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CHAPITRE IV

COURBES HOLOMORPHES COMPACTES

Dans tout ce chapitre, on désigne par X une courbe holomorphe compacte
et connexe.

§ 1. THEOREME DE DECOMPOSITION DE WEYL

PROPOSITION 1. Pour toute forme différentielle u de €~ (X, Q"°)
(resp. € (X, Q%Y)), il existe une fonction v de € (X,C) telle que
u+dov (resp. u—d'"v) soit fermée.

Pour qu’une forme différentielle de €~ (X, Q') appartienne a 'image
de lopérateur d’ - d"', il faut et il suffit que son intégrale soit nulle (chap. III,
§ 3, proposition 4). La formule de Stokes montre qu’il en est ainsi de la
forme différentielle du. Il existe par conséquent une fonction v de €% (X, C)
telle que

du = (d"d")(v) = —(d"d")(v)

ce qui démontre I’assertion.

COROLLAIRE. Les opérateurs différentiels
d: €° (X, Q0 = 6~ (X, Q% = ¢~ (X, Q")
d: (X, Q") - ¢* (X, Q") et d'-d": €° (X, C) —» €7 (X, ")
ont méme image.

En particulier, l’intégration des formes différentielles de degré 2 induit
des isomorphismes canoniques

HH(X) = H' (X, Q"% = H*(X,C) = C.
Les inclusions
Im(d’*d") « Im(d") = Im(d)
. sont évidentes. Réciproquement, toute forme différentielle u de €® (X, Q¢)
s’écrit
U =u; + U,
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avec u, de bidegré (1, 0) et u, de bidegré (0, 1). La proposition 1 montre
qu’il existe des fonctions v, et v, de ¥® (X, C) telles que
dw,+dv) =0 et d(u,—dv,) =0.
On en déduit que
du = du, + du, = (d'*d") (vy +v,)
ce qui démontre le corollaire.

Remarque 1.

On vient de donner une autre démonstration du fait que H? (X, C) est
canoniquement isomorphe 4 C pour une surface différentielle compacte
connexe sous-jacente a une courbe holomorphe (chap. 0, § 4, théoréme 3).

THEOREME 1 (Weyl). Toute forme différentielle fermée u de € (X, Q)
s ’écrit d’une maniere et d’une seule

U =u; +u, +dv

ot u, et u, sont des formes différentielles fermées de €* (X, Q''°) et
E* (X, Q%) respectivement et v une fonction de €% (X, C).

Montrons tout d’abord P’existence de la décomposition. On peut écrire
U = u; + u,

avec u, de bidegré (1, 0) et u, de bidegré (0, 1). Il existe une fonction v de
€ (X, C) telle que
d(u;—dv) =0

(proposition 1). 11 suffit alors de poser
u; =u; —dv et u, =u, —dv.
Pour montrer I'unicité, on suppose que I’on a
Uy +u, +dv =0.

En appliquant I’opérateur différentiel d’ aux deux membres de cette équa-

tion, on voit que v est harmonique, donc constante, ce qui démontre la
proposition.

Toute forme différentielle holomorphe de degré 1 étant fermée, 1’inclusion
canonique de 0 (X, Q™°) dans ¢~ (X, Q¢) induit par passage au quotient
une application linéaire « de H® (X, 2':°) dans H! (X, C).
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Désignons par Z (X, Q¢) 'ensemble des formes différentielles fermées

de € (X, Q¢). On définit une application linéaire f de Z (X, Q0) dans
%~ (X, Q%) en associant a toute forme fermée sa composante de bidegré

(0, 1). Par passage aux quotients, cette application définit une application
linéaire § de H' (X, C) dans H* (X, Cy).

PROPOSITION 2. La suite d’espaces vectoriels et d’applications linéaires

0-H'X, Q') H'(X,O)—L.-H'(X,Cy) -0
est exacte.
La surjectivité de B résulte de la proposition 1, et le seul point non
absolument trivial est de démontrer que tout élément u de Z (X, Q¢) dont

P’'image par f est de la forme d’’v est équivalent a une forme différentielle
holomorphe. Or, la relation
u =u; +dv

avec u, homogene de bidegré (1, 0) peut s’écrire
u =u; —dv+dv.
La forme différentielle u, — d’ v étant fermée et homogeéne de bidegré

(1,0), elle est holomorphe ce qui démontre I’assertion.

On appelle genre de X la dimension de I’espace vectoriel complexe
H° (X, Q"°). Par dualité (chap. III, § 2, proposition 2, corollaire), c’est
aussi la dimension de I’espace H' (X, Cy). La proposition 2 montre que
c’est un invariant différentiel (et méme topologique): c’est la moitié de la
dimension de P’espace H! (X, C) (chap. 0, § 5, remarque 2).

Exemple 1.

Le genre de P! est nul. En effet, désignons par « une forme différentielle
holomorphe sur P. Pour chacune des cartes usuelles de P, on peut écrire

Uy, = vodz et uy = vidz

ou v, et v, sont des fonctions holomorphes sur C. Par changement de

cartes, on voit que ’on a
1 1
U (2) = — v |-
z z

en tout point z de C*. Ceci n’est possible que si v, et v; sont nulles.
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Exemple 2.

Le genre d’une courbe elliptique X (chap. I, § 5, numéro 3) est égal a 1.
En effet, toute forme différentielle holomorphe sur X se reléve en une forme
différentielle holomorphe u dz sur C. La fonction u étant invariante, elle
est constante, ce qui démontre I’assertion.

PROPOSITION 3. La classe de Chern d’un fibré en droites holomorphe
sur X est un entier relatif égal a l’ordre de toute section méromorphe de .
En particulier, si la classe de Chern est strictement négative, l’espace vectoriel
H° (X, n) est nul. Si la classe de Chern est nulle, le fibré m est différentiable-
ment trivial. S’il est holomorphiquement trivial, I’espace vectoriel H° (X, m)
est de dimension 1, sinon il est nul.

Ces résultats sont énoncés ici pour mémoire (chap. I, §4, lemme 1).

§ 2. PROBLEMES DE COUSIN

Soit 7 un fibré vectoriel holomorphe sur X. Nous avons vu (chap. I,
§ 3, proposition 2), qu’il existe une suite exacte

X om0 H (X, m)

permettant de trouver sous quelles conditions il existe une section méro-
morphe de © ayant une partie principale donnée.

Soit u une partie principale de 7 et soit v une section holomorphe de
n* ® QV°, On vérifie aisément que la classe de (w,, v,) dans 2 (2''°), ne
dépend pas de la section méromorphe w de m représentant u au voisinage
de x. On définit ainsi une partie principale de Q''° que I’on désigne par
(u, v) et 'on pose

Rés(u,v) = Y Rés((u,v),x).

xeX

On a alors la solution suivante au premier probléme de Cousin.

THEOREME 1. Soit nn un fibré vectoriel holomorphe sur X. Pour qu’une
partie principale u de m provienne d’une section méromorphe, il faut et il
suffit que la forme linéaire Rés (u, ) soit identiquement nulle sur
0 (X, n*®Q0"°).

Rappelons tout d’abord la construction de § (u) (chap. 1, § 3, propo-
sition 2). Désignons par x4, ..., x, les points de X pour lesquels le germe u,
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n’est pas nul et par (U;)y_;—, un recouvrement ouvert de X vérifiant les
conditions suivantes:

(1) Pour tout entier j compris entre 1 et n, ’'ensemble U; est le domaine
d’une carte ¢ ; centrée au point x;.

