syis0(A<sy-*(A%yis0(A%y

d
étant induite par l'opérateur différentiel —-, elle est surjective (chap. III,

ô z
§ 1, remarque 2). D'autre part, pour tout germe u de (Aq)p vérifiant la
relation

du

^ s°v
dz

pour un certain v, on peut écrire

d
/— (u - s0 w) 0

dz

pour un certain w (loc. cit.). Le germe u - s0 w étant holomorphe, il
existe un germe h de (A q)p tel que

u — s0w — u (0) s0h

Ceci montre que le noyau de ß est constitué des germes d'applications
constantes de C dans Cp ce qui achève la démonstration de la proposition.

Corollaire. Tout fibré en droites holomorphes n sur X est associé à

un diviseur.
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Pour tout fibré en droites holomorphes p sur X associé à un diviseur ur
on a

dimcH° (X, n®p) > x(n®P) xi71) + °(w) •

Si l'ordre de u est bien choisi, le fibré n ® p possède une section holomorphe
non nulle s. On en déduit que le fibré % est associé au diviseur (s) — u.

Théorème 1 (Riemann-Roch). Pour tout fibré en droites holomorphe

n sur X, on a

X (ji) 1 - g + ch (tî)

où g désigne le genre de X.
On peut supposer que n est associé à un diviseur u (proposition 1,

corollaire). On a donc

X(n) x(Cx) + 0(u) 1 - + ch(¥>

(proposition 1 et § 1, proposition 3), ce qui démontre l'assertion.

Corollaire. Pour tout fibré en droites holomorphe % sur X, on a la
relation

ch(7i*®£21,0) 2g — 2 — ch(7i).

En particulier, la classe de Chern du fibré Q1,0 est égale à 2g — 2.

Il suffit de remarquer que l'on a

X(7Z*0ÜUO) ~x(n) -(l-0+ch(70)
et d'appliquer le théorème de Riemann-Roch.

Proposition 2. Pour tout fibré en droites holomorphe it sur X, on a

les relations suivantes :

(1 ch (71) < 0 => dimcH° (X, 71) 0.

dimcH° (X, 71) 0 si tc n'est pas (holo-
morphiquement) trivial.

dimcH° (X, 71) 1 si n est (holo-
morphiquement) trivial.

dimcH° (X, 71) g — 1 si n n 'est pas iso¬

morphe à O1'0.

dimcH° (X, 71) g si % est isomorphe à
Q1'0.

(4) ch (71) > Içj 2 => dimcH° (X, n) 1 - ch (n).

(2) ch (n) 0

(3) ch (71)
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Les deux premières assertions ont déjà été démontrées (§ 1, proposition

3). Pour démontrer les deux dernières, il suffit de remarquer que l'on
a

dimcH° (X, 7i) 1 -g + ch(7i) + dimcH° (X, n* ®QU°)

et d'appliquer ce qui précède au fibré n* ® Q1,0.

Remarque 1.

Pour tout diviseur u sur X, on pose

L{u) {he jf (X) | h 0 ou (h) > — u }

I (u) { s e (X, ß1'0) | s 0 ou (5) > u }

Désignons par n un fibré en droites holomorphes associé à u. Nous avons

vu que l'espace vectoriel L (<u) (resp. I (u)) est canoniquement isomorphe à

l'espace H° (X, 71) (resp. H° (X, 71* ®£21,0)) (chap. I, § 3). En désignant sa

dimension par l (u) (resp. i (u)), le théorème de Riemann-Roch prend la
forme plus classique suivante:

/ (u) — i (u) 1—0+0 (m)

Théorème 2 (Riemann-Hurwitz). Soient X et Y deux courbes

holomorphes compactes connexes de genre g (X) et g (Y) respectivement et
soit h une application holomorphe non constante de X dans Y. On a la
formule

2g (X) — 2 — deg(A) (2g (F) -2) + v (h)

où v (h) désigne l'indice de ramification de h x).

Désignons par u une forme différentielle méromorphe non nulle sur Y.

On a

0(/î* («)) X 0x(h*(u)) X (v,CO + l)0Mx)(u) +
xsX x£ X

(chap. I, § 4, lemme 2) et par conséquent

0 (h* («)) X £ (v, (Ä) +1)) 0, (m) + v (Ä) deg (Ä) 0 (u) + v (Ä)
jeF xeu-l(y)

et l'on conclut en remarquant que l'ordre de A* (u) (resp. u) est égal à
2g (X) - 2 (resp. 2g (Y) - 2) (théorème 1, corollaire).

Corollaire. Pour qu 'il existe une application holomorphe non constante
de X dans Y, ilfaut que le genre de Y soit au plus égal au genre de X.

0 C'est à dire la somme des indices de ramification de h aux différents points de X
(chap. I, § 4).



§ 4. Fibres amples

Dans tout ce paragraphe, on désigne par g le genre de X et par n un
fibré en droites holomorphes sur X.

