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(chap. II, § 2, théoréme 2). L’assertion est alors une conséquence immédiate
d’un résultat classique sur les opérateurs compacts ([2], théoréme (11.3.2)
et probleme (11.3.2)).

COROLLAIRE (Théoréme de finitude). Si la courbe holomorphe X est
compacte, l’'image de l’opérateur N

d: H' (X,n) » L*(X,z®@Q%"

est fermée. Les espaces H' (X, n) et H° (X, n*®@Q"°) sont alors cano-
niquement isomorphes et les espaces H° (X, n) et H' (X, m) sont de dimen-
sion finie.

C’est une conséquence immédiate de la proposition 2 et du théoréme
de dualité.

§ 3. LE CAS DU LAPLACIEN

Dans ce paragraphe, nous allons étudier ’opérateur différentiel

0> 1 0* N 0*
0z0z 4 \0x*  ox2)’
Soit X un ensemble ouvert de C. On dit qu’une fonction u de > (X, C) est
harmonique si elle vérifie I’équation

0*u 1 /0%u N o*u 0
0zoz  4\ox?  ox:)
Il résulte de cette définition que u est harmonique si et seulement si sa partie
réelle et sa partie imaginaire sont harmoniques.
On désigne par 5 (X, k) (avec k égal & R ou C) ’ensemble des fonctions

harmoniques sur X a valeurs dans k.
Remarquons que # (X, k) est une sous-algébre fermée de %* (X, k).

PROPOSITION 1. Supposons X simplement connexe. Pour qu’une fonction

u de %* (X, R) soit harmonique, il faut et il suffit qu’elle soit la partie réelle
d’une fonction holomorphe.

La suffisance résulte de ce qui précede. Si u est harmonique, la forme

, . ou
différentielle — dz est holomorphe, donc fermée. 1l existe par conséquent

0z
une fonction holomorphe %z sur X telle que
1 0
“dh = 24z
2 0z
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(chap. 0, § 5, théoréme 1, corollaire 1). On en déduit que
Laaemy =% a4 M az 2 g
2 0z ‘ a9z 2=
ce qui démontre I’assertion.

COROLLAIRE 1 (Principe du prolongement analytique). Soit u une
Jfonction harmonique sur un ensemble ouvert connexe X de C. Les conditions
suivantes sont équivalentes :

(1) La fonction u est identiquement nulle.

(2) 1l existe un point de X ou le germe de u est nul.

(3) Il existe un point de X ou toutes les dérivées partielles de u sont
nulles.

11 suffit de montrer que (3) implique (1). On peut supposer u a valeurs
réelles. On désigne par { un point de X ou toutes les dérivées partielles de
u sont nulles et par # une fonction holomorphe telle que

ou 1 0h
u=Re(h) et —=—-—
0z 20z
au voisinage de {. On en déduit que 4 est constante, purement imaginaire,
et que u est nulle au voisinage de {, ce qui établit I’assertion.

CoROLLAIRE 2 (Propriété de la moyenne). Soit u une fonction harmonique
sur un ensemble ouvert X de C et soit D un disque de centre { relative-
ment compact dans X. On a

1
u(l) = E;zJ‘ u(z)dz .
oD

On peut supposer u a valeurs réelles. L’assertion est alors une consé-
quence immédiate de la proposition 1 et de la formule de Cauchy (chap. I,
§ 1, théoréme 1, corollaire 1).

COROLLAIRE 3. Pour tout ensemble ouvert X de C, les topologies
induites sur # (X, k) par L. (X,Kk) et €® (X,K) coincident.

La démonstration est analogue a celle du théoréme de Weierstrass
{(chap. 1, § 1, théoréme 1, corollaire 4).

COROLLAIRE 4 (Principe du maximum). Soit u une fonction harmonique
sur un ensemble ouvert connexe X de C. Si u possede un maximum relatif
en un point { de X, elle est constante.
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En vertu du principe du prolongement analytique, il suffit de montrer
que u est constante au voisinage de {. Quitte a multiplier # par une constante
convenable, on peut supposer u ({) réel positif. Pour r suffisamment petit,
on a par hypothese

M@) = sup |u(z)|<u().

lz—¢]=r

Réciproquement, la propriété de moyenne montre que # ({) est majoré par
M (r). Ceci montre que la fonction g définie par

g(z) = Re(u () ~u(2)

est réelle positive. Elle s’annule en un point z si et seulement si u (z) est
égal a u ({). On conclut en remarquant que I'intégrale de g sur le bord du
disque de centre { et de rayon r est nulle.

LeMME 1. Soit | la fonction définie sur C* par la formule
1 2
I(z) = ~log|z|*.
T

(1) La fonction [ appartient @ L., (C, C).

(2) La fonction [ est faiblement dérivable d’ordre (1,0) et (0,1). On a
ol 1
_— == — et .
Jz 7wz 0Z mnz

La premiére assertion découle d’un calcul élémentaire en coordonnées
polaires. Démontrons la seconde. Pour toute fonction 4 de €% (C, C), on a

1 ol
jkhd,u=——.limJ‘ —hdz A dZ
C C\D,

i,.50 z

(on utilise les notations du paragraphe 1). La formule de Stokes montre
alors que I’on a

1 1 oh
thdu=—_limf lhd2+—-,jl——d2/\d2.
C 2i ¢50 Job, 2t Je 0z

On conclut en remarquant que I’on a

1
—.liva lhdz = 0.
oD

l -0

L’autre assertion se démontre de la méme maniére.
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Désignons par D le disque de centre 0 et de rayon r dans C et par «
une fonction de €< (D, R) égale a 1 au voisinage de 0. On pose

, O . Oa 0%u

== T b=

Si X et X’ sont des ensembles ouverts de C tels que X contienne X' + D,
le produit de convolution induit des applications linéaires continues

(al)x: L2 (X,C) - 4°(X',C) et (BD)=: L2 (X,C) —%* (X', C)

PrROPOSITION 2. Le produit de convolution induit une application linéaire
continue

(al)*: L2 (X, C) - H. (X', C)
et l'on a
az
0z0Z

((al)xu) = u |y + (@'k+a’k+p)*u
pour toute fonction u de L (X, C).
Il résulte du lemme 1 que 'on a
0 , 0 , _
52((“1)*”) = ('D)*u + (ak)*u et BE((ocl)*u) = (o' D*u + (ak)*u .

