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(chap. II, § 2, théorème 2). L'assertion est alors une conséquence immédiate

d'un résultat classique sur les opérateurs compacts ([2], théorème (11.3.2)

et problème (11.3.2)).

Corollaire (Théorème de finitude). Si la courbe holomorphe X est

compacte, / 'image de l'opérateur

est fermée. Les espaces H1 (X, n) et H° (X, 7r*®ß1,0)' sont alors cano-

niquement isomorphes et les espaces H° (X, n) et H1 (X, n) sont de dimension

finie.
C'est une conséquence immédiate de la proposition 2 et du théorème

de dualité.

Soit X un ensemble ouvert de C. On dit qu'une fonction u de (X, C) est

harmonique si elle vérifie l'équation

Il résulte de cette définition que u est harmonique si et seulement si sa partie
réelle et sa partie imaginaire sont harmoniques.

On désigne par (X, k) (avec k égal à R ou C) l'ensemble des fonctions
harmoniques sur X à valeurs dans k.

Remarquons que (X, k) est une sous-algèbre fermée de (X, k).

Proposition 1. Supposons X simplement connexe. Pour qu 'une fonction
u de ^2 (X, R) soit harmonique, ilfaut et il suffit qu 'elle soit la partie réelle
d'une fonction holomorphe.

La suffisance résulte de ce qui précède. Si u est harmonique, la forme
du

différentielle — dz est holomorphe, donc fermée. Il existe par conséquent
dz

une fonction holomorphe h sur X telle que

d": H^X,^ -> L2(X,7t®ß°'1,>

§ 3. Le cas du Laplacien

Dans ce paragraphe, nous allons étudier l'opérateur différentiel
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(chap. 0, § 5, théorème 1, corollaire 1). On en déduit que

1 du du
~d(h-\-h) — dz H dz du
2 dz dz

ce qui démontre l'assertion.

Corollaire 1 (Principe du prolongement analytique). Soit u une

fonction harmonique sur un ensemble ouvert connexe X de C. Les conditions
suivantes sont équivalentes :

(1) La fonction u est identiquement nulle.

(2) Il existe un point de X ou le germe de u est nul.

(3) Il existe un point de X où toutes les dérivées partielles de u sont
nulles.

Il suffit de montrer que (3) implique (1). On peut supposer u à valeurs
réelles. On désigne par £ un point de X où toutes les dérivées partielles de

u sont nulles et par h une fonction holomorphe telle que

du 1 dh
u Re (h) et — — -—v

dz 2 dz

au voisinage de £. On en déduit que h est constante, purement imaginaire,
et que u est nulle au voisinage de £, ce qui établit l'assertion.

Corollaire 2 (Propriété de la moyenne). Soit u une fonction harmonique

sur un ensemble ouvert X de C et soit D un disque de centre relativement

compact dans X. On a

u (C) — I u (z) dz
1 f— u

JdD

On peut supposer u à valeurs réelles. L'assertion est alors une
conséquence immédiate de la proposition 1 et de la formule de Cauchy (chap. J,

§ 1, théorème 1, corollaire 1).

Corollaire 3. Pour tout ensemble ouvert X de C, les topologies
induites sur XL (Z, k) par L{oc (Z, k) et ^°° (Z, k) coïncident.

La démonstration est analogue à celle du théorème de Weierstrass

(chap. I, § 1, théorème 1, corollaire 4).

Corollaire 4 (Principe du maximum). Soit u une fonction harmonique

sur un ensemble ouvert connexe X de C. Si u possède un maximum relatif
en un point C de Z, elle est constante.
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En vertu du principe du prolongement analytique, il suffit de montrer

que u est constante au voisinage de Ç. Quitte à multiplier u par une constante

convenable, on peut supposer u (Q réel positif. Pour r suffisamment petit,
on a par hypothèse

M (r) sup | u (z) | < u (0
\z-Ç\=r

Réciproquement, la propriété de moyenne montre que u (0 est majoré par
M (r). Ceci montre que la fonction g définie par

g (z) Re (u (Q - u (z))

est réelle positive. Elle s'annule en un point z si et seulement si u (z) est

égal à u (0. On conclut en remarquant que l'intégrale de g sur le bord du
disque de centre £ et de rayon r est nulle.

Lemme 1. Soit l la fonction définie sur C* par la formule

1
/ (z) - log | z

71

\2

(1) La fonction l appartient à Lfoc (C, C).

(2) La fonction l est faiblement dérivable d'ordre (1,0) et (0, 1). On a

ôl
_

1 ôl
_

1

dz 71Z dz 7TZ
'

La première assertion découle d'un calcul élémentaire en coordonnées
polaires. Démontrons la seconde. Pour toute fonction h de ^ (C, C), on a

1* 1 f* Ôl
khdg— — lim — h dz a dz

Je 2i e-»o Jc\De dz

(on utilise les notations du paragraphe 1). La formule de Stokes montre
alors que l'on a

Ç 1 * 1 C éhï khdg —lim Ihdz 2 — a
Je 2ï e->0 JdDe Jc dz

On conclut en remarquant que l'on a

1

lim
£-()

Ihdz — 0
ôdf

L'autre assertion se démontre de la même manière.
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Désignons par D le disque de centre 0 et de rayon r dans C et par a

une fonction de ^ (D, R) égale à 1 au voisinage de 0. On pose

da „ da d2 a
a' — a —3 ß

dz dz dzdz

Si X et X' sont des ensembles ouverts de C tels que X contienne X' + D,
le produit de convolution induit des applications linéaires continues

(al)*:Lfoc(X, C) - <?° (X',C)et (ßl)*: Lfoc(X, C) (X', C)

Proposition 2. Le produit de convolution induit une application linéaire
continue

(aï)*: Llc(X,C)-+Hlc(X',C)
et l'on a

d2
— ((al)*u) u \x' -f- (oc k a h -{-ßfy^u

dzdz

pour toute fonction u de Lfoc (X, C).