(2) Les ensembles Uy, ..., U, sont deux a deux disjoints.

(3) L’ensemble U, est égal a X\{xy, ..., x,}.

Quitte a diminuer U4, ..., U,, on peut supposer qu’il existe une section

méromorphe u; de = sur U; représentant ul U} On désigne par u, la fonction

nulle sur U,. Pour tout entier j compris entre 0 et », il existe une section
s;de €% (U;, n) telle que

uk“'uj=sk“‘Sj

(chap. 0, § 2, lemme 1). En particulier, les d"'s; se recollent en une section ¢
de 4% (X, n®Q%!) dont la classe dans H' (X, n) est précisément & (u).
En vertu du théoréme de dualité, il suffit de montrer que ’on a

1
. (l,’l)) = RéS (u,v)
2im |y
pour toute section holomorphe v de n* ® Q°,
Les sections s; — u; se recollent en une section 2 de % (Ugy, n) et 'on a

d'h = t|y,.
On en déduit que
1 A | , .o —1
— | (o) =lim— @hv)= Y lim_—| (k)
2im X e=0 <IT | x\ U Vj,e 1=j=ne-0 T an,e
1=j<n

ou ¥V , désigne le disque de centre x; et de rayon & dans ¢ ;. D’autre part,
on a

—1
lim — (s;,v) =0
g—0 2iT oVj,e ‘

car §; est continue au point x; et

1
lim — (u;,v) = Rés((u,v),x;)

e—0 2in 6Vj,a

ce qui démontre I’assertion.
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Exemple 1.

Le genre de P! étant nul, toute partie principale u de Cp1 provient d’une
fonction méromorphe, résultat qu’il est d’ailleurs facile de démontrer
directement (chap. I, § 5, lemme 2).

Exemple 2.

Supposons que X soit une courbe elliptique. Pour qu’une partie princi-
pale u de Cx provienne d’une fonction méromorphe, il faut et il suffit que
I’on ait

Rés(u,dz) =0
(§ 1, exemple 2) (que le lecteur se souvienne de la fonction elliptique p de
Weierstrass!).

Exemple 3.

Si X est une courbe holomorphe quelconque, la condition nécessaire et
suffisante pour qu’une partie principale u de Q"° provienne d’une forme
différentielle méromorphe est que I'on ait

Rés(u,1) = 0.

Parmi les formes différentielles méromorphes, on distingue les especes
suivantes:

(1) Les formes différentielles holomorphes ou formes différentielles
abéliennes de premicére espéce.

(2) Les formes différentielles méromorphes dont les seules singularités
sont des poles d’ordre au moins 2 a résidu nul ou formes différentielles
abéliennes de deuxieme espece.

(3) Les formes différentielles méromorphes ayant comme seules singu-

larités un nombre pair de pdles d’ordre 1, groupés deux par deux de résidus
opposes, ou formes différentielles abéliennes de troisieme espéce.

Avant d’aborder le deuxi€éme probléme de Cousin pour les courbes
holomorphes compactes, il nous faut introduire quelques notions.

Pour toute forme différentielle w de €= (X, Q%1), il existe un recouvre-
ment ouvert (U,)),; de X et, pour chaque indice 1, une fonction A, de
€ (U, C) telle que

d'h, = wly,.

C’est une conséquence immédiate du lemme de Grothendieck (chap. III,
§ 1, remarque 2). Sur U, n U,, la fonction définie par

hKl = hrc —hl
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est holomorphe et ’on vérifie aisément que la famille (g,,) avec

gx, = exp(2inh,,)

est un cocycle holomorphe de rang 1 subordonné a (U)),.; dont la classe
dans Pic (X, C*) ne dépend que de la classe de w dans H! (X, Cx). On
obtient ainsi un homomorphisme canonique

0: H' (X, Cy) - Pic(X, C¥) .

Soit # un diviseur d’ordre O sur X. On peut I’écrire sous la forme (chap. I,
§ 4, lemme 3)

u= ) Y=

1=j=n

OU X1, «oey Xpy V15 ---» Yy SONt des points de X (non nécessairement distincts).
On appelle chaine bordant u toute famille (¢;);_;_, ou c; est un chemin
joignant x; a y; dans X.

Le lemme suivant est a rapprocher d’un résultat démontré précédemment
(chap. O, § 5, proposition 1).

LEMME 1. Soit u un diviseur d’ordre 0 sur X et soit (¢;)y_—;—, une
chaine bordant u. 1l existe une forme différentielle w de €% (X, Q%)
vérifiant les conditions suivantes :

(1) L’image par 0 de la classe de w est le fibré principal associé a u.

(2) Pour toute forme différentielle holomorphe v sur X, on a

ijAW= Z jcjv'

l=j=n

On se ramene aisément au cas d’un seul chemin ¢ joignant un point z,,
a un point z, dans le domaine U, d’'une carte ¢ de X dont I'image est un
disque de C. Il n’y a pas ici de probleme de lissage (loc. cit.). -

On désigne par W et V deux disques de ¢ tels que W soit relativement
compact dans V et V relativement compact dans U, et tels que 'image de
¢ soit contenue dans W. Le diviseur u est représenté sur U, par la fonction
méromorphe

¢ (z) — ¢ (zy)
¢ (z) — ¢ (20)
et sur le complémentaire U, de ¥ par la fonction constante 1.

Désignons par o une fonction de €* (X, R) égale a4 1 sur X\V, a O sur
W et par & un logarithme de u, sur Uy\W. La forme différentielle définie par

ug(z) =
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J w =0 sur (X\Uy)u W
1 __

1 w=—d (ah) sur Uy\W

2im

appartient 3 €% (X, Q%1).
La propriété (1) résulte immédiatement des définitions. Pour démontrer
(2), on remarque que la restriction de v a U, est exacte. On a donc

1 ., 1
[v/\w:—fJ‘v/\d(och)szdf/\d(och)
Jx 2in |y 2in |y

ol f est une fonction holomorphe sur U,. Il résulte alors de la formule
de Stokes que 'on a

d
f » J £ =z =1z

ce qui démontre I’assertion.

THEOREME 2 (Abel). Pour qu’un diviseur u d’ordre 0 soit le diviseur
d’une fonction méromorphe, il faut et il suffit qu’il existe une chaine (¢;); —;_n
bordant u telle que

pour toute forme différentielle holomorphe v sur X.

Montrons que la condition est nécessaire. On peut supposer # non nul.
On désigne par & une fonction méromorphe sur X dont u est le diviseur,
par n le degré de 4 (chap. I, § 4) et par B ’ensemble des valeurs critiques
de 4.

Soit ¢ un chemin joignant (0:1) & (1:0) dans P*, ne rencontrant pas B,
sauf peut-€tre en ses extrémités. Il existe n chemins distincts cq, ..., ¢,
relevant ¢, chacun joignant un p6le de & & un zéro de 4. La chaine (¢;); _—;_,

borde u et ’on a
Z jc‘jv = jchﬁc (‘Z))

l=j<n
(chap. I, § 4, proposition 3). On conclut en remarquant que 4, (v) est nulle
(§ 1, exemple 1).
Montrons maintenant que la condition est suffisante. Désignons par

w une forme différentielle de € (X, Q%) vérifiant les conditions du
lemme 1. La relation

fxv Aw=0

L’Enseignement mathém., t. XXI, fasc. 2-3-4. 18
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pour toute forme différentielle holomorphe » montre que la classe de w
dans H' (X, Cy) est nulle (théoréme de dualité, chap. III, §2). On en
déduit que le fibré principal associé a u est trivial, ce qui démontre le
théoréme (chap. I, § 3, proposition 3).