Soient .y0,sn des sections holomorphes de n dont l'une au moins
n'est pas nulle. Pour tout entier j compris entre 0 et n, on pose

Xj {xeX\ sj(x) ^ 0}
et l'on définit une application holomorphe de Xj dans P" par la formule

4>j (x) (j- (x):j (x)j

Par définition même, les 4>j se recollent en une application holomorphe <fi

de u Xj dans P". Pour tout point xdel\ u Xj9 il existe un voisinage

ouvert U de x, une fonction holomorphe h sur U et des sections holomorphes

Sq, s'n de n sur U dont l'une au moins ne s'annule pas au point x, vérifiant
les relations suivantes

s0 hs'0,s„hs'n.

Supposons par exemple s] (x) non nul. On prolonge l'application en

posant

<l>(x) (-, (x): (x)\
Vj SJ J

L'application holomorphe (j) de X dans P" ainsi obtenue se désigne par
(s0: ...:sn).

On dit que le fibré n est ample si pour toute base (s0,..., sn) de l'espace
vectoriel H° (X, n), l'application (.y0: sn) est un plongement de X
dans PM.

Remarque 1.

Désignons par hu hn des fonctions méromorphes sur X dont l'une

au moins n'est pas nulle. On définit un diviseur u sur X en posant

u —inf^/îj),(h0)
Soit p un fibré en droites holomorphes sur X et soit ^ une section

holomorphe de p ayant u pour diviseur. Les sections de p définies par

si •••> sn hnso
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sont holomorphes et l'une d'entre elles au moins n'est pas nulle. L
application 00: ...:sn) se désigne (abusivement) par (h1:

Proposition 1. Si la classe de Chern de n est au moins égale à 2g, les

sections holomorphes de n n 'ont pas de zéro commun.

Raisonnons par l'absurde en supposant qu'il existe un point x de X où

toutes les sections holomorphes de n s'annulent. Désignons par p un fibré

en droites holomorphes sur X et par £ une section holomorphe de p dont

le diviseur est l-x. L'application

0s: H° (X, n 0p*) ->H°(X57i)

est injective. Elle est surjective en vertu de l'hypothèse faite sur x. D'autre

part, la proposition 2 du paragraphe 3 montre que l'on a

dimcH°(X,7i0p*) l-p+ch(7i0p*) ch(n)-g
et

dimcH° (X, tz) l+ch(n)-g
ce qui est absurde.

Corollaire 1. On suppose que la classe de Chern de tz est au moins

égale à 2g. Pour tout ensemble fini A de X, il existe une section holomorphe
de n qui ne s'annule en aucun point de A.

Il résulte en effet de la proposition 1 que l'ensemble des sections

holomorphes de % qui s'annulent en un point de X forment un hyperplan de

H° (X, n).

Corollaire 2. On suppose que la classe de Chern de tz est au moins

égale à 2g + 1.

(1 Pour tout couple (x, y) de points distincts de X, il existe une section

holomorphe de tz qui s'annule au point x et ne s'annule pas au point y.

(2) Pour tout point x de X, il existe une section holomorphe de tz

qui possède un zéro simple au point x.

On désigne par p un fibré en droites holomorphes sur X et par s une
section holomorphe de p dont le diviseur est 1 • x. La classe de Chern du
fibré 7r 0 p* est au moins égale à 2g et la proposition 1 montre qu'il existe

une section holomorphe t de ce fibré qui ne s'annule pas au point y (resp. x).
La section t 0 s vérifie la condition (1) (resp. (2)).

Théorème 1. Si sa classe de Chern est au moins égale à 2g + 1, le fibré
tz est ample.
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Désignons par (s0, sn) une base de H° (X, n). Pour tout couple
(x, y) de points de X, il existe un entier j compris entre 0 et n tel que Sj ne
s'annule pas sur {x, y) (proposition 1, corollaire 1). Par définition, la
relation

(s0: ...: sn) (x) (s0: ...: s„) (y)

signifie qu'il existe un nombre complexe A non nul tel que

5°(x),...,^(x)) a(^(y),...,$(y)).
sj J \ sj sj J

Ceci n'est possible que si x et y coïncident (proposition 1, corollaire 2) et

par conséquent l'application (s0: ...: sn) est injective.
Il reste à montrer qu'elle est de rang 1. Désignons par x un point de X

et par s une section holomorphe de n possédant un zéro simple au point x
(loc. cit.). On a

s 205o + + Ansn

et il existe un entier j compris entre 0 et n tel que Sj (x) soit non nul. On a
donc

- A0- + +

et par conséquent

^j(x) Â0d(x)+ + Xnd(^j(x)

Le membre de gauche étant non nul, il existe un entier k compris entre 0

sk
et n tel que d — (x) soit non nul ce qui achève la démonstration du

théorème.

Corollaire. Toute courbe holomorphe compacte connexe de genre g se

plonge dans P9+1. En particulier, toute courbe holomorphe compacte connexe
de genre 0 est isomorphe à P1 et toute courbe elliptique se plonge dans P2.

