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CuAPITRE III

THEOREME DE DUALITE

§ 1. LEMME DE GROTHENDIECK

Pour tout couple d’entiers (J, k), on définit par récurrence un opérateur
différentiel sur C en posant

6j+k 6 aj+k—1 a aj+k—1
d0z/ 0z 0z (azf*l azk) oz (6’zj azk-l) ‘
Pour tout entier m au moins égal a j + k£ et pour tout ensemble ouvert

X de C, cet opérateur se prolonge en une application linéaire continue de
a]+k

0z' 07"
Pour toute fonction u de Hj,, (X, C) et toute fonction 4 de €% (X, C),
on a la formule d’intégration par parties

aj+ku aj+kh
j . hduy = (— 1)”"‘[ U————du .

x 0z/ 07" x 02/ 0z

Hp. (X, C) dans Hj,, i~k (X, C) que ’on désigne encore par ———

En effet, pour % fixé, les deux membres sont des formes linéaires continues
sur H.. (X, C) qui coincident sur ¥% (X, C).

Remarquons d’autre part que la topologie de Hi,. (X, C) est définie
par la famille de semi-normes
aj+k

“ “m,K = nax 529 05

Jtk=m

L2,k

lorsque K parcourt ’ensemble des parties compactes de X.

LeMME 1. Pour toute fonction u de H7*' (X, C), ona

ou _
oz|l

ou
0z ||,
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Par récurrence, on se raméne immédiatement au cas ou m est nul, par
* r . . r \ ol G 9 7
densité et continuité au cas ol u appartient & €% (X, C). La formule d’inté-
gration par parties montre alors que I’on a

2 2 Ol 0%
_a_u = 5—u dﬂ:J gﬁﬁidy:—J‘ u u‘_’d,u
0z ||;2 x |0z x 0z 0z y 0z0z
et
2 2 ou ol 0%u
0Z |12 x | 0z x 0Z 0z x 0Z0z

ce qui démontre I’assertion.

Remarque 1.
11 résulte en particulier du lemme 1 que 'on a

ou
0z

)

pour toute fonction u de H (X, C). Par conséquent, I'application

July = max Ju]

0

ou j désigne I'injection canonique est continue d’image fermée pour toute
partie compacte K de X.

Rappelons que les fonctions k et k définies sur C* par
]
k(z) = — et k(z) = —
nZ nZ

appartiennent a L, (C, C).
Désignons par D le disque de rayon r et de centre 0 dans C et par o une
fonction de €% (D, R) égale a 1 au voisinage de 0. On pose

B oa .,  Oa

oz TR

Remarquons que les fonctions o'k et o’k appartiennent & ¥% (D, C). Par
conséquent, si X et X’ sont des ensembles ouverts de C tels que X contienne
X' + D, le produit de convolution induit des applications linéaires continues

(ak)*: L. (X, C) » L (X',C) et (ak)*:L. (X,C)—>LL (X', C)
('k)*: L, (X,C) - 4 (X',C) et (a'k)*:L. (X,C) - %> (X', C).

o' et o
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THEOREME 1 (Grothendieck). Le produit de convolution induit des applica-
tions linéaires continues

(ak)#: L (X,C) » HL (X', C) et (ak)*: L (X,C) —» H.. (X', C)

et l'on a
0 . a,
a5 (@) = ulp + (Hru et ((@Ryru) = fx + @R

pour toute fonction u de L (X, C).

Soit u une fonction de ¥* (X, C). On sait que (ak)*u appartient a
€° (X',C)etl'on a

du (z) dz A dZ

1
(o) =u) () =—J u(Z)OC(C—Z) : J u(l+z)a(—z)

" 2in
pour tout point { de X’. On a donc

i ;
< ((ock)*u) (O =tlimo— |  Z(C+Da(-2)

¢~0 <17 Jp\p, 0z

dz A dZ

ou D, désigne le disque de centre O et de rayon &. La formule de Stokes
(chap. 0, § 4, théoréme 2, corollaire) montre que 1’on a

1 d
< ((ock)«u)(é) =lim — | (C+Z)oc(—z)——z—

e=0 <417 Jop,

) 1 dz A dz
+ lim -— u(l+2)a" (—2) —————
£—>0 2in D\D;
On a d’autre part
o1 dz . 1 [?*™ 9 0
lim— u({+z)a(—z)— =lim— u(l+ee)a(—ee”ydo =u (0
e~0 <17 Jop, z -0 27 J o ’
et
1 dz A dZ 1 du(z
lim — ul+2)a (—2) ——— =—fu(z)oc ((—2) l()
e=0 <7 Jp\p, T Jx {—

(@)

ce qui démontre la formule dans ce cas.