§ 3. THEOREME DE RIEMANN-ROCH

Pour tout fibré vectoriel holomorphe = sur X, les espaces vectoriels
complexes H® (X, n) et H' (X, n) sont de dimension finie (chap. III, § 2,
proposition 2, corollaire). On pose

x(n) = dimcH® (X, n) — dimcH (X, 7).
Le théoréme de dualité (loc. cit.) montre que ’on a aussi
x(n) = dimcH® (X, n) — dimcH (X, n* @ Q1) .
PROPOSITION 1. Désignons par © un fibré vectoriel holomorphe de rang p

sur X et par p un fibré en droites holomorphe associé a un diviseur u de
X. On a alors

x(m®p) = x(@ +p0(w).
On se rameéne aisément au cas ou u est de la forme
u =1-x

pour un certain point x de X. Désignons par s une section holomorphe
de p ayant u pour diviseur. Le diagramme suivant est commutatif

¢ (X,m) — 25 . ¢ (X, 2®p)
o |-
€° (X, nQ0% _®s g (X, 102% ®p).

Pour tout fibré vectoriel différentiel o sur X, le passage aux germes
induit un diagramme commutatif

0 — 4°(X,0) — 25 . 4°(X,6®p) - V(6) — 0

l l | =

0 5 42(@) —25. A42(6®p) - W) - 0
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ol V (0) et W (o) désignent les conoyaux de ® s et ® s, respectivement.
La section s ne s’annulant qu’au point x, les lignes de ce diagramme sont
exactes et I’application « est un isomorphisme. Ceci montre que le dia-
gramme (*) se compléte en un diagramme commutatif

Xs

0> ¥°X,n) €° (X,m®p) - W@ -0

v | v Y

05 4 (X, 102 —25 . &= (X, 7002% ®p) » Wr®Q") - 0
On a alors (diagramme du serpent),
x(n) — x(n®p) + dimcKer (f) — dimCoker () = 0
et il suffit de vérifier les égalités
dimKer(f) = p et dimcCoker(f) = 0.

Ceci étant un probléme de germes, on peut supposer que x est I’origine
dans C, que =« est le fibré produit de rang p et p le fibré produit de rang 1.
L’applicaticn

B (A75)%[s0 (AT)? — (A7)"[s0 (AT)"

0
étant induite par ’opérateur diﬁ“érentiel—a—-_—_ , elle est surjective (chap. IlI,
Z

§ 1, remarque 2). D’autre part, pour tout germe u de (A3)? vérifiant la
relation
ou

_— = Sov
0z
pour un certain v, on peut écrire

0

—Wm—=sow) =0
(=5 W)
pour un certain w (loc. cit.). Le germe u — s, w étant holomorphe, il
existe un germe A de (43)? tel que
u — sow —u(0) = syh.

Ceci montre que le noyau de f est constitué des germes d’applications
constantes de C dans C? ce qui achéve la démonstration de la proposition.

COROLLAIRE. Tout fibré en droites holomorphes m sur X est associé d
un diviseur.
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Pour tout fibré en droites holomorphes p sur X associ¢ a un diviseur u,
on a

dimcH® (X, n®p) > 2 (n®p) = x(n) + 0(u).

Si ’ordre de u est bien choisi, le fibré 7 @ p posseéde une section holomorphe
non nulle s. On en déduit que le fibré 7 est associ€ au diviseur (s) — w.

TorEOREME 1 (Riemann-Roch). Pour tout fibré en droites holomorphe
n sur X, ona

x(m) =1 —g + ch(m)

ou g designe le genre de X.

On peut supposer que 7 est associé a un diviseur u (proposition 1,
corollaire). On a donc

x(m) = y(Cx) + 0(u) =1 —g + ch(m)

(proposition 1 et § 1, proposition 3), ce qui démontre I’assertion.

COROLLAIRE. Pour tout fibré en droites holomorphe n sur X, on a la
relation
ch(z*®Q"°% = 2g — 2 — ch(n).

En particulier, la classe de Chern du fibré Q'° est égale a 2g — 2.
Il suffit de remarquer que 'on a

1(@* Q4% = —y(n) = — (1 —g +ch(n))

et d’appliquer le théoréme de Riemann-Roch.

PROPOSITION 2. Pour tout fibré en droites holomorphe m sur X, on a
les relations suivantes :
(1) ch(n) <O = dimcH° (X, ) = 0.

[ dimcH® (X, ) = 0 si m wnest pas (holo-
morphiquement ) trivial.
dim H° (X, 7) = 1 si 7 est (holo-
morphiquement ) trivial.

(2) ch(n) =0 =

L
' dimCHO (X,m) =g —1si =m n’est pas iso-
morphe a Q'°.
dimH® (X, 7) = ¢ si m est isomorphe a
QI,O
L .
(4) ch(m) >29 -2 = dimcH® (X, n) = 1 — g + ch (n).

(3) ch(n)= 29 — 2=,
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Les deux premiéres assertions ont déja été démontrées (§ 1, propo-
sition 3). Pour démontrer les deux derniéres, il suffit de remarquer que I’on
a

dimHO (X, 7) = 1 — g + ch(n) + dimcH® (X, n* @Q"°)
et d’appliquer ce qui précéde au fibré n* @ QLo

Remarque 1.
Pour tout diviseur « sur X, on pose

Lw) ={heA (X)|h=0 ou (h)> —u}
I(w) ={seX(X,2"%|s=0 ou (s)>u}.

Désignons par 7 un fibré en droites holomorphes associé¢ a u. Nous avons
vu que ’espace vectoriel L (u) (resp. I (u)) est canoniquement isomorphe a
Pespace H® (X, 7) (resp. H® (X, ¥ @ Q%)) (chap. I, § 3). En désignant sa
dimension par / (u) (resp. i (u)), le théoréme de Riemann-Roch prend la
forme plus classique suivante:

Iw) —i(u)y=1-g + 0(u).

THEOREME 2 (Riemann-Hurwitz). Soient X et Y deux courbes holo-
morphes compactes connexes de genre g (X) et g (Y) respectivement et
soit h une application holomorphe non constante de X dans Y. On ala
formule

29 (X) — 2 = deg(h) (29 (Y) —2) + v(h)

ou v (h) désigne l’indice de ramification de h').

Désignons par # une forme différentielle méromorphe non nulle sur Y.
On a

xeX

0(h* () = >, 0,(h* (w)) = ZX (ve (h) + 1) Oy () + v (h)
(chap. I, § 4, lemme 2) et par conséquent

0(h*w) = 3 (2 (e +1))0,(w) +v(h) = deg(h)0®w) + v(h)

yeY¥ xeu—1(y)

et 'on conclut en remarquant que I'ordre de A* (u) (resp. u) est égal a
2g (X) — 2 (resp. 2g (Y) — 2) (théoréme 1, corollaire).

COROLLAIRE. Pour qu’il existe une application holomorphe non constante
de X dans Y, il faut que le genre de Y soit au plus égal au genre de X.