Il suffit d'appliquer le théorème 1 au fibré en droites holomorphe
associé à un diviseur d'ordre 2g + 1 et de remarquer que l'on a alors

dimcH° (X, n) g + 2

(§ 3, proposition 2).
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§ 5. Le corps des fonctions méromorphes

Lemme 1. Soient xu xn des points distincts de X et soit r un entier

compris entre 0 et n. Il existe une fonction méromorphe f sur X vérifiant

les conditions suivantes :

(1) Les points xu xn appartiennent au domaine de régularité de f.
(2) Les nombres complexes f (xf), ...,/(xr) sont deux à deux distincts

et non nuls.

(S) L'ordre de f aux points xr+1, xn est égal à 1.

Soit x0 un point de I\{ xl9xn}. Pour tout entier j compris entre
1 et r, on définit un diviseur Uj sur X en posant

Uj (xÄ) 1 pour 1 < k < n et k # j
' uj (xo) 2g + l- n

Uj(x) 0 pour xeX\{x0, ...,Xj, ...,xn}

Désignons par n un fibré en droites holomorphes sur X et par Sj une section

méromorphe de n dont le diviseur est Uj. Puisque la classe de Chern de n

est égale à 2g, il existe une section holomorphe tj de n qui ne s'annule en

aucun des points x1,...9xn (§4, proposition 1, corollaire 1). La fonction
méromorphe définie par

est régulière en chacun des points xl9xn. Elle est non nulle au point Xj
y\

et possède un zéro simple en chacun des points xu xj9xn. Il suffit
alors de prendre pour / une combinaison linéaire convenable des fonctions

/i,
Nous allons étudier le corps Jf (X) des fonctions méromorphes sur X.

Toute fonction méromorphe non constante / sur X permet d'identifier le

corps X (P1) des fonctions méromorphes sur P1 au sous-corps C (/) de

Jf (X) engendré par/ (chap. I, § 5, lemme 2).

Lemme 2. Soit f une fonction méromorphe non constante de degré r
sur X. Pour toute fonction méromorphe g sur X il existe un polynôme p
de degré r dans C (/) [T] tel que p (g) soit identiquement nulle. De plus,
les conditions suivantes sont équivalentes :

(1) Le polynôme p est irréductible.
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(2) Le discriminant de p est non nul.

(3) Il existe une valeur régulière y de f telle que g sépare les points

den {y).

On désigne par cr1? or les fonctions symétriques élémentaires à r
indéterminées. Les fonctions f ai (g), f ar (g) sont méromorphes sur
P1 (chap. I, § 4, proposition 2). Il suffit alors de poser

p Tr +fei (g) Tr~x + +f9r(g).
Pour démontrer la seconde assertion, il suffit de montrer que (3)

implique (1). Supposons que l'on ait

P P1P2

avec Pi et p2 dans C (/) [T]. L'une au moins des fonctions méromorphes

Pi (g) ou p2 (g) est identiquement nulle. Désignons par y une valeur
régulière de/telle que g sépare les points de/-1 (y). On peut supposer que
les coefficients de px et p2 sont holomorphes au voisinage de y. Si pv (g)
est identiquement nulle, le polynôme pt (y, T) a r racines distinctes, il est

donc de degré r ce qui démontre l'assertion.

Lemme 3. Soient f et g deux fonctions méromorphes sur X. On suppose

que f est non constante de degré r et qu 'il existe un polynôme irréductible

p de degré r dans C (/) [T] tel que p (g) soit identiquement nulle. Pour
toute fonction méromorphe h sur X, il existe un polynôme q de degré au

plus r — 1 dans C (/) [T] tel que h soit égal à q (g).
En particulier, le corps CX (X) est engendré par f et g.
Pour toute valeur régulière y de / telle que f~1 (7) ne contienne ni

pôles de g ni pôles de h, on pose

V-. ^ (X)
a (y, T) — p (y,T)£̂'xef-Hy) T — g (x)

Le polynôme a appartient à C (/) [T] (chap. I, § 4, proposition 2). Si g

sépare les points de/"1 (y), on a

a (y, g (x))
h ~~n—p \y, g (X>)

pour tout point x de /_1 0'): en désignant par p' le polynôme dérivé

(lemme 2). Le principe du prolongement analytique montre que l'on a

a (g)
h —

P'(g)

dp

8T
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Comme pest irréductible, il existe des polynômes a1 et a2 de C (/) [T] tels

(appendice III). On en déduit que l'on a

h fli (g)

et il suffit d'éliminer les termes de degré supérieur à r au moyen de la

relation

Théorème 1. Il existe une courbe algébrique projective Y dans P2 et

une application holomorphe % de X dans P2 vérifiant les conditions sui-

(1) Le couple (X, n) est une normalisation de Y.

(2) L'application n* induit un isomorphisme de k (Y) sur (X).

Soit/ une fonction méromorphe non constante de degré r sur X et soit

y une valeur régulière de /. Il existe une fonction méromorphe g sur X
séparant les points de /-1 (y) (lemme 1) et un polynôme irréductible p
de degré m dans C [T1,T2] tel que p (/, g) soit nulle (lemme 2). On définit

un polynôme homogène irréductible de degré m dans C [T0,T1,T2] en

posant

On désigne par Y le lieu des zéros de p dans P2 et par n l'application
holomorphe (f:g) de X dans P2 (§ 4, remarque 1).