Il résulte du lemme 1 que l'on a

Ô Ô

— ((al)*u) (a'l)*u + (ak)*u et —((al)*u) (a"l)*u + (ak)*u
dz J dz

La première assertion résulte donc du lemme de Grothendieck. Ce même

lemme montre que l'on a

d2 _-((aZ)*w) u\x> + (oc'/c + a k +ßl)*u
dzdz

ce qui démontre l'assertion.

Soit X une courbe holomorphe.
On désigne par

0 (X) et Xd1 (X) le noyau et le conoyau de l'application

d' -d": tf(X,C) -ï&iXtQ1'1),

par (X) et (X) le noyau et le conoyau de l'application

d' -d" : (X, C) <$c (X, ß1-1)

Remarquons que l'ensemble 0 (X) s'identifie à l'ensemble des fonctions

harmoniques sur X (i.e. les fonctions dont l'expression dans toute carte est
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harmonique). En particulier, l'espace 0 (X) est réduit aux fonctions

localement constantes si X est compacte (principe du maximum), l'espace

(X) est nul si X est ouverte (principe du prolongement analytique).
On peut développer pour l'opérateur d'• d" une théorie semblable à

celle développée aux paragraphes précédents pour l'opérateùr d". Nous

nous contenterons d'énoncer les résultats: les démonstrations sont laissées

en exercice au lecteur.

Théorème 1. On désigne par u une fonction de Lfoc (X, C) et par m

un entier naturel. S'il existe une forme différentielle v de Hoc (X, Q1,1)

telle que
Jx hv Jxu(df-d")(h)

pour toute fonction h de (X, C), alors u appartient à 2 (X,C).

Corollaire (Théorème de régularité). On conserve les notations et les

hypothèses du théorème 1. Si v est indéfiniment derivable, il en est de même

de u. En particulier, si v est nulle, la fonction u est harmonique.

On appelle paramétrix de d'• d" toute application linéaire continue P de

Lioc (X, ß1'1) dans Hfoc (X, C) vérifiant les conditions suivantes

(1) Pour toute forme différentielle u de Lfoc(X, Q1,1), la forme
différentielle

u — (d'md"mP)(u)

est indéfiniment dérivable.

(2) Si u est à support compact, il en est de même de P (u).
Les propriétés suivantes sont alors des conséquences du théorème de

régularité :

(3) Si u est indéfiniment dérivable, il en est de même de P (u).

(4) Pour toute fonction v de Hfoc (X, C), la fonction

v — (P-d'-d") (u)

est indéfiniment dérivable.

Théorème 2. L'opérateur d'• d" possède une paramétrix.

Corollaire. 1) Par restriction et passage aux quotients, les injections
canoniques de ^°° (X, C) et ^°° (X, Q1'1) dans Hfoc (X, C) et Lfoc (X, Ö1'1)
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respectivement induisent des bijections de Xf0 (X) et 1 (X) sur le noyau
et le conoyau de l'opérateur

d'-d":Hloc(X>C)-^Lfoc(X,Q1'1).

(2) Par restriction et passage aux quotients, les injections canoniques
de (X, C) et (X, G1*1) dans H\ (X, C) et L2C (X, Q1'1) respectivement

induisent des bijections de Xf°c(X) et \ {X) sur le noyau et le

conoyau de l'opérateur

d'-d": H2c(X,C)^L2c(X,Q1-1).

Considérons les dualités canoniques d'espaces vectoriels topologiques

A: L2(X,ß1,1)x (X, C) -» C

et

A:L(0C(X,Q1-')x C) - C.

L'ensemble des fonctions harmoniques (resp. harmoniques à support
compact) sur X s'identifie à un sous-espace fermé de Lfoc (X, C) (resp.
L2 {X, C)).

Proposition 3. Pourqu'une forme différentielle u de L2 ß1,1)

(resp. L(oc (X, ß1,1)) soit adhérente à l'image de l'opérateur

d' d":H2(X,C) -> L? (X, ß1-1)

(resp.d'-d":H2oc(X,C) -> L,2oc (X, ß1'1) j,
ilfaut et il suffit qu'elle soit A-orthogonale au sous-espace (X) (resp.

Théorème 3 (Théorème de dualité). (1) Si l'image de l'opérateur

d'-d" : H2 (X, C) -» L2c (X, Q1'1)

est fermée, les espaces vectoriels (X) 0 (X)' iwz/1 canoniquement

isomorphes.

(2) Si l'image de l 'opérateur

d'-d": H20C (X, C) -> Lf0C(X, Q1-1)

est fermée, les espaces vectoriels 1 (X) et 2éd\ (X)' sont canoniquement

isomorphes.



Remarque 1.

Pour toute partie compacte K de X, l'application

UiJz'd", d'-d") : Hl(X, C) -> L|(X, C) © L2(X, Q0'1) 0 L2K(X, Q1-1)

où j\ et j2 désignent les injections canoniques de H\ (X, C) dans O
et de (X ß0,1) dans Lf (Z, ß0'1) respectivement, est injective d'image
fermée (§ 1, lemme 1).

Proposition 4. Pour toute partie compacte K de X, l 'opérateur

d'-d":Hl(X,C)->L$(X, Q1A)

a une image fermée et un noyau de dimension finie.
En particulier, si X est compacte connexe, l'intégration des formes

différentielles de degré 2 induit un isomorphisme de XP1 (X) sur C.
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