1) Cest a dire la somme des indices de ramification de # aux différents points de X
(chap. I, § 4).
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§ 4. FIBRES AMPLES

Dans tout ce paragraphe, on désigne par g le genre de X et par @ un
fibré en droites holomorphes sur X.

Soient s, ..., s, des sections holomorphes de = dont I'une au moins
n’est pas nulle. Pour tout entier j compris entre 0 et #, on pose

X; ={xeX|s;(x) #0}

et 'on définit une application holomorphe de X; dans P" par la formule

s Si

¢; (x) = (-2 (x): .0 — (x)) .
Sj Sj

Par définition méme, les ¢ ; se recollent en une application holomorphe ¢

de U X;dansP". Pour tout point x de X\ U X, il existe un voisinage
0<j=n 0=j=n

ouvert U de x, une fonction holomorphe % sur U et des sections holomorphes
So, -y S de 7 sur U dont ’'une au moins ne s’annule pas au point x, vérifiant
les relations suivantes
/’ /
So = hSO, ceey Sy = hsn .

Supposons par exemple s;(x) non nul. On prolonge I'application ¢ en
posant

b (x) = (i‘l (x):...:fi,’-(x)>.
S S

L’application holomorphe ¢ de X dans P”" ainsi obtenue se désigne par

(Sg 7 weet Sy)-

On dit que le fibré 7 est ample si pour toute base (s, ..., s,) de I’espace
vectoriel H® (X, n), I’application (sy: ...: s,) est un plongement de X
dans P".

Remarque 1.

Désignons par kg, ..., h, des fonctions méromorphes sur X dont I'une
au moins n’est pas nulle. On définit un diviseur # sur X en posant

u = —inf((hy),...,(h,),0).

Soit p un fibré en droites holomorphes sur X et soit s, une section holo-
morphe de p ayant u pour diviseur. Les sections de p définies par

s; = hySgs.-es S, = h,So
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sont holomorphes et I'une d’entre elles au moins n’est pas nulle. L’appli-
cation (sq: ...: 5,) se désigne (abusivement) par (fy:...: h,).

PROPOSITION 1. Si la classe de Chern de m est au moins égale & 2g, les
sections holomorphes de m n’ont pas de zéro commun. y

Raisonnons par I’absurde en supposant qu’il existe un point x de X ol
toutes les sections holomorphes de 7 s’annulent. Désignons par p un fibré
en droites holomorphes sur X et par s une section holomorphe de p dont
le diviseur est 1-x. L’application

®s: H (X, 7®p*) - H° (X, n)

est injective. Elle est surjective en vertu de ’hypothése faite sur x. D’autre
part, la proposition 2 du paragraphe 3 montre que 'on a

dimcH° (X, n®p*) = 1 —g +ch(n®p*) = ch(n) —yg
et
dimcH° (X, 7) = 1+4ch(n)—g
ce qui est absurde.

COROLLAIRE 1. On suppose que la classe de Chern de m est au moins
égale & 2g. Pour tout ensemble fini A de X, il existe une section holomorphe
de 1 qui ne s’annule en aucun point de A.

11 résulte en effet de la proposition 1 que ’ensemble des sections holo-
morphes de n qui s’annulent en un point de X forment un hyperplan de
H° (X, 7).

COROLLAIRE 2. On suppose que la classe de Chern de w est au moins
égale a 2g + 1.

(1) Pour tout couple (x, y) de points distincts de X, il existe une section
holomorphe de m qui s’annule au point x et ne s’annule pas au point y.

(2) Pour tout point x de X, il existe une section holomorphe de
qui posséde un zéro simple au point Xx.

On désigne par p un fibré en droites holomorphes sur X et par s une
section holomorphe de p dont le diviseur est 1 - x. La classe de Chern du
fibré m @ p* est au moins égale a 2g et la proposition 1 montre qu’il existe
une section holomorphe # de ce fibré qui ne s’annule pas au point y (resp. x).
La section ¢ ® s vérifie la condition (1) (resp. (2)).

THEOREME 1. Si sa classe de Chern est au moins égale a 2g + 1, le fibré
T est ample.
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Désignons par (s, ..., s,) une base de H° (X, n). Pour tout couple
(x, y) de points de X, il existe un entier j compris entre O et # tel que s, ne
s’annule pas sur {x, y} (proposition 1, corollaire 1). Par définition, la
relation '

(Sp: .28, (%) = (500 ...:8)(p)

signifie qu’il existe un nombre complexe A non nul tel que

(S—" ), ...,ﬁ(x)> — i(ff)— ), ...,i’(y)>.
s; s; s; s;

Ceci n’est possible que si x et y coincident (proposition 1, corollaire 2) et
par conséquent ’application (s,: ...: s,) est injective.
Il reste @ montrer qu’elle est de rang 1. Désignons par x un point de X
et par s une section holomorphe de n possédant un zéro simple au point x
(loc. cit.). On a
s = AoSo + ... + 4,8,

et il existe un entier j compris entre O et n tel que s; (x) soit non nul. On a
donc

S 0] Sn

B ZAO— +...+/1n“_‘

53 Sj Sj
et par conséquent

d (—S—>(x) = Ay d <ﬁ> ) + .o + A d <i>(x).
S; S; S;

Le membre de gauche étant non nul, il existe un entier £ compris entre 0

S . . By 4 b

et n tel que d —'f(x) soit non nul ce qui achéve la démonstration du
S
J

théoréme.

COROLLAIRE. Toute courbe holomorphe compacte connexe de genre g se
plonge dans P91, En particulier, toute courbe holomorphe compacte connexe
de genre O est isomorphe @ P et toute courbe elliptique se plonge dans P2.

Il suffit d’appliquer le théoréme 1 au fibré en droites holomorphe
associé a un diviseur d’ordre 2g + 1 et de remarquer que ’on a alors

dimcH(X,n) = g + 2
(§ 3, proposition 2).
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§ 5. LE CORPS DES FONCTIONS MEROMORPHES

LEMME 1. Soient X, ..., X, des points distincts de X et soit r un entier
compris entre 0 et n. Il existe une fonction méromorphe f sur X vérifiant
les conditions suivantes :

(1) Les points X, ..., x, appartiennent au domaine de régularité de f

(2) Les nombres complexes f(xy),....f (x,) sont deux a deux distincts
et non nuls.

(3) L’ordre de f aux points X,4q, ..., X, estégala 1.

Soit x, un point de X'\ { x4, ..., x, }. Pour tout entier j compris entre
1 et r, on définit un diviseur #; sur X en posant

“j(xk) =1 pour 1<k<n et k #j
u;(xo) = 29+1—n .
luj(x) = 0 pour X € X\{Xgs -oes Xy eves Xy} -

Désignons par 7 un fibré en droites holomorphes sur X et par s; une section
méromorphe de n dont le diviseur est «;. Puisque la classe de Chern de n
est égale a 2g, il existe une section holomorphe #; de = qui ne s’annule en
aucun des points xy, ..., x, (§4, proposition 1, corollaire 1). La fonction
méromorphe définie par

est réguliére en chacun des points x4, ..., x,. Elle est non nulle au point x;

A

et posseéde un zéro simple en chacun des points x, ..., X}, ..., x,. Il suffit
alors de prendre pour f une combinaison lin€aire convenable des fonctions

fla L) fr'

Nous allons étudier le corps " (X) des fonctions méromorphes sur X.
Toute fonction méromorphe non constante f sur X permet d’identifier le
corps A (P') des fonctions méromorphes sur P! au sous-corps C(f) de
A" (X) engendré par f (chap. I, § 5, lemme 2).