Pour démontrer la première assertion, il suffit de vérifier que n induit un
isomorphisme de X\7r~1(^4) sur Y\A, en désignant par A l'ensemble
des points singuliers de Y (chap. I, § 5, lemme 10). Or cette application est

propre et holomorphe, elle est de degré 1 par construction. Ceci démontre
l'assertion.

La seconde assertion est une conséquence immédiate du lemme 3.

Corollaire 1. Pour que deux courbes holomorphes compactes connexes
X et Y soient isomorphes, ilfaut et il suffit que les corps XY (.X) et Y)
soient isomorphes.

C'est une conséquence immédiate de l'unicité de la normalisation d'une
courbe algébrique projective.

que
a axp' + a2p

p(g) 0

vantes :
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Corollaire 2. Toute courbe holomorphe compacte connexe X plongée
dans un espace projectif Pn est le lieu des zéros d'une famille de polynômes
homogènes.

Désignons par a l'idéal des polynômes de C [r0, TJ qui s'annulent

sur xj/'1 (X), où \// est la projection canonique de Crt+1\0 dans P", et par Y
le lieu des zéros de a dans PM. Puisque \(X) est connexe, l'idéal a est

premier. Le corps k (Y) des fonctions rationnelles sur Y est un sous-corps
de XC (X). Le théorème 1 montre alors que Y est une courbe algébrique
de P". Désignons par Y0 l'ensemble des points réguliers de Y et posons

X0 Y0 n X

L'ensemble X0 est à la fois ouvert et fermé dans Y0. Comme ce dernier
ensemble est connexe (chap. I, § 5, théorème 4), on en déduit que X est

égal à Y, d'où l'assertion.

Théorème 2. Toute courbe holomorphe compacte connexe X se plonge
dans P3.

Soit / une fonction méromorphe non constante de degré r sur X. On

désigne par y une valeur régulière def par xu..., xr les points de / _1 (y),

par xr+1, xn les points critiques de/. Il existe une fonction méromorphe

g sur X séparant les points xl9 xr et possédant un zéro simple aux

points xr+l9xn (lemme 1). Désignons par n l'application (f:g) de X dans
P2 et par Y son image. L'application n est partout de rang 1 et le couple

(X, n) est une normalisation de Y (théorème 1). Soit A l'ensemble des

points singuliers de Y et soit h une fonction méromorphe sur X séparant
les points de 7i_1 (A) (lemme 1). On montre aisément que l'application
(f:g:h) est un plongement de X dans P3.

§ 6. Formes automorphes

Pour tout automorphisme y du disque unité D, on définit une fonction
holomorphe sur D en posant

dy
Jy =Tz'

Pour tout couple (y, y') d'automorphismes et tout point z de D, on a

jy'y(Z)jy'(jz)jy0) •
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Nous supposerons désormais que X est le quotient de D par un groupe

proprement discontinu F (chap. I, § 5, numéro 3) et nous désignerons par
7i la projection canonique de D dans X.

Soit m un entier relatif. On appelle forme automorphe de poids m relative

à F toute fonction méromorphe/ sur D telle que

f-v h mf

pour tout automorphisme y de F. On désigne par Jf (m, F) (resp. (9 {m, F))
l'ensemble des formes automorphes (resp. des formes automorphes
holomorphes) de poids m relatives à F.

Fixons une fois pour toutes une forme différentielle méromorphe non
nulle co sur X. La forme différentielle tz* (co) s'écrit

%* (co) fdz
où / est une fonction méromorphe sur D. Pour tout automorphisme y de

F et tout point z de D, on a

f(z)dz 7i* (co) (z) 7z* (co) (yz) f (yz)jy(z) dz

ce qui montre que / est une forme automorphe de poids 1 relative à T.
Pour toute forme automorphe u de poids m relative à F, la fonction

méromorphe uf~m est F-invariante. On en déduit que l'application Wm

de (X) dans Sf (m, F) définie par

0

est un isomorphisme pour tout entier m.
Nous allons chercher à quelles conditions une fonction méromorphe

v sur X fournit une forme automorphe holomorphe sur D.
Pour une telle fonction, on a

0, {¥m (v)) 0Z (ti* (v)) + m 0Z (k* (œ)) > 0

pour tout point z de D. Cette condition équivaut à

1

0* W > ~ m 0X (co) - m 1 —

Px;
x)

pour tout point x de X, où px désigne le cardinal du groupe d'isotropie de
F en tout point de 7i_1 (x). On définit un diviseur am sur X en posant

b Pour tout nombre réel c, on désigne par [c] la partie entière de c, i.e. l'entier
relatif défini par

[c] sup {n e Z I n < c}
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am(x) [mOx(co) + ^m^l - ^ X

On voit donc que Wm induit un isomorphisme de L («am) sur 0 (m, f) (§ 3,

remarque 1).

