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§ 2. DUALITE

On désigne toujours par X une courbe holomorphe et par © un fibré
vectoriel holomorphe sur X.

Rappelons que 1'on a deux dualités canoniques d’espaces vectoriels
topologiques (chap. 0, § 4, exemple 1)

A L2(X,z®@Q%Y) x L (X, n*®Q0"% - C
4: L2 (X, 7®@Q%Y) x L2 (X,n*®Q"°%) > C.

et

L’ensemble des sections holomorphes (resp. holomorphes a support com-
pact) de 7* @ QU° s’identifie & un sous-espace fermé de Lj . (X, n* @ Q1°)
(resp. L2 (X, n* @ Q?)).

PROPOSITION 1. Pour qu'une section u de L (X, n®Q%Y) (resp.
L2 (X, n®@Q%Y)) soit adhérente a l'image de I’opérateur

loc
d': H (X,7) » L} (X,7®Q%")
(resp. d": Hp (X,n) > LL (X, m@Q%"))

loc

il faut et il suffit qu’elle soit A— orthogonale au sous-espace 0 (X, n* @ Q%)
(resp. 0, (X, n* @QY%)).

Pour toute section 4 de H. (X, n) et toute section v de 0 (X, n* @ Q°),
on a

Ad'h,0) = [x(@hv) = — [x(h,dv) =0,

ce qui montre la nécessité de la condition puisque la forme bilinéaire 4
est séparément continue.

Réciproquement, désignons par o une forme linéaire continue sur
L2 (X, n®Q%1) nulle sur 'image de d”. Par dualité, il existe une section
v de L (X, n* @ Q1°) telle que

loc
4( ,v) = a.
En particulier, pour toute section 2 de ¥% (X, n), on a
A(d'h,v) = [x(@h,v) = a(dh) =0.

Il résulte alors du théoré¢me de régularité (§ 1, théoréme 2, corollaire) que
v est holomorphe et 'on a

a(u) = A(w,v) = 0.

On conclut & I’aide du théoréme de Hahn-Banach.

L’Enseignement mathém., t. XXI, fasc. 2-3-4. 17
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THEOREME 1. Par restriction et passage au quotient, les bijections cano-
niques
A0 L2 (X, n@Q%Y) » LE (X, n* QY0
et
Ay L2 (X, n®02%Y) —» L2 (X, n*®@Q%°)

induisent des bijections

A L2(X,7@Q%YH)/Im d” - 0 (X, n* @ QL)

et

~

Ay L (X, n@Q)m d” — 0.(X, 1% @Q'"°)' .

Il résulte de la proposition 1 que les applications 4, et 4, sont bien
définies et injectives. Le théoréme de Hahn-Banach montre qu’elles sont
surjectives.

CoROLLAIRE (Théoréme de dualité). (1) Si l’image de I’opérateur
d": H}(X,m) » LZ(X,n®Q%")

est fermée, les espaces vectoriels H. (X, ) et H°(X,n*@Q%°) sont
canoniquement isomorphes.
(2) Sil’image de |’opérateur

d": Hi,,(X,n) - L (X, n®Q%")

est fermée, les espaces vectoriels H' (X, 7n) et H2(X,n*Q@Q“%) sont
canoniquement isomorphes.

Remarque 1.

Il résulte aisément du théoréme du graphe fermé que les applications

~

A, et 4, du théoréme 1 sont des isomorphismes.

PROPOSITION 2. Pour toute partie compacte K de X, [’opérateur
d’: Hy(X,n) » LE (X, n®@Q%")

a une image fermée et un noyau de dimension finie.
Désignons par j I’injection canonique de Hg (X, n) dans L (X, 7) et
considérons les applications linéaires continues

(4"
Hi(X,m) == LE(X,m) © L} (X, 7®0%)

(—J,0)

L’application (j, d"’) est injective d’image fermée (§ 1, remarque 3). L’appli-
cation (—j,0) est un opérateur compact en vertu du lemme de Rellich
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(chap. II, § 2, théoréme 2). L’assertion est alors une conséquence immédiate
d’un résultat classique sur les opérateurs compacts ([2], théoréme (11.3.2)
et probleme (11.3.2)).

COROLLAIRE (Théoréme de finitude). Si la courbe holomorphe X est
compacte, l’'image de l’opérateur N

d: H' (X,n) » L*(X,z®@Q%"

est fermée. Les espaces H' (X, n) et H° (X, n*®@Q"°) sont alors cano-
niquement isomorphes et les espaces H° (X, n) et H' (X, m) sont de dimen-
sion finie.

C’est une conséquence immédiate de la proposition 2 et du théoréme
de dualité.

§ 3. LE CAS DU LAPLACIEN

Dans ce paragraphe, nous allons étudier ’opérateur différentiel

0> 1 0* N 0*
0z0z 4 \0x*  ox2)’
Soit X un ensemble ouvert de C. On dit qu’une fonction u de > (X, C) est
harmonique si elle vérifie I’équation

0*u 1 /0%u N o*u 0
0zoz  4\ox?  ox:)
Il résulte de cette définition que u est harmonique si et seulement si sa partie
réelle et sa partie imaginaire sont harmoniques.
On désigne par 5 (X, k) (avec k égal & R ou C) ’ensemble des fonctions

harmoniques sur X a valeurs dans k.
Remarquons que # (X, k) est une sous-algébre fermée de %* (X, k).

PROPOSITION 1. Supposons X simplement connexe. Pour qu’une fonction

u de %* (X, R) soit harmonique, il faut et il suffit qu’elle soit la partie réelle
d’une fonction holomorphe.

La suffisance résulte de ce qui précede. Si u est harmonique, la forme

, . ou
différentielle — dz est holomorphe, donc fermée. 1l existe par conséquent

0z
une fonction holomorphe %z sur X telle que
1 0
“dh = 24z
2 0z
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