LeMME 2. Soit f une fonction méromorphe non constante de degré r
sur X. Pour toute fonction méromorphe g sur X il existe un polynéme p
de degré r dans C(f)[T] tel que p(g) soit identiquement nulle. De plus,
les conditions suivantes sont équivalentes :

(1) Le polynome p est irréductible.
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(2) Le discriminant de p est non nul.

(3) 1l existe une valeur réguliecre y de f telle que g sépare les points
de =1 ().
On désigne par o4, ..., g, les fonctions symétriques élémentaires a r

indéterminées. Les fonctions f,, (g), ..., f,, (g) sont méromorphes sur
P! (chap. I, § 4, proposition 2). 1l suffit alors de poser

p=T +f,@T" " +..+f, (.

Pour démontrer la seconde assertion, il suffit de montrer que (3)
implique (1). Supposons que I’on ait

b = P1 D>

avec p; et p, dans C(f)[T]. L’une au moins des fonctions méromorphes
p1(g) ou p,(g) est identiquement nulle. Désignons par y une valeur
réguliére de 1 telle que g sépare les points de £~ (y). On peut supposer que
les coefficients de p, et p, sont holomorphes au voisinage de y. Si p; (g9)
est identiquement nulle, le polynéme p; (¥, T) a r racines distinctes, il est
donc de degré r ce qui démontre I’assertion.

LEMME 3. Soient f et g deux fonctions méromorphes sur X. On suppose
que [ est non constante de degré r et qu’il existe un polynéme irréductible
p de degré r dans C(f)[T] tel que p (g) soit identiquement nulle. Pour
toute fonction méromorphe h sur X, il existe un polynome q de degré au
plus r — 1 dans C(f)[T] tel que h soit égal a q(g).

En particulier, le corps A" (X) est engendré par [ et g.

Pour toute valeur réguliére y de f telle que £~ (») ne contienne ni
poles de g ni pdles de 4, on pose

h(x)
.T) = p(y, T - .
a(y, T) = p(y )xef;(y) T— e ()

Le polyndme a appartient a C(f) [T] (chap. I, § 4, proposition 2). Si g
sépare les points de £~ (y), on a

h(x) =

a(y,g(x))

P (v,9(x)
dp

pour tout point x de ™! (y), en désignant par p’ le polyndme dérivé 3T

(lemme 2). Le principe du prolongement analytique montre que 1’on a

hza(g).

p' (9)
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Comme p est irréductible, il existe des polyndmes a, et a, de C (f) [T1] tels
que
a = a,p" + azp

(appendice III). On en déduit que 'on a

h = a;(g9)

et il suffit d’éliminer les termes de degré supérieur & r au moyen de la
relation

p(g) =

THEOREME 1. Il existe une courbe algébrique projective Y dans P? et
une application holomorphe n de X dans P? vérifiant les conditions sui-
vantes :

(1) Le couple (X, n) est une normalisation de Y.

(2) L’application w* induit un isomorphisme de 1w (Y) sur A (X).

Soit / une fonction méromorphe non constante de degré r sur X et soit
y une valeur réguliére de f. Il existe une fonction méromorphe g sur X
séparant les points de f~! (y) (lemme 1) et un polyndéme irréductible p
de degré m dans C [T, T,] tel que p (f, g) soit nulle (lemme 2). On définit
un polyndme homogéne irréductible de degré m dans C [Ty, Ty, T,] en
posant

5 (T, Ty, Tp) = T T T
D (1g, 11, 13) = OPTOTO

On désigne par Y le lieu des zéros de p dans P? et par = I’application holo-
morphe (f:g) de X dans P? (§ 4, remarque 1).

Pour démontrer la premicre assertion, il suffit de vérifier que n induit un
isomorphisme de X\ 7~ ' (4) sur Y\ 4, en désignant par 4 Iensemble
des points singuliers de Y (chap. I, § 5, lemme 10). Or cette application est
propre et holomorphe, elle est de degré 1 par construction. Ceci démontre
I’assertion.

La seconde assertion est une conséquence immédiate du lemme 3.

COROLLAIRE 1. Pour que deux courbes holomorphes compactes connexes
X et Y soient isomorphes, il faut et il suffit que les corps A (X) et A (Y)
soient isomorphes.

C’est une conséquence immédiate de 'unicité de la normalisation d’une
courbe algébrique projective.
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COROLLAIRE 2. Toute courbe holomorphe compacte connexe X plongée
dans un espace projectif P" est le lieu des zéros d’une famille de polynémes
homogénes.

Désignons par a I'idéal des polynémes de C [T, ..., T,] qui s’annulent
sur =1 (X), ol ¥ est la projection canonique de C"**\0 dans P", et par Y
le lieu des zéros de a dans P". Puisque ¥~ ' (X) est connexe, I'idéal a est
premier. Le corps k (Y) des fonctions rationnelles sur Y est un sous-corps
de " (X). Le théoréme 1 montre alors que Y est une courbe algébrique
de P". Désignons par Y, I’ensemble des points réguliers de Y et posons

XO = YomX.

D’ensemble X, est a la fois ouvert et fermé dans Y,. Comme ce dernier
ensemble est connexe (chap. I, § 5, théoréme 4), on en déduit que X est
égal 4 Y, d’ou I’assertion.

THEOREME 2. Toute courbe holomorphe compacte connexe X se plonge
dans P3.

Soit f une fonction méromorphe non constante de degré r sur X. On
désigne par y une valeur réguliére de f, par xi, ..., x, les points de /1 (),
par x,.4, ..., X,, les points critiques de f. 1l existe une fonction méromorphe
g sur X séparant les points xi, ..., x, et possédant un zéro simple aux
points x,. ¢, ..., X, (lemme 1). Désignons par n ’application (f:g) de X dans
P? et par Y son image. L’application « est partout de rang 1 et le couple
(X, m) est une normalisation de Y (théoréme 1). Soit 4 I'ensemble des
points singuliers de Y et soit 4 une fonction méromorphe sur X séparant
les points de ! (4) (lemme 1). On montre aisément que I’application
(f:g:h) est un plongement de X dans P>.

§ 6. FORMES AUTOMORPHES

Pour tout automorphisme y du disque unité D, on définit une fonction
holomorphe sur D en posant

| dy
fr = 0z
Pour tout couple (y, ") d’automorphismes et tout point z de D, on a

jy’y (Z) = jy’ ('))Z)]y (Z) v
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Nous supposerons désormais que X est le quotient de D par un groupe
proprement discontinu I" (chap. I, § 5, numéro 3) et nous désignerons par
7 la projection canonique de D dans X.

Soit m un entier relatif. On appelle forme automorphe de poids m relative
a T toute fonction méromorphe f sur D telle que

fr=5ip"f
pour tout automorphisme y de I'. On désigne par /4 (m, I') (resp. O (m, I'))
’ensemble des formes automorphes (resp. des formes automorphes holo-
morphes) de poids m relatives a I'.