Pour toute fonction holomorphe u sur D et pour tout entier relatif m,
la série

pr(u,m) £ («7)7
yer

s'appelle la série de Poincaré associée à u.

Lemme 1. Si u est bornée et m au moins égal à 2, la série de Poincaré

pr 0u, m) converge uniformément sur tout compact vers une fonction de

0 (m, r).
Pour montrer que la série pr (u, m) converge, il suffit de montrer que la

série

E/v
yer

converge dans L\oc (D, C) (chap. I, § 1, théorème 1, corollaire 4). Désignons

par z un point de D et par K un voisinage compact de z dans D tel que

yK K si y ePz

yK n K 0 si y $TZ

(chap. I, § 5, lemme 3). La formule du changement de variable dans le&

intégrales doubles montre que l'on a

Il J y
il il.JK JkIÂI 2dß(yK),

et par conséquent

I 17vI|n.* E V(yK) Card (A)( ^ p(yK))
yer yer yero

en désignant par T0 un système de représentants de Pjrz. Ceci démontre
l'assertion puisque les ensembles (yK)yero sont deux à deux disjoints et

contenus dans D.
Montrons maintenant que pr (u, m) est une fonction automorphe de.

poids m. Pour tout automorphisme y de JT et tout point z de D, on a

pr(u, m) (yz) £ u (y'yz)j, (yz) j;m(z) £ u(y'yz)j,y(z)
y'eC y'er

jym(z) Pr(u,m)(z)ce qui démontre l'assertion.
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Lemme 2. Pour m suffisamment grand, / 'espace vectoriel (9 (m, T)
öfe dimension au moins 2.

On désigne par z0 un point de D qui n'est pas un point fixe de r (i.e. un

point régulier de l'application n) et par K un voisinage compact de z0 tel

que

yK n K 0

pour tout automorphisme de r différent de l'identité.
Le lemme 1 montre qu'il existe un nombre fini d'automorphismes

yL, yp de r, différents de l'identité tels que

pour tout automorphisme y de f\{l, yl9..., yp}. On pose

7v (zo)

pour tout entier v compris entre 1 et p. Soit u une fonction holomorphe
bornée sur D. Pour tout entier m au moins égal à 2, on peut écrire

Pr(u, m) — u —Yj ("7v)J X ("7)j7
1 ysr'

où l'on a posé

r r\{l,yu...,yp}.
Sur le compact K on a donc

Il pr (u, m) - u - Y (»7 II L«,K
l^v^p v

< 2 m + 2 I M ||tcojD Y II ./y II •

yer

Le membre de droite converge vers 0 lorsque m tend vers l'infini. Supposons
que upossède un zéro d'ordre au moins 2 en chaque point zu Pour
tout nombre réel e strictement positif et pour tout entier m suffisamment
grand, on a

\pr(u,m)(z0) - u(z0) | < e et
dpr(u,m)

J- Oo) - T- (Z0)
o z d z

< e

r • r ÔU
(inégalités de Cauchy). Comme u (z0) et —— (z0) sont arbitraires, ceci

d z
démontre l'assertion.
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Lemme 3. Désignons par g le genre de X. Le nombre réel

2g — 2 + Y 1

xeX \ Pxj
est strictement positif.

Désignons par m un entier suffisamment grand pour vérifier les conditions

suivantes:

(1) L'espace vectoriel (9 (m, f) est de dimension au moins 2.

(2) Pour tout point x de X, l'entier px divise m.

Désignons par nm un fibré en droites holomorphe associé au diviseur am.

Pour toute section holomorphe non nulle v de nm, on a

chOO 0 (aj0(v)> 0.

Si l'ordre de am est nul, le fibré nm est trivial ce qui contredit (1). Il est donc
strictement positif et la condition (2) montre que l'on a

0 (aj m ^O(co) + £ ^1 - LJj

ce qui démontre l'assertion (§ 3, théorème 1, corollaire).

Théorème 1. Pour tout entier m au moins égal à 2, on a la relation

dimc (9 (m, V) — (2m — 1) (g — 1) + Y m 1 —
xeX __ \ J

où g désigne le genre de X.

D'après la proposition 2 du paragraphe 3, il suffit de montrer que l'ordre
de am est strictement supérieur à 2g —2.

Tout d'abord, pour tout couple (m, /) d'entiers strictement positifs,
on a

m 1 — > (m - 1) 1 - -)

En effet, on peut écrire

m gl + r

où q et r sont des entiers naturels tels que r soit compris entre 0 et / - 1.

Si r est nul, on a

m 7 m [ 1 — y
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I

Sinon qest au plus égal à —7— et I on a
l

^1 - yjj m - q -
ce qui établit l'assertion.

On en déduit que

1 > m — 1 —
m — 1

(m — 1) 1 — -

0(am) m(2g— 2) 4- £
xeX

m 1 —

> m (2g— 2) + (m — 1) £ 1

xeX \ P.

ou encore

0(flm)>(rn-l)^-2+ £ (1-^))
Si m est au moins égal à 2, le résultat est donc une conséquence du lemme 3

§ 7. Variétés de Picard et de Jacobi

Désignons par E un espace vectoriel complexe de dimension finie n et

par r un réseau de E (i.e. un sous-groupe abélien de rang 2n). L'application

canonique n de E dans E/T est un revêtement. On munit E/T de

l'unique structure holomorphe faisant de n un isomorphisme local. On

appelle tore complexe toute variété holomorphe isomorphe à une variété
de la forme E/T.

