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CuAPITRE III

THEOREME DE DUALITE

§ 1. LEMME DE GROTHENDIECK

Pour tout couple d’entiers (J, k), on définit par récurrence un opérateur
différentiel sur C en posant

6j+k 6 aj+k—1 a aj+k—1
d0z/ 0z 0z (azf*l azk) oz (6’zj azk-l) ‘
Pour tout entier m au moins égal a j + k£ et pour tout ensemble ouvert

X de C, cet opérateur se prolonge en une application linéaire continue de
a]+k

0z' 07"
Pour toute fonction u de Hj,, (X, C) et toute fonction 4 de €% (X, C),
on a la formule d’intégration par parties

aj+ku aj+kh
j . hduy = (— 1)”"‘[ U————du .

x 0z/ 07" x 02/ 0z

Hp. (X, C) dans Hj,, i~k (X, C) que ’on désigne encore par ———

En effet, pour % fixé, les deux membres sont des formes linéaires continues
sur H.. (X, C) qui coincident sur ¥% (X, C).

Remarquons d’autre part que la topologie de Hi,. (X, C) est définie
par la famille de semi-normes
aj+k

“ “m,K = nax 529 05

Jtk=m

L2,k

lorsque K parcourt ’ensemble des parties compactes de X.

LeMME 1. Pour toute fonction u de H7*' (X, C), ona

ou _
oz|l

ou
0z ||,
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Par récurrence, on se raméne immédiatement au cas ou m est nul, par
* r . . r \ ol G 9 7
densité et continuité au cas ol u appartient & €% (X, C). La formule d’inté-
gration par parties montre alors que I’on a

2 2 Ol 0%
_a_u = 5—u dﬂ:J gﬁﬁidy:—J‘ u u‘_’d,u
0z ||;2 x |0z x 0z 0z y 0z0z
et
2 2 ou ol 0%u
0Z |12 x | 0z x 0Z 0z x 0Z0z

ce qui démontre I’assertion.

Remarque 1.
11 résulte en particulier du lemme 1 que 'on a

ou
0z

)

pour toute fonction u de H (X, C). Par conséquent, I'application

July = max Ju]

0

ou j désigne I'injection canonique est continue d’image fermée pour toute
partie compacte K de X.

Rappelons que les fonctions k et k définies sur C* par
]
k(z) = — et k(z) = —
nZ nZ

appartiennent a L, (C, C).
Désignons par D le disque de rayon r et de centre 0 dans C et par o une
fonction de €% (D, R) égale a 1 au voisinage de 0. On pose

B oa .,  Oa

oz TR

Remarquons que les fonctions o'k et o’k appartiennent & ¥% (D, C). Par
conséquent, si X et X’ sont des ensembles ouverts de C tels que X contienne
X' + D, le produit de convolution induit des applications linéaires continues

(ak)*: L. (X, C) » L (X',C) et (ak)*:L. (X,C)—>LL (X', C)
('k)*: L, (X,C) - 4 (X',C) et (a'k)*:L. (X,C) - %> (X', C).

o' et o
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THEOREME 1 (Grothendieck). Le produit de convolution induit des applica-
tions linéaires continues

(ak)#: L (X,C) » HL (X', C) et (ak)*: L (X,C) —» H.. (X', C)

et l'on a
0 . a,
a5 (@) = ulp + (Hru et ((@Ryru) = fx + @R

pour toute fonction u de L (X, C).

Soit u une fonction de ¥* (X, C). On sait que (ak)*u appartient a
€° (X',C)etl'on a

du (z) dz A dZ

1
(o) =u) () =—J u(Z)OC(C—Z) : J u(l+z)a(—z)

" 2in
pour tout point { de X’. On a donc

i ;
< ((ock)*u) (O =tlimo— |  Z(C+Da(-2)

¢~0 <17 Jp\p, 0z

dz A dZ

ou D, désigne le disque de centre O et de rayon &. La formule de Stokes
(chap. 0, § 4, théoréme 2, corollaire) montre que 1’on a

1 d
< ((ock)«u)(é) =lim — | (C+Z)oc(—z)——z—

e=0 <417 Jop,

) 1 dz A dz
+ lim -— u(l+2)a" (—2) —————
£—>0 2in D\D;
On a d’autre part
o1 dz . 1 [?*™ 9 0
lim— u({+z)a(—z)— =lim— u(l+ee)a(—ee”ydo =u (0
e~0 <17 Jop, z -0 27 J o ’
et
1 dz A dZ 1 du(z
lim — ul+2)a (—2) ——— =—fu(z)oc ((—2) l()
e=0 <7 Jp\p, T Jx {—

(@)

ce qui démontre la formule dans ce cas.