: Désignons par A une fonction de 47 (X',R) et par K un ensemble
~ compact de X contenant I’ensemble supp (1) + D. En vertu de ce qui
précede, il existe des constantes ¢’ et ¢’ telles que
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-~

<cJu

L2,K
L2

| o
i@l elulis o | (G0e0)

pour toute fonction u de ¥ (X, C). Ceci montre que I’application (ok)*
de € (X, C) dans ¥® (X', C) est continue lorsque I’on munit la source
de la topologie induite par L. (X, C) et le but de la topologie induite par
H._(X’,C) (remarque 1). Par densité et continuité, on en déduit le
théoréme pour I'application (xk)#.L’assertion relative & («k)* s’en déduit
par conjugaison.

Remarque 2.

On montre de la méme maniére que le produit de convolution induit des
applications linéaires continues

k#: L*(C,C) » HL.(C,C) et k=: L%(C,C) - H,.(C,C)
et que 'on a

ﬁ(k*u) =u et a—OZ(E*u) = u

pour toute fonction u de L (C, C). En particulier, les applications induites

g 0 . . : .
par — et re sur les germes a I’origine de fonctions continiment dérivables
z Z

sont surjectives.

Soit X une courbe holomorphe et soit = un fibré vectoriel holomorphe
sur X.
L opérateur d" se prolonge en une application continue de H"'' (X, n)

dans Hj», (X, n ®Q%"). Pour toute section u de H._ (X, 7) et toute section
hde €2 (X, n* ®@Q"°), on a la formule d’intégration par parties

fx@u,h)y = = fx@,d'h) 1.

En effet, pour 4 fixé, les deux membres sont des formes linéaires continues
sur H._ (X, n) qui coincident sur €% (X, n) (chap. 0, §4, théoréme 2,
corollaire et chap. I, § 2, lemme 5).

Remarque 3.
L’application

(j,d):Hg(X,m) » LY (X,7) ® L% (X, n@Q%")

1) Les notations sont celles de chap. 0, § 4, exemple 1.
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ou j désigne I'injection canonique est continue d’image fermée pour toute
partie compacte K et X. C’est une conséquence immédiate des définitions et
de la remarque 1.

THEOREME 2. On désigne par u une section de L} (X, ) et par m un
entier naturel. S’il existe une section v de H[' (X, n®Q%) telle que

Jx(@,h) = — [x(u,d"h)
pour toute section h de €% (X, n* ® Q%°), alors u appartienta H" ' (X, 7).

loc

La question étant locale, on se raméne immédiatement au cas ou X est

un ensemble ouvert de C et 7 le fibré produit Cx. L’hypothése signifie donc
ou

que la dérivée faible P existe et appartient a Hj,. (X, C). Désignons par
Z

X’ un ensemble ouvert relativement compact dans X, par D un disque de

centre O tel que X contienne X’ + D et par « une fonction de €% (X, R)

égale a 1 au voisinage de 0. 1l résulte du théoréme 1 que 'on a

, — — * — (o — * . — %1 .
u |y oz (@ u) u = (ak)x — — (k)*u

Par récurrence sur m, il résulte de ce méme théoréme que u l x appartient
a H'*' (X', ©), ce qui démontre I’assertion.

loc

CoROLLAIRE (Théoréme de régularité). On conserve les notations et les
hypothéses du théoréme 2. Si v est indéfiniment dérivable, il en est de méme
de u. En particulier, si v est nulle, la section u est holomorphe.

C’est une conséquence immédiate du théoréeme 2 et du lemme de Sobolev
(chap. II, § 2, théoréme 1, corollaire).

LEMME 2. Pour tout point x de X, il existe des voisinages ouverts U
et V de x et une application linéaire continue P de L% (X, n®Q%")
dans H,.. (U, ) vérifiant les conditions suivantes :

(1) Pour toute section u de L. (X, n®Q%"), la section
uly —(d"P)(u)
est indéfiniment dérivable.
(2) L’application ~ P  s’annule sur [’ensemble des sections de
L2 (X, n®Q%Y) dont la restriction @ V' est nulle.