Soit T (resp. T') un tore complexe de la forme E/T (resp. E'/T') et soit u

un isomorphisme de T sur T'. On désigne par n (resp. n') l'application
canonique de E dans T (resp. de E' dans T'). Quitte à modifier u par un
automorphisme de T\ on peut supposer que l'on a

u (n (0)) n (0)

Il existe alors un isomorphisme v de E sur E' et un seul tel que

v (0) 0 et n' - v u • n

Pour tout élément y de T, l'image v (y) est un élément y' de J" et l'on vérifie
aisément que l'on a

v(z+y) v(z) + y'

L'Enseignement mathém., t. XXI, fasc. 2-3-4. 10
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pour tout point z de E. En particulier, la dérivée de v est r-invariante. Elle
est donc constante en vertu du principe du maximum.

Il résulte de ce qui précède que T et T'sont isomorphes si et seulement si

il existe un isomorphisme C-linéaire v de E sur E' tel que

(chap. I, § 5, numéro 3).

Lemme 1. Désignons par Q une matrice de M (n, 2n ; C) et par r le

sous-groupe de Cn engendré par les vecteurs colonnes de Q. Les conditions
suivantes sont équivalentes :

(1 Le sous-groupe T est un réseau de Gn.

(3) Le vecteur nul est le seid vecteur (zl5 z„) de Cn tel que le vecteur

La démonstration est un simple exercice d'algèbre linéaire.

Lemme 2. Désignons par Q (resp. Q') une matrice de M (n, 2n; C)

et par r (resp. E') le sous-groupe de Cn engendré par les vecteurs colonnes

de Q (resp. Q'). On suppose que r et r' sont des réseaux. Pour que les

tores complexes Cn/T et Cn\E' soient isomorphes, il faut et il suffit qu 'il
existe une matrice M de G (n; C) et une matrice A de G (:2n; Z) telles que

C'est une conséquence immédiate de ce qui précède.

Rappelons que l'on a une suite exacte

0 * H° (X, a1'0) H1 (X, C) H1 (X, Cx) > 0

(§ 1, proposition 2). On sait d'autre part que H1 (X, R) s'identifie à un sous-

espace vectoriel réel de H1 (X, C).

Lemme 3. Par restriction, l'application ß induit un isomorphisme
Pi-linéaire de H1 (X, R) sur H1 (X, Cx).

Toute forme différentielle (réelle) de ^°° (X, Q1) s'écrit

u v + v

v (r) r'

(2) La matrice est inversible.

(zu zn)Q
soit réel.

Q' M Q A
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avec v dans ^°° (X, Q1,0). En effet, pour toute carte </> de domaine U dans

X, on a

M |[7 U1d(f)l -f- U2d(p2 9

en désignant par </>! et (j)2 les parties réelle et imaginaire de 4>. Il, suffit alors

de poser

v \ u ^ (u1 — iu2) dcj) et v | v - («i + w2) d(ß

Supposons de plus w fermée. L'image par ß de la classe de u n'est autre que
la classe de v. Si cette classe est nulle, on a

u v + v d'f + d f
pour une certaine fonction /de ^°° (X, C). Il résulte de cette équation que
la fonctionf — J est harmonique, donc constante. On en déduit que

u d'f + d"f df
ce qui démontre l'assertion.

Il résulte en particulier du lemme 3 que l'image par ß du sous-groupe
H1 (X, Z) est un réseau de H1 (X, Cx) (chap. 0, § 5, théorème 1, corollaire 2).
Notons que l'image par ß de la classe d'un élément h de ^°° (X, C*) est la
classe de la différentielle

1 d"h

2in h

Proposition 1. La suite de groupes abéliens et d'homomorphismes

o H1 (X, Z) J-+ H1 {X, Cx)Pic(X, C*) z > 0

est exacte 1).

Pour toute forme différentielle u de "if® (X, jQ0>1), il existe un
recouvrement ouvert de X et, pour chaque indice une fonction de
Ve0 (C/„ C) telle que

« lu, d"f
Les fonctions définies sur (7, n UKparfKi f k fi=oxp (2

sont holomorphes et la famille (gKl) est un cocycle de rang 1 subordonnée à
U,) dont la classe dans Pic (X,C*)est précisément l'image par 9 de la

x) La définition de 0 a été donnée au paragraphe 2.
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classe de u. Désignons par n un fibré en droites holomorphe sur X
correspondant à ce cocycle. Les fonctions exp (lin/) se recollent en une section

partout non nulle/de 00 (X, n) ce qui montre déjà que la classe de Chern de

n est nulle.
Si u est de la forme

1 à"h

lin h

pour une certaine fonction h de ^°° (X, C*), la section h~xf de n est

holomorphe et partout non nulle ce qui montre que n est trivial.
Réciproquement, si n est trivial, il existe pour tout indice i une fonction

holomorphe inversible gt sur Ul telle que

9K 9ki 91 •

Les fonctions exp (lin/) g"1 se recollent en une fonction h de ^°° (X, C*)
et l'on a

1 d"h

lin h
d" f% u\Ut.