: Désignons par A une fonction de 47 (X',R) et par K un ensemble
~ compact de X contenant I’ensemble supp (1) + D. En vertu de ce qui
précede, il existe des constantes ¢’ et ¢’ telles que
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-~

<cJu

L2,K
L2

| o
i@l elulis o | (G0e0)

pour toute fonction u de ¥ (X, C). Ceci montre que I’application (ok)*
de € (X, C) dans ¥® (X', C) est continue lorsque I’on munit la source
de la topologie induite par L. (X, C) et le but de la topologie induite par
H._(X’,C) (remarque 1). Par densité et continuité, on en déduit le
théoréme pour I'application (xk)#.L’assertion relative & («k)* s’en déduit
par conjugaison.

Remarque 2.

On montre de la méme maniére que le produit de convolution induit des
applications linéaires continues

k#: L*(C,C) » HL.(C,C) et k=: L%(C,C) - H,.(C,C)
et que 'on a

ﬁ(k*u) =u et a—OZ(E*u) = u

pour toute fonction u de L (C, C). En particulier, les applications induites

g 0 . . : .
par — et re sur les germes a I’origine de fonctions continiment dérivables
z Z

sont surjectives.

Soit X une courbe holomorphe et soit = un fibré vectoriel holomorphe
sur X.
L opérateur d" se prolonge en une application continue de H"'' (X, n)

dans Hj», (X, n ®Q%"). Pour toute section u de H._ (X, 7) et toute section
hde €2 (X, n* ®@Q"°), on a la formule d’intégration par parties

fx@u,h)y = = fx@,d'h) 1.

En effet, pour 4 fixé, les deux membres sont des formes linéaires continues
sur H._ (X, n) qui coincident sur €% (X, n) (chap. 0, §4, théoréme 2,
corollaire et chap. I, § 2, lemme 5).

Remarque 3.
L’application

(j,d):Hg(X,m) » LY (X,7) ® L% (X, n@Q%")

1) Les notations sont celles de chap. 0, § 4, exemple 1.
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ou j désigne I'injection canonique est continue d’image fermée pour toute
partie compacte K et X. C’est une conséquence immédiate des définitions et
de la remarque 1.

THEOREME 2. On désigne par u une section de L} (X, ) et par m un
entier naturel. S’il existe une section v de H[' (X, n®Q%) telle que

Jx(@,h) = — [x(u,d"h)
pour toute section h de €% (X, n* ® Q%°), alors u appartienta H" ' (X, 7).

loc

La question étant locale, on se raméne immédiatement au cas ou X est

un ensemble ouvert de C et 7 le fibré produit Cx. L’hypothése signifie donc
ou

que la dérivée faible P existe et appartient a Hj,. (X, C). Désignons par
Z

X’ un ensemble ouvert relativement compact dans X, par D un disque de

centre O tel que X contienne X’ + D et par « une fonction de €% (X, R)

égale a 1 au voisinage de 0. 1l résulte du théoréme 1 que 'on a

, — — * — (o — * . — %1 .
u |y oz (@ u) u = (ak)x — — (k)*u

Par récurrence sur m, il résulte de ce méme théoréme que u l x appartient
a H'*' (X', ©), ce qui démontre I’assertion.

loc

CoROLLAIRE (Théoréme de régularité). On conserve les notations et les
hypothéses du théoréme 2. Si v est indéfiniment dérivable, il en est de méme
de u. En particulier, si v est nulle, la section u est holomorphe.

C’est une conséquence immédiate du théoréeme 2 et du lemme de Sobolev
(chap. II, § 2, théoréme 1, corollaire).

LEMME 2. Pour tout point x de X, il existe des voisinages ouverts U
et V de x et une application linéaire continue P de L% (X, n®Q%")
dans H,.. (U, ) vérifiant les conditions suivantes :

(1) Pour toute section u de L. (X, n®Q%"), la section
uly —(d"P)(u)
est indéfiniment dérivable.
(2) L’application ~ P  s’annule sur [’ensemble des sections de
L2 (X, n®Q%Y) dont la restriction @ V' est nulle.