Fixons une fois pour toutes une forme différentielle méromorphe non
nulle w sur X. La forme différentielle 7n* (w) s’écrit

n*(w) = fdz

ou f est une fonction méromorphe sur D. Pour tout automorphisme y de
I' et tout point z de D, on a

f(2)dz = n*(w)(2) = n*(0) (yz) = f(y2)],(2)dz

ce qui montre que f est une forme automorphe de poids 1 relative a I'.

Pour toute forme automorphe u de poids m relative a I', la fonction
méromorphe uf ™ est I'-invariante. On en déduit que l’application ¥,
de A (X) dans 2" (m, I') définie par

¥, (@) = (n)f"

est un isomorphisme pour tout entier m.

Nous allons chercher a quelles conditions une fonction méromorphe
v sur X fournit une forme automorphe holomorphe sur D.

Pour une telle fonction, on a

0, (¥, () = 0,(n* () + m 0, (n* () > 0
pour tout point z de D. Cette condition équivaut a

0,(®) > —m0, (0) — [m (1 — —~1—>J h
P,

7/

pour tout point x de X, ou p, désigne le cardinal du groupe d’isotropie de
I' en tout point de 7~ (x). On définit un diviseur a,, sur X en posant

.1) Poqr tout nombre réel ¢, on désigne par [c] la partie entiére de c, i.e. I’entier
relatif défini par

[c] =sup (neZ|n<cy.
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a,(x) = (m 0,(w) + |:m (1 — l_)1_>:l> X .

On voit donc que ¥,, induit un isomorphisme de L (a,,) sur O (m, I') (§ 3,
remarque 1).

Pour toute fonction holomorphe u sur D et pour tout entier relatif m,
la série

vell

s’appelle la série de Poincaré associée a u.

LEMME 1. Si u est bornée et m au moins égal a 2, la série de Poincaré

pr (u, m) converge uniformément sur tout compact vers une fonction de
O (m, TI).

Pour montrer que la série p (u, m) converge, il suffit de montrer que la

série
.2
> T
yell

converge dans L, . (D, C) (chap. I, § 1, théoréme 1, corollaire 4). Désignons.
par z un point de D et par K un voisinage compact de z dans D tel que

yK = K si yel,
yKNnK =g si y¢rl,

(chap. I, § 5, lemme 3). La formule du changement de variable dans les.
intégrales doubles montre que ’on a

“Jzy ”Ll,K = jK ij > dp = p(yK),
et par conséquent

zll 175 ek = ZF p(yK) = Card (I')( ), u(¥K))

yel'g

en désignant par I', un systéeme de représentants de I'/I",. Ceci démontre:
Passertion puisque les ensembles (yK),r, sont deux a deux disjoints et
contenus dans .

Montrons maintenant que p, (u, m) est une fonction automorphe de:
poids m. Pour tout automorphisme y de I' et tout point z de D, on a

pr(u, m)(yz) = Zru(v’VZ)j;'f (vz) =j, " (2) Zru(v’vZ)j;’fy(Z)
V'e Ve
= j, " (2) pr (u ,m)(2)

ce qui démontre ’assertion.
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LEMME 2. Pour m suffisamment grand, l’espace vectoriel O (m,I’) est
de dimension au moins 2.

On désigne par z, un point de D qui n’est pas un point fixe de I' (i.e. un
point régulier de Papplication n) et par K un voisinage compact de z, tel
que

yKNn K =g

pour tout automorphisme de I" différent de I'identité.
Le lemme 1 montre qu’il existe un nombre fini d’automorphismes
Vi -er ¥p de I, différents de I'identité tels que

1
[ foe =

pour tout automorphisme y de I'\{1, y4, ..., 7,}. On pose

Zy = Py (ZO)

pour tout entier v compris entre 1 et p. Soit u une fonction holomorphe
bornée sur D. Pour tout entier m au moins égal a 2, on peut écrire

prl,m —u— Y @yt = Y @
1=v=p yel’
ol I’on a posé
F, —_ F\{ 1,')71, ...,'yp} .

Sur le compact K on a donc

” Pr (u’ m) —u - Z (u')’v)]):: ” L®,K

1=v=p

<27 ufpop ¥ [, | fex-
yel”

Le membre de droite converge vers 0 lorsque m tend vers infini. Supposons
que u posséde un zéro d’ordre au moins 2 en chaque point z4, ..., z,. Pour

tout nombre réel ¢ strictement positif et pour tout entier m suffisamment
grand, on a

e m) () — u(z) | < & et ﬁp’é—(“’@w-a—”(zo) <
z 0z

e du .
(inégalités de Cauchy). Comme u(z,) et a—(zo) sont arbitraires, ceci
z

démontre I’assertion.
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LeMME 3. Désignons par g le genre de X. Le nombre réel

29 — 2 + Z(l——l—>

xeX Px
est strictement positif.

Désignons par m un entier suffisamment grand pour vérifier les condi-
tions suivantes:

(1) L’espace vectoriel O (m, I') est de dimension au moins 2.
(2) Pour tout point x de X, I’entier p, divise m.

Désignons par m,, un fibré en droites holomorphe associé au diviseur a,,.
Pour toute section holomorphe non nulle v de =, on a

ch(x,) = 0(a,) = 0(v) > 0.

Si I’ordre de a,, est nul, le fibré =, est trivial ce qui contredit (1). Il est donc
strictement positif et la condition (2) montre que I'on a

0(a,) = m (O(a)) + > (1 —;}))

ce qui démontre I’assertion (§ 3, théoréme 1, corollaire).

THEOREME 1. Pour tout entier m au moins égal a 2, on a la relation

1
dim.O(m, I') = Cm—-1)(g—1) + Y |:m (1 - —>:|
xeX Px
o g désigne le genre de X.

D’aprés la proposition 2 du paragraphe 3, il suffit de montrer que ’ordre
de a,, est strictement supérieur a 2g — 2.
Tout d’abord, pour tout couple (m,/) d’entiers strictement positifs,

on a
3 i
[m(l— Zﬂ >(m—1)(1—7> .

En effet, on peut écrire
m=ql +r

ou g et r sont des entiers naturels tels que r soit compris entre 0 et / — 1.

Sirestnul, ona
1 1
m{l—=)l=m{l—-
(0=2)] = (3)
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et 'on a

Sinon g est au plus égal a

/
[m(l———;—ﬂ:m—q—l)m——l—m;l =(m—1)(1-——§>

ce qui établit 'assertion.
On en déduit que

0(a,) = m(2g—=2) + >, l:m (1 ——1—)}

xeX px

>m (29 —2) +(m—1) ), (1 —i>

xeX Px
ou encore
1
0(a,) =>(m-—1) <2g—-2+ Y (1 — ;)) +29 — 2.
xeX X

Si m est au moins égal a 2, le résultat est donc une conséquence du lemme 3

§ 7. VARIETES DE PICARD ET DE JACOBI

Désignons par E un espace vectoriel complexe de dimension finie n et
par I' un réseau de E (i.e. un sous-groupe abélien de rang 2n). L’appli-
cation canonique © de E dans E/I" est un revétement. On munit E/I" de
I'unique structure holomorphe faisant de 7 un isomorphisme local. On
appelle fore complexe toute variété holomorphe isomorphe a une variété
de la forme E/T.

Soit T (resp. T") un tore complexe de la forme E/I" (resp. E'/T"’) et soit u
un isomorphisme de 7 sur 7’. On désigne par = (resp. ©") P'application
canonique de E dans T (resp. de E’ dans T”). Quitte a modifier # par un
automorphisme de 7', on peut supposer que ’on a

u(n (0)) = 7'(0).
11 existe alors un isomorphisme v de E sur E’ et un seul tel que
0 =0 e #n"'v=u-xm.