Ui

Ceci montre que la classe de u est dans l'image de ß.

Il reste à voir que tout fibré en droites holomorphe n sur X dont la classe

de Chern est nulle provient d'un élément de H1 (X, Cz). Désignons par
(Ut)iel un recouvrement ouvert de X par des ensembles simplement connexes

et par (gKl) un cocycle holomorphe de rang 1 subordonné à (Ut),
représentant 7i. Le fibré n étant différentiablement trivial (chap. 0, § 5, théorème

4), il existe pour tout indice i une fonction gt de ^ (£/„ C*) telle

que
9K 9 ki9 i •

Puisque XJx est simplement connexe, il existe une fonction/ de ^°° (Ul9 C)
telle que

g, exp (2

Il résulte de ces définitions que l'on a

1 à"g,1 d"gK
ai,— — a t.lin gt lin gK

Autrement dit, les formes différentielles d"ft se recollent en une forme u

de ^°° (X, ß0'1) ayant toutes les propriétés requises.
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Le noyau de ch s'identifie au quotient de H1 (X, C^) par le réseau Im/?.

Ce noyau est donc un tore complexe de dimension g que l'on appelle la

variété de Picard de X et que l'on désigne par Pic (X).

Désignons par G le groupe fondamental de X en un point base x0 et par

cl9..., c2g des lacets de X en x0 dont les classes forment une base du

Z-module libre G (chap. 0, § 5, théorème 3).

Pour tout entierj compris entre 1 et 2g, il existe par dualité un élément uj
de H1 (X, R) tel que

L ô»

pour tout entier k compris entre 1 et 2g (chap. 0, § 5, théorème 2, corollaire

2).

Désignons encore par vu vg une base de l'espace vectoriel H° (X, ß1'0)

des formes différentielles holomorphes. On pose

(tijk ~ Vj ^ ^ ((tijk) 1 ^g,l ^2g •

Remarquons que l'on a par définition

Vj Z œjktik-

Autrement dit, la matrice (Q est la matrice de l'application oc exprimée
dans les bases vu vg et ut, u2g.

Lemme 4. Les vecteurs colonnes de Q engendrent un réseau de C9.

Tout vecteur (zl9..., zg) de C9 tel que le vecteur

(zl9 ...,zg)Q

soit réel est nul. En effet, cette condition signifie que la forme différentielle
holomorphe

ztv± + + zgvg

est réeile. L'assertion est donc une conséquence des lemmes 3 et 1.

Le tore complexe de dimension g défini par la matrice Q s'appelle la
variété de Jacobi de X et se désigne par Jac {X). On notera que cette variété

est définie à isomorphisme près par le choix d'une base de G et d'une base
de H° (X, Quo).

Pour tout couple (y, k) d'entiers compris entre 1 et 2g, on pose

A/fc §XUJ ^ ^ A — (^jk)l^j,k^2g •
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La matrice A n'est autre que la matrice d'intersection de X (chap. 0, § 5,

remarque 3). Elle appartient donc à G (2g; Z).

Théorème 1 (Riemann). (1) La matrice QAfQ est nulle (égalités de

Riemann

(2) La matrice hermitienne iQA(Q est positive non dégénérée inégalités
de Riemann).

Conservons les notations précédentes. Pour tout couple d'entiers (J, k)
compris entre 1 et g, la forme différentielle Vj a vk est identiquement nulle
(puisque de bidegré (2, 0)). On a donc

0 $xvJ A vk £ œjp<°kq$xUpA£
l^p,q^2g l^P,q^2g

ce qui démontre la première assertion.

Pour toute forme différentielle holomorphe v sur X, la forme
différentielle iv a v est positive (ceci se vérifie aisément dans une carte).
Désignons par zu zg les coordonnées de v dans la base v1, vg. Les formes
différentielles ul9 u2g étant réelles, on a

0 < i\xvA vY, zjïk1 hvj A %
1 ^j,k^g

X S ÎZjfàjp^pqfàkqZk
l^j,k^g i^p,q^2g

L'égalité ne pouvant apparaître que si v est nulle, ceci démontre la seconde

assertion.

Désignons par Q' la matrice de ß dans la base uu u2g et dans une base

quelconque de H1 (X, Cx). Cette matrice est de rang g et l'on a

Q' 0.

De plus, les vecteurs colonnes de Q' engendrent un réseau de H1 (X, Cz)
et le quotient de H1 (X, Cx) par ce réseau n'est autre que Pic (X) (en effet,
les vecteurs colonnes de Q' sont les images par ß des éléments ul9..., u2g).

Lemme 5. Les variétés Pic (X) et Jac (X) sont isomorphes.