La question étant locale, on peut supposer que X est un ensemble ouvert
de C et que 7 est le fibré produit Cy. On désigne par ¥ un voisinage ouvert
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de x dans X, par U un voisinage ouvert relativement compact de x dans V’
et par D un disque centré & I'origine tel que ¥ contienne U + D. Toute
section u de L. (X, n® Q%) s’écrit

u = (Uy,...,u,)dz
ol Uy, ..., , sont des fonctions de L2 (X, C). 1l suffit de poser

P(u) = ((ak)*uy, ..., (ak)*u,)

ol « est une fonction de ¥* (D, R) égale a 1 au voisinage de 0 (théoréme 1).

THEOREME 3. Il existe une application linéaire continue P  de
Li. (X, n®Q°%Y) dans H,,, (X, n) vérifiant les conditions suivantes :

(1) Pour toute section u de L (X, n®Q%"Y), la section

u —(d"P)(u)
est indéfiniment dérivable.

(2) Si u est a support compact, il en est de méme de P (u).

Il existe deux recouvrements ouverts localement finis (U)),; et (V,),r
de X, tels que U, soit relativement compact dans V, et V, relativement com-
pact dans X et, pour chaque indice 7, une application linéaire continue P, de
L2 (X, n®Q%Y) dans H... (U, n) vérifiant les conditions du lemme 2. On
désigne par (o,),; une partition de 'unité subordonnée au recouvrement
(U)er-

Pour toute section u de L (X, n®Q%!) et pour tout couple (1, )
d’indices la section

Vir = Pt(”) —'Pk(u)

est indéfiniment dérivable sur U, n U, (théoréme de regularité). On dési-

~

gne par v, la section de ¥® (U,, n) obtenue en prolongeant «,v,, par 0 et
I’on pose

v, = Y v
kel \ {1}

(chap. 0, § 2, lemme 1). On a
V) =0 = Uy, = Pz(u) —-PK(U),

et par conséquent les sections P, (u) — v, se recollent en une section P (u)
de H. (X, ). Il est clair que P est linéaire continue et 'on a

uly, =@ P)W) |y, = ulg, —(d"P)(w) +d",

ce qui démontre (1).
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Pour démontrer (2), il suffit de remarquer que le support de P (u) est
contenu dans v U,

1el’

I' = {ze[[ il existe k e I'tel que U, n U, # & et V,.nsupp(u) # & }.

Ceci résulte aisément de la construction et de ce que P, (1) est nul chaque
fois que le support de u ne rencontre pas V.

On appelle paramétrix de d’’ toute application linéaire continue P
vérifiant les conditions du théoréme 3.

Si P est une paramétrix de d’’, le théoréme de régularité montre que
P (u) est indéfiniment dérivable si u I’est. De méme, pour toute section v
de H., (X, n) la section

v — (P-d") (v)

est indéfiniment dérivable.

Il résulte d’autre part du théoréme du graphe fermé que les applications
linéaire

1—d"P: L (X, 1®Q%) - ¢° (X, n®Q%")

et

1-Pd:H.(X,n) » ¢ (X,7n),

loc

1-d"P:L2(X,1®2%) - 4% (X, n®Q%")
et
1—Pd":H:(X,n) - €2 (X,n)
sont continues.

PrROPOSITION 1. (1) Par restriction et passage aux quotients, les injections
canoniques de €* (X, n) et %* (X, n@Q%Y) dans H.. (X, n) et
Ll (X, n®Q%Y) respectivement induisent des isomorphismes de HC (X, )
et H' (X, n) sur le noyau et le conoyau de [’application

d’: H..(X,n) » L (X, 1®Q%").

(2) Par restriction et passage aux quotients, les injections canoniques
de 42 (X,n) et €°(X,n®Q%Y) dans H.(X,n) et L>(X,n®Q%")
respectivement induisent des isomorphismes de HY (X, n) et HL (X, n) sur
le noyau et le conoyau de [’application

d’: H:(X,n) » L>(X,n®Q%").

C’est une conséquence immédiate de I’existence d’une paramétrix.
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§ 2. DUALITE

On désigne toujours par X une courbe holomorphe et par © un fibré
vectoriel holomorphe sur X.

Rappelons que 1'on a deux dualités canoniques d’espaces vectoriels
topologiques (chap. 0, § 4, exemple 1)

A L2(X,z®@Q%Y) x L (X, n*®Q0"% - C
4: L2 (X, 7®@Q%Y) x L2 (X,n*®Q"°%) > C.

et

L’ensemble des sections holomorphes (resp. holomorphes a support com-
pact) de 7* @ QU° s’identifie & un sous-espace fermé de Lj . (X, n* @ Q1°)
(resp. L2 (X, n* @ Q?)).