La premiére assertion résulte donc du lemme de Grothendieck. Ce méme
lemme montre que ’on a

2

phpe ((aD)*u) = u |y + (a'k+o'k+pl)*u
Z

ce qui démontre I’assertion.

Soit X une courbe holomorphe.

On désigne par #° (X) et #*' (X) le noyau et le conoyau de ’appli-
cation

d-d": €X,C) - %X, ",
par #° (X) et . (X) le noyau et le conoyau de P’application
d-d: €.(X,C - %.(X,Q").

Remarquons que I’ensemble #°° (X) s’identifie & Pensemble des fonctions
harmoniques sur X (i.e. les fonctions dont ’expression dans toute carte est
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harmonique). En particulier, 'espace #° (X) est réduit aux fonctions
localement constantes si X est compacte (principe du maximum), ’espace
H#° (X) est nul si X est ouverte (principe du prolongement analytique).

On peut développer pour Popérateur d’ - d’’ une théorie semblable a
celle développée aux paragraphes précédents pour I'opérateur d’’. Nous
nous contenterons d’énoncer les résultats: les démonstrations sont laissées
en exercice au lecteur.

THEOREME 1. On désigne par u une fonction de L. (X, C) et par m
un entier naturel. S’il existe une forme différentielle v de Hp, (X, QY1)
telle que

jX hv == jX u (dl°d") (h)
pour toute fonction h de €% (X, C), alors u appartient & H''? (X,C).

COROLLAIRE (Théoréme de régularité). On conserve les notations et les
hypothéses du théoréme 1. Si v est indéfiniment dérivable, il en est de méme
de u. En particulier, si v est nulle, la fonction u est harmonique.

On appelle paramétrix de d’ - d"’ toute application linéaire continue P de
L (X, QYY) dans HZ (X, C) vérifiant les conditions suivantes

(1) Pour toute forme différentielle » de L2 (X, Q*''), la forme diffé-
rentielle
u — (d'-d"-P) (u)
est indéfiniment dérivable.

(2) Siu est a support compact, il en est de méme de P (u).
Les propriétés suivantes sont alors des conséquences du théoréme de
régularité:

(3) Si u est indéfiniment dérivable, il en est de méme de P (u).
(4) Pour toute fonction v de Hi (X, C), la fonction

v — (P-d"d") (u)

est indéfiniment dérivable.

THEOREME 2. L’opérateur d' - d'"' posséde une paramétrix.

COROLLAIRE. (1) Par restriction et passage aux quotients, les injections
canoniques de €” (X, C) et € (X, Q") dans Hi (X, C) et L2 (X, QM)

loc loc
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respectivement induisent des bijections de #°(X) et #'(X) sur le noyau
et le conoyau de [’opérateur

d'-d": H,.(X,C) - L2 (X, Q"").

(2) Par restriction et passage aux quotients, les injections canoniques
de €% (X, C) et 4= (X, Q%Y dans H> (X, C) et L% (X, Q%Y respective-
ment induisent des bijections de H#°(X) et HL(X) sur le noyau et le
conoyau de [’opérateur

d-d": H2(X,C) — L:(X, Qb1
Considérons les dualités canoniques d’espaces vectoriels topologiques

A: L2(X, Q") x L (X,C) - C
et
A4: LE (X, Q%) x L2(X,C) - C.

L’ensemble des fonctions harmoniques (resp. harmoniques a support
compact) sur X s’identifie & un sous-espace fermé de L2 (X, C) (resp.
L% (X, C)).

PROPOSITION 3. Pour qu’une forme différentielle u de L% (X, Q')
(resp. L2 (X, QYY) soit adhérente a [’image de ’opérateur
d-d": H>(X,C) » L2 (X, Q")
(resp. d'-d": HL.(X,C) - Li (X, Q") ),

il faut et il suffit qu’elle soit A-orthogonale au sous-espace H#° (X) (resp.
He(X)).

THEOREME 3 (Théoréme de dualité). (1) Si l'image de ’opérateur
d-d" : H*(X,C) » L2 (X, Q")

est fermée, les espaces vectoriels H L(X) et #° (X)) sont canoniguement
isomorphes.

(2) Sil’image de l’opérateur
d-d": H: (X,C) - L{ (X, Q")

est fermée, les espaces vectoriels #*' (X) et #°(X) sont canoniquement
isomorphes.
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Remarque 1.
Pour toute partie compacte K de X, I’application
(jioJzrd’,d"d") s HE(X,0) » LY (X, ©) ® Lg (X, Q") ® L (X, ")

ol j, et j, désignent les injections canoniques de Hg (X, C) dans L Z(X, C)
et de Hyg (X, Q°1) dans Lz (X, Q%) respectivement, est injective d’image
fermée (§ 1, lemme 1).

PROPOSITION 4. Pour toute partie compacte K de X, [’opérateur
d-d : Hp(X,C) —» Lg(X, QYY)

a une image fermée et un noyau de dimension finie.
En particulier, si X est compacte connexe, l’intégration des formes
différentielles de degré 2 induit un isomorphisme de #' (X) sur C.
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