Posons

P i QAtQ et Q QnQ

La matrice P est inversible (inégalités de Riemann). Montrons qu'il en est

de même de Q. Les égalités de Riemann montrent que l'on a
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ü' '(Yj (fl"ß (0 Q"Q)

d'où l'assertion puisque Q' est de rang g et (*Q *Q) de rang 2g. On a alors

et par conséquent

VûV1
_

/0 Q-^/Û'X (Q-'Q')
\q) Vô"1 0 Vô"1«'/

Posons

M iQP~l

Il résulte de ce qui précède que l'on a

-/ß"1^ (QT1 ß'\
Mßd MÖ^'O M(° "/P)(ß-i 0J °

ce qui démontre l'assertion.

Notons qu'un isomorphisme v de Jac (.X) sur Pic (X) est induit par
l'isomorphisme de C9 sur lui-même associé à la matrice M.

Pour tout point x de X, on désigne par Çx le fibré principal associé au
diviseur 1 • x. On définit une application S de X dans Pic (X) en posant

s(x)

Par définition même, la classe dans Jac (X) du vecteur

(Je ^15 * • • Je Vg)

ne dépend pas du chemin c joignant x0 à x. Cette classe se désigne par
Y (x). On définit ainsi une application Y de X dans Jac (X).

Lemme 6. Le diagramme suivant

X
Y / \ 77

Jac (X) _v^ Pic (X)
est commutatif.

Soit c un chemin joignant x0 à un point x de X. Le fibré principal
S (x) est associé au diviseur 1 • x - 1 • x0. Il existe donc une forme
différentielle w dans ^°° (X, ß0'1) vérifiant les conditions suivantes:



— 292 —

(1) L'image par 6 de la classe de w est le fibré principal S (x).

(2) Pour toute forme différentielle holomorphe v sur X, on a

A W JCV

(§ 2, lemme 1). Il existe d'autre part une fonction/de ^°° (X, C) telle que la
forme w + d"f soit fermée (§ 1, proposition 1). On a alors

w+d"f= Yj wj ui

où wu w2g sont des nombres complexes. Pour tout entier j compris entre
1 et g, on a

je«,- jxVj A W\xVj A (w)X A Uk

l^k^lg
Y Wk œjl AIk

l^k,l^2g

Ceci montre que Y (x) est la classe dans Jac (X) du vecteur QA (w + d"f).
Avec les notations du lemme 5, on a donc

- lQTx Q'\
QA (w+d f) QAÇQ fQ) *> + d /)

for1^
(0 -ÎP) Q/j (w+d f) M~ Qr (w + d /)

et l'on conclut en remarquant que la classe de Q' (w + d"f) dans Pic (X)
n'est autre que S (x;).

Lemme 7. Soit n un fibré en droites holomorphe sur X associé à un

diviseur de la forme 1 * x. Si g est au moins égal à 1, la dimension de

H° (X, n) est égale à 1.

Supposons qu'il existe deux sections holomorphes s0 et st de n
linéairement indépendantes et considérons l'application holomorphe (s0 :

de X dans P1. Pour tout couple (A0, 2X) de nombres complexes non tous
deux nuls, la section A0^o ^ ^isi possède un zéro et un seul. En effet, son

ordre est égal à la classe de Chern de n. On en déduit aisément que l'application

(s0 : S}) est un isomorphisme (chap. I, § 4, proposition 1, corollaire),
ce qui démontre l'assertion.

Lemme 8. Si g est au moins égal à 1, les formes différentielles
holomorphes sur X n 'ont pas de zéro commun.
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Pour tout point x de X il existe un fibré en droites holomorphe % sur X
et une section holomorphe s de it dont le diviseur associé est 1 • x. Il résulte

du théorème de Riemann-Roch et du lemme 7 que l'on a

dimcH° (X, 7i* ® Q1'0) g - 1.

D'autre part, l'application ® s induit un isomorphisme de H° (X, 7i* ® Q1*0)

sur l'espace L(l-x) des formes différentielles holomorphes qui s'annulent

au point x. On en déduit que L(l-x) est distinct de H° (X, Q1'0) ce qui
démontre le lemme.

Théorème 2. Si g est au moins égal à 1, l'application canonique S de

X dans Pic (X) est un plongement.

Conservons les notations précédentes. Soit U un ensemble ouvert
simplement connexe dans X. Il existe des fonctions holomorphes hu hg

sur U telles que
Vî\v ~ dhi, •••9Vg\u — dhg.

L'application holomorphe Qiu hg) de U dans C9 est un relèvement de

Y\v. Ceci montre déjà que Y (et par conséquent S) est holomorphe et de

rang 1 (lemme 8).

Montrons que S est injective. Raisonnons par l'absurde en supposant
qu'il existe deux points distincts x et y de X tels que Çx et ^ coïncident.
Désignons par n un fibré en droites holomorphe correspondant au fibré
principal Çx. La dimension de H° (X, ri) est au moins égale à 2 ce qui est
absurde (lemme 7).

Corollaire. Toute courbe holomorphe compacte connexe de genre 1 est

une courbe elliptique.
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