La question étant locale, on peut supposer que X est un ensemble ouvert
de C et que 7 est le fibré produit Cy. On désigne par ¥ un voisinage ouvert
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de x dans X, par U un voisinage ouvert relativement compact de x dans V’
et par D un disque centré & I'origine tel que ¥ contienne U + D. Toute
section u de L. (X, n® Q%) s’écrit

u = (Uy,...,u,)dz
ol Uy, ..., , sont des fonctions de L2 (X, C). 1l suffit de poser

P(u) = ((ak)*uy, ..., (ak)*u,)

ol « est une fonction de ¥* (D, R) égale a 1 au voisinage de 0 (théoréme 1).

THEOREME 3. Il existe une application linéaire continue P  de
Li. (X, n®Q°%Y) dans H,,, (X, n) vérifiant les conditions suivantes :

(1) Pour toute section u de L (X, n®Q%"Y), la section

u —(d"P)(u)
est indéfiniment dérivable.

(2) Si u est a support compact, il en est de méme de P (u).

Il existe deux recouvrements ouverts localement finis (U)),; et (V,),r
de X, tels que U, soit relativement compact dans V, et V, relativement com-
pact dans X et, pour chaque indice 7, une application linéaire continue P, de
L2 (X, n®Q%Y) dans H... (U, n) vérifiant les conditions du lemme 2. On
désigne par (o,),; une partition de 'unité subordonnée au recouvrement
(U)er-

Pour toute section u de L (X, n®Q%!) et pour tout couple (1, )
d’indices la section

Vir = Pt(”) —'Pk(u)

est indéfiniment dérivable sur U, n U, (théoréme de regularité). On dési-

~

gne par v, la section de ¥® (U,, n) obtenue en prolongeant «,v,, par 0 et
I’on pose

v, = Y v
kel \ {1}

(chap. 0, § 2, lemme 1). On a
V) =0 = Uy, = Pz(u) —-PK(U),

et par conséquent les sections P, (u) — v, se recollent en une section P (u)
de H. (X, ). Il est clair que P est linéaire continue et 'on a

uly, =@ P)W) |y, = ulg, —(d"P)(w) +d",

ce qui démontre (1).
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Pour démontrer (2), il suffit de remarquer que le support de P (u) est
contenu dans v U,

1el’

I' = {ze[[ il existe k e I'tel que U, n U, # & et V,.nsupp(u) # & }.

Ceci résulte aisément de la construction et de ce que P, (1) est nul chaque
fois que le support de u ne rencontre pas V.

On appelle paramétrix de d’’ toute application linéaire continue P
vérifiant les conditions du théoréme 3.

Si P est une paramétrix de d’’, le théoréme de régularité montre que
P (u) est indéfiniment dérivable si u I’est. De méme, pour toute section v
de H., (X, n) la section

v — (P-d") (v)

est indéfiniment dérivable.

Il résulte d’autre part du théoréme du graphe fermé que les applications
linéaire

1—d"P: L (X, 1®Q%) - ¢° (X, n®Q%")

et

1-Pd:H.(X,n) » ¢ (X,7n),

loc

1-d"P:L2(X,1®2%) - 4% (X, n®Q%")
et
1—Pd":H:(X,n) - €2 (X,n)
sont continues.

PrROPOSITION 1. (1) Par restriction et passage aux quotients, les injections
canoniques de €* (X, n) et %* (X, n@Q%Y) dans H.. (X, n) et
Ll (X, n®Q%Y) respectivement induisent des isomorphismes de HC (X, )
et H' (X, n) sur le noyau et le conoyau de [’application

d’: H..(X,n) » L (X, 1®Q%").

(2) Par restriction et passage aux quotients, les injections canoniques
de 42 (X,n) et €°(X,n®Q%Y) dans H.(X,n) et L>(X,n®Q%")
respectivement induisent des isomorphismes de HY (X, n) et HL (X, n) sur
le noyau et le conoyau de [’application

d’: H:(X,n) » L>(X,n®Q%").

C’est une conséquence immédiate de I’existence d’une paramétrix.
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