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§ 2. Dualité

On désigne toujours par X une courbe holomorphe et par n un fibré

vectoriel holomorphe sur X.

Rappelons que l'on a deux dualités canoniques d'espaces vectoriels

topologiques (chap. 0, § 4, exemple 1)

A: Lç (X, U0Q0'1) x Lf0C(X,n* ®Q1,0) -» C
et

A: L12oc(Z,7i0ß0'1) x L2 (X, 7i* 0O1'0) ->• C

L'ensemble des sections holomorphes (resp. holomorphes à support compact)

de n* ® É21'0 s'identifie à un sous-espace fermé de Lfoc (X, 7i*®Q1,0)

(resp. L2c{X,7i*®QU0)).

Proposition 1. Pour qu'une section u de L2(X, iz®Q0,i) (resp.
Lfoc (X, n ®Q0,1)) soit adhérente à l'image de l'opérateur

d": H\ (X, n) -» L2 (X,7i®Q0,1)
d": Hloc(X,n)^L?oc(X,n®Q0>1))

il faut et il suffit qu 'elle soit A — orthogonale au sous-espace G (X, 7t* ® ß1'0)

(resp. Gc(X,n*®QU0)).
Pour toute section h de Hl (X, n) et toute section v de G (X, n* ®Q1,0),

on a

A(d"h,v) — Jx(h,d"v) 0,

ce qui montre la nécessité de la condition puisque la forme bilinéaire A

est séparément continue.

Réciproquement, désignons par a une forme linéaire continue sur
L2c (X, tl®Q0,1) nulle sur l'image de d". Par dualité, il existe une section
v de L(oc (X, 7r* ® ß1'0) telle que

A v) a

En particulier, pour toute section h de ^ (X, n), on a

A(d"h,v) §x(d h, v) a(d"h) 0,

Il résulte alors du théorème de régularité (§ 1, théorème 2, corollaire) que
v est holomorphe et l'on a

a (m) — A (u,v) 0

On conclut à l'aide du théorème de Hahn-Banach.
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Théorème 1. Par restriction et passage au quotient, les bijections
canoniques

A x: L2c(X,tl®Q°'1)-
et

A2:Lfoc(X,n®Q0-1)-
induisent des bijections

Ay: L2(X,n®Q°'1)lhTd" ->
et

~A2: Lf0C(X,n®Q°'1)lï^d" -+&c(X,n*®Qu.

Il résulte de la proposition 1 que les applications A1 et A2 sont bien
définies et injectives. Le théorème de Hahn-Banach montre qu'elles sont
surjectives.

Corollaire (Théorème de dualité). (1) Si l'image de l'opérateur

d":Hl(X,n)-*
est fermée, les espaces vectoriels H* (X, n) et H° (X, n* ® ß1,0)' sont

canoniquement isomorphes.

(2) Si l 'image de l 'opérateur

d": HL(X,n) Lfoc(X,n®Q

est fermée, les espaces vectoriels H1 (X, n) et H® (X, ti* ®Q1,0)' sont

canoniquement isomorphes.

Remarque 1.

Il résulte aisément du théorème du graphe fermé que les applications

A x et A 2 du théorème 1 sont des isomorphismes.

Proposition 2. Pour toute partie compacte K de X, l'opérateur

d": Hk(X, n) -> L|(X, n(g)Q0,i)

a une image fermée et un noyau de dimension finie.
Désignons par j l'injection canonique de H& (X, n) dans L| (X, n) et

considérons les applications linéaires continues

Hi (X, n) ==gp Li (X, n) ® L| (X, n®Q0'1)

L'application (j, d") est injective d'image fermée (§ 1, remarque 3). L'application

—j, 0) est un opérateur compact en vertu du lemme de Rellich
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(chap. II, § 2, théorème 2). L'assertion est alors une conséquence immédiate

d'un résultat classique sur les opérateurs compacts ([2], théorème (11.3.2)

et problème (11.3.2)).

Corollaire (Théorème de finitude). Si la courbe holomorphe X est

compacte, / 'image de l'opérateur

est fermée. Les espaces H1 (X, n) et H° (X, 7r*®ß1,0)' sont alors cano-

niquement isomorphes et les espaces H° (X, n) et H1 (X, n) sont de dimension

finie.
C'est une conséquence immédiate de la proposition 2 et du théorème

de dualité.

Soit X un ensemble ouvert de C. On dit qu'une fonction u de (X, C) est

harmonique si elle vérifie l'équation

Il résulte de cette définition que u est harmonique si et seulement si sa partie
réelle et sa partie imaginaire sont harmoniques.

On désigne par (X, k) (avec k égal à R ou C) l'ensemble des fonctions
harmoniques sur X à valeurs dans k.

Remarquons que (X, k) est une sous-algèbre fermée de (X, k).

Proposition 1. Supposons X simplement connexe. Pour qu 'une fonction
u de ^2 (X, R) soit harmonique, ilfaut et il suffit qu 'elle soit la partie réelle
d'une fonction holomorphe.

La suffisance résulte de ce qui précède. Si u est harmonique, la forme
du

différentielle — dz est holomorphe, donc fermée. Il existe par conséquent
dz

une fonction holomorphe h sur X telle que

d": H^X,^ -> L2(X,7t®ß°'1,>

§ 3. Le cas du Laplacien

Dans ce paragraphe, nous allons étudier l'opérateur différentiel


	§2. Dualité