Pour tout élément y de I', 'image v (y) est un élément " de I'" et ’on vérifie
aisément que 'on a

v(z+y) =v(z) +7’

L’Enseignement mathém., t. XXI, fasc. 2-3-4. 19
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pour tout point z de E. En particulier, la dérivée de v est I'-invariante. Elle
est donc constante en vertu du principe du maximum.

I1 résulte de ce qui précéde que T et T’ sont isomorphes si et seulement si
il existe un isomorphisme C-linéaire v de E sur E’ tel que |

v(l) =1
(chap. I, § 5, numéro 3).

LeMME 1. Désignons par Q une matrice de M (n,2n; C) et par I' le
sous-groupe de C" engendré par les vecteurs colonnes de Q. Les conditions
suivantes sont équivalentes :

(1) Le sous-groupe I est un réseau de C".
Q
(2) La matrice (?j) est inversible.

(3) Le vecteur nul est le seul vecteur (z, ..., z,) de C" tel que le vecteur

(24, .0y 2,) Q
soit réel.

La démonstration est un simple exercice d’algebre linéaire.

LEMME 2. Désignons par Q (resp. Q') une matrice de M (n, 2n; C)
et par I' (resp. I'') le sous-groupe de C" engendré par les vecteurs colonnes
de Q (resp. Q). On suppose que I' et I'' sont des réseaux. Pour que les

tores complexes C"|I' et C"/I"’ soient isomorphes, il faut et il suffit qu'’il
existe une matrice M de G (n; C) et une matrice Ade G (2n;Z) telles que

Q =MQA.

C’est une conséquence immédiate de ce qui précede.

Rappelons que 'on a une suite exacte

0—H°(X, Q") H (X,0)—L-H!' (X,Cy)— 0

(§ 1, proposition 2). On sait d’autre part que H' (X, R) s’identifie & un sous-
espace vectoriel réel de H* (X, C).

LemMME 3. Par restriction, [’application [ induit un isomorphisme
R-linéaire de H' (X, R) sur H' (X, Cy).
Toute forme différentielle (réelle) de ¥~ (X, Q') s’écrit

u =9 +7v



— 287 —

avec v dans €% (X, Q). En effet, pour toute carte ¢ de domaine U dans
X,ona
uly = udey + uyde,,

en désignant par ¢, et ¢, les parties réelle et imaginaire de ¢. Il suffit alors
de poser

v

| ) 1 o
U=§(u1—iu2)d¢ et v|U=§(u1+m2)d¢.

Supposons de plus u fermée. L’image par f de la classe de u n’est autre que
la classe de v. Si cette classe est nulle, on a

u=v+v=df+df

pour une certaine fonction fde €% (X, C). Il résulte de cette équation que
la fonction f — f est harmonique, donc constante. On en déduit que

u=df+df=df

ce qui démontre I’assertion.

Il résulte en particulier du lemme 3 que 'image par  du sous-groupe
H' (X, Z) est un réseau de H! (X, Cy) (chap. 0, § 5, théoréme 1, corollaire 2).
Notons que I'image par f de la classe d’un élément 4 de €% (X, C*) est la
classe de la différentielle

1 d'h
2in h
PROPOSITION 1. La suite de groupes abéliens et d’homomorphismes

0—H'(X,Z)-£~ H' (X, Cy) *— Pic(X,C¥) <", Z 0

est exacte 1).

Pour toute forme différentielle u de € (X, Q%1), il existe un recou-
vrement ouvert (U),; de X et, pour chaque indice 1, une fonction f, de
€ (U,, C) telle que

uly, =d'f,.

Les fonctions définies sur U, n U, par
flCl =f1c "—fl et 9 =exp(2infkl)

sont holomorphes et la famille (g,,) est un cocycle de rang 1 subordonnée 2
(U,) dont la classe dans Pic (X, C*) est précisément 'image par 0 de la

1) La définition de 0 a été donnée au paragraphe 2.
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classe de u. Désignons par 7 un fibré en droites holomorphe sur X corres- ‘
pondant & ce cocycle. Les fonctions exp (2in f,) se recollent en une section
partout non nulle fde € (X, n) ce qui montre déja que la classe de Chern de
7 est nulle.
Si u est de la forme ‘
1 d'h
U o= — —
2in
pour une certaine fonction 4 de ¥® (X, C*), la section 2~ f de = est holo-
morphe et partout non nulle ce qui montre que 7 est trivial.
Réciproquement, si 7 est trivial, il existe pour tout indice 7 une fonction
holomorphe inversible g, sur U, telle que

9 =9 9,

Les fonctions exp (2in f)) g~,' se recollent en une fonction # de ¥* (X, C*)
et 'on a

- - d” — .
2it h U, fl ! IUl

Ceci montre que la classe de u est dans I'image de .

Il reste & voir que tout fibré en droites holomorphe 7 sur X dont la classe
de Chern est nulle provient d’un élément de H' (X, Cy). Désignons par
(U)o un recouvrement ouvert de X par des ensembles simplement connexes
et par (g,,) un cocycle holomorphe de rang 1 subordonné a (U,), repré-
sentant . Le fibré = étant différentiablement trivial (chap. 0, § 5, théo-
réme 4), il existe pour tout indice 1 une fonction g, de €~ (U, C*) telle
que

Ie = 99 -

Puisque U, est simplement connexe, il existe une fonction f, de €” (U,, C)
telle que
g, = exp2inf).

Il résulte de ces définitions que ’on a

) 1 dﬂ . 1 du . )
df,=—=2 = e af,.
2in g, 2it g,

Autrement dit, les formes différentielles d”’ f, se recollent en une forme u
de % (X, Q%) ayant toutes les propriétés requises.
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Le noyau de ch s’identifie au quotient de H' (X, Cx) par le réseau Imp.
Ce noyau est donc un tore complexe de dimension g que I'on appelle la
variété de Picard de X et que I’on désigne par Pic (X).

Désignons par G le groupe fondamental de X en un point base x, et par
Cyy ...y Co, des lacets de X en xg dont les classes forment une base du

Z-module libre G (chap. 0, § 5, théoréme 3).

Pour tout entier j compris entre 1 et 2g, il existe par dualité un élément u;
de H' (X, R) tel que

Lk up = O

pour tout entier k compris entre 1 et 2g (chap. 0, § 5, théoréme 2, corol-
laire 2).

Désignons encore par v, ..., v, une base de I'espace vectoriel H® (X, 2°)
des formes différenticlles holomorphes. On pose

Wjx = j‘c,c v; et Q= (0p)1=jzg1=k=z2g

=) =YL =R

Remarquons que I’'on a par définition

v, =Y Wp .
1=k=2g

Autrement dit, la matrice *Q est la matrice de I'application o exprimée
dans les bases vy, ..., U, €t uy, ..., Uy,
LEMME 4. Les vecteurs colonnes de Q engendrent un réseau de C°.
Tout vecteur (z4, ..., z;) de C? tel que le vecteur

(21500 2y Q

soit réel est nul. En effet, cette condition signifie que la forme différentielle
holomorphe

zVy + ... + 20,

est réelle. L’assertion est donc une conséquence des lemmes 3 et 1.

Le tore complexe de dimension g défini par la matrice Q s’appelle la
variété de Jacobide X et se désigne par Jac (X). On notera que cette variété

est définie a isomorphisme prés par le choix d’une base de & et d’une base
de H® (X, Q9.
Pour tout couple (j, k) d’entiers compris entre 1 et 2g, on pose

A’jk = jxuj A uk et A = (}‘jk)léj,kéZg'
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La matrice A n’est autre que la matrice d’intersection de X (chap. 0, § 5,
remarque 3). Elle appartient donc & G (2¢g; Z).

THEOREME 1 (Riemann). (/) La matrice QA*Q est nulle (égalités de
Riemann). |

(2) La matrice hermitienne iQA'Q est positive non dégénérée (inégalités
de Riemann).

Conservons les notations précédentes. Pour tout couple d’entiers (J, k)
compris entre 1 et g, la forme différentielle v; A v, est identiquement nulle
(puisque de bidegré (2, 0)). On a donc

0 = jxvj ATy = Z CUjpwkqjxup AUy = Z @;p Apg Dy
1=p,q=29 1=p,q=29
ce qui démontre la premiére assertion.

Pour toute forme différentielle holomorphe v sur X, la forme diffé-
rentielle iv A v est positive (ceci se vérifie aisément dans une carte). Dési-
gnons par zy, ..., z, les coordonnées de v dans la base v;, ..., v,. Les formes
différentielles u, ..., u,, étant réelles, on a

1=j,k=yg
= Z Z 1200 5y DiegZi

1=jk=g9g 1<=p,q=2g

L’égalité ne pouvant apparaitre que si v est nulle, ceci démontre la seconde
assertion.

Désignons par Q' la matrice de f dans la base u;, ..., u,, et dans une base
quelconque de H! (X, Cy). Cette matrice est de rang g et ’on a

Q-0 =0.

De plus, les vecteurs colonnes de Q' engendrent un réseau de H' (X, Cy)
et le quotient de H' (X, Cy) par ce réseau n’est autre que Pic (X) (en effet,
les vecteurs colonnes de Q' sont les images par f des €léments u,, ..., u,,).

LEMME 5. Les variétés Pic (X) et Jac (X) sont isomorphes.
Posons

P=iQA'Q e Q=2Q"'Q.

La matrice P est inversible (inégalités de Riemann). Montrons qu’il en est
de méme de Q. Les égalités de Riemann montrent que 'on a
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t Q . —
Q' (..) = (Q"'Q Q"Q) = (0 Q")
Q

d’ol Iassertion puisque Q' est de rang g et (‘Q ‘.5) de rang 2g. On a alors

) @) - @)= =)

et par conséquent

@ o))

M = iQP~!.

Q-—l Q'
(o)

I

Posons

Il résulte de ce qui précéde que 'on a
o a—l g_zl . -1 Ql ,
MQA = MQA('Q Q) 0 @ = MO —iP)| __ = Q

ce qui démontre I’assertion.

Notons qu’un isomorphisme v de Jac (X) sur Pic (X) est induit par
I’isomorphisme de C? sur lui-méme associé¢ a la matrice M.

Pour tout point x de X, on désigne par &, le fibré principal associ€ au
diviseur 1 + x. On définit une application Z de X dans Pic (X) en posant

Par définition méme, la classe dans Jac (X) du vecteur

(Jevys oo Jov,)

ne dépend pas du chemin c joignant x, a x. Cette classe se désigne par
Y (x). On définit ainsi une application Y de X dans Jac (X).

LEMME 6. Le diagramme suivant

X
Yy N, E
Jac (X) _v = Pic(X)
est commutatif.
Soit ¢ un chemin joignant x, & un point x de X. Le fibré principal

= (x) est associé au diviseur 1 - x — 1 - x,. Il existe donc une forme diffé-
rentielle w dans € (X, Q°') vérifiant les conditions suivantes:
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(1) L’image par 0 de la classe de w est le fibré principal = (x).
(2) Pour toute forme différentielle holomorphe v sur X, on a

fxv Aw=|,v

(§ 2, lemme 1). Il existe d’autre part une fonction f de € (X, C) telle que la
forme w + d" f soit fermée (§ 1, proposition 1). On a alors
wH+d'f= ) wiu
1=j=2g
ou wy, ..., Wy, sont des nombres complexes. Pour tout entier j compris entre
letg,ona

j.cvj = ,[ij AW = ijj A(w+d f) =1 Y Wk_’-X‘vj A Uy

= Z Wi @y Ay
1=k,l=2g
Ceci montre que Y (x) est la classe dans Jac (X) du vecteur QA (w+d"f).
Avec les notations du lemme 5, on a donc
. (é-1 Q'

QA(w+d f) = QA(Q 'Q) 0! Q’) (w+d"f)

= (0 —iP) (Q_ &

0! Q’) (w+d' f) = M™1Q" (w+d"f)

et I'on conclut en remarquant que la classe de Q' (w+d"” f) dans Pic (X)
n’est autre que = (x).

LEMME 7. Soit m un fibré en droites holomorphe sur X associé a un
diviseur de la forme 1-x. Si g est au moins égal a 1, la dimension de
H° (X, n) est égale a 1.

Supposons qu’il existe deux sections holomorphes s, et s; de = linéai-
rement indépendantes et considérons l’application holomorphe (sq :5;)
de X dans P!. Pour tout couple (14, ;) de nombres complexes non tous
deux nuls, la section 1,5, + 4,5, posséde un zéro et un seul. En effet, son
ordre est égal A la classe de Chern de n. On en déduit aisément que I’appli-
cation (s, : 5,) est un isomorphisme (chap. I, § 4, proposition 1, corollaire),
ce qui démontre ’assertion.

LEMME 8. Si g est au moins égal a 1, les formes différentielles holo-
morphes sur X n’ont pas de zéro commun.
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Pour tout point x de X il existe un fibré en droites holomorphe 7 sur X
et une section holomorphe s de n dont le diviseur associé est 1 - x. Il résulte
du théoréme de Riemann-Roch et du lemme 7 que 'on a

dim H° (X, n*®@Q"%) =g — 1.

D’autre part, application ® s induit un isomorphisme de H® (X, n* @ 2"°)
sur Pespace L (1-x) des formes différentielles holomorphes qui s’annulent
au point x. On en déduit que L (1-x) est distinct de H° (X, Q%) ce qui
démontre le lemme.

THEOREME 2. Si g est au moins égal a 1, [’application canonique = de
X dans Pic (X) est un plongement.

Conservons les notations précédentes. Soit U un ensemble ouvert sim-
plement connexe dans X. Il existe des fonctions holomorphes 44, ..., &
sur U telles que

g
vy |y = dhy,...,v, |y = dh,.
L’application holomorphe (k4, ..., h,) de U dans C’ est un relévement de
Y|y. Ceci montre déja que Y (et par conséquent =) est holomorphe et de
rang 1 (lemme 8).

Montrons que Z est injective. Raisonnons par ’absurde en supposant
qu’il existe deux points distincts x et y de X tels que &, et &, coincident.
Désignons par n un fibré en droites holomorphe correspondant au fibré
principal &,. La dimension de H® (X, #) est au moins égale & 2 ce qui est
absurde (lemme 7).

COROLLAIRE. Toute courbe holomorphe compacte connexe de genre 1 est
une courbe elliptique.
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