PROPOSITION 1. Pour qu'une section u de L (X, n®Q%Y) (resp.
L2 (X, n®@Q%Y)) soit adhérente a l'image de I’opérateur

loc
d': H (X,7) » L} (X,7®Q%")
(resp. d": Hp (X,n) > LL (X, m@Q%"))

loc

il faut et il suffit qu’elle soit A— orthogonale au sous-espace 0 (X, n* @ Q%)
(resp. 0, (X, n* @QY%)).

Pour toute section 4 de H. (X, n) et toute section v de 0 (X, n* @ Q°),
on a

Ad'h,0) = [x(@hv) = — [x(h,dv) =0,

ce qui montre la nécessité de la condition puisque la forme bilinéaire 4
est séparément continue.

Réciproquement, désignons par o une forme linéaire continue sur
L2 (X, n®Q%1) nulle sur 'image de d”. Par dualité, il existe une section
v de L (X, n* @ Q1°) telle que

loc
4( ,v) = a.
En particulier, pour toute section 2 de ¥% (X, n), on a
A(d'h,v) = [x(@h,v) = a(dh) =0.

Il résulte alors du théoré¢me de régularité (§ 1, théoréme 2, corollaire) que
v est holomorphe et 'on a

a(u) = A(w,v) = 0.

On conclut & I’aide du théoréme de Hahn-Banach.

L’Enseignement mathém., t. XXI, fasc. 2-3-4. 17
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THEOREME 1. Par restriction et passage au quotient, les bijections cano-
niques
A0 L2 (X, n@Q%Y) » LE (X, n* QY0
et
Ay L2 (X, n®02%Y) —» L2 (X, n*®@Q%°)

induisent des bijections

A L2(X,7@Q%YH)/Im d” - 0 (X, n* @ QL)

et

~

Ay L (X, n@Q)m d” — 0.(X, 1% @Q'"°)' .

Il résulte de la proposition 1 que les applications 4, et 4, sont bien
définies et injectives. Le théoréme de Hahn-Banach montre qu’elles sont
surjectives.

CoROLLAIRE (Théoréme de dualité). (1) Si l’image de I’opérateur
d": H}(X,m) » LZ(X,n®Q%")

est fermée, les espaces vectoriels H. (X, ) et H°(X,n*@Q%°) sont
canoniquement isomorphes.
(2) Sil’image de |’opérateur

d": Hi,,(X,n) - L (X, n®Q%")

est fermée, les espaces vectoriels H' (X, 7n) et H2(X,n*Q@Q“%) sont
canoniquement isomorphes.

Remarque 1.

Il résulte aisément du théoréme du graphe fermé que les applications

~

A, et 4, du théoréme 1 sont des isomorphismes.

PROPOSITION 2. Pour toute partie compacte K de X, [’opérateur
d’: Hy(X,n) » LE (X, n®@Q%")

a une image fermée et un noyau de dimension finie.
Désignons par j I’injection canonique de Hg (X, n) dans L (X, 7) et
considérons les applications linéaires continues

(4"
Hi(X,m) == LE(X,m) © L} (X, 7®0%)

(—J,0)

L’application (j, d"’) est injective d’image fermée (§ 1, remarque 3). L’appli-
cation (—j,0) est un opérateur compact en vertu du lemme de Rellich
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(chap. II, § 2, théoréme 2). L’assertion est alors une conséquence immédiate
d’un résultat classique sur les opérateurs compacts ([2], théoréme (11.3.2)
et probleme (11.3.2)).

COROLLAIRE (Théoréme de finitude). Si la courbe holomorphe X est
compacte, l’'image de l’opérateur N

d: H' (X,n) » L*(X,z®@Q%"

est fermée. Les espaces H' (X, n) et H° (X, n*®@Q"°) sont alors cano-
niquement isomorphes et les espaces H° (X, n) et H' (X, m) sont de dimen-
sion finie.

C’est une conséquence immédiate de la proposition 2 et du théoréme
de dualité.

§ 3. LE CAS DU LAPLACIEN

Dans ce paragraphe, nous allons étudier ’opérateur différentiel

0> 1 0* N 0*
0z0z 4 \0x*  ox2)’
Soit X un ensemble ouvert de C. On dit qu’une fonction u de > (X, C) est
harmonique si elle vérifie I’équation

0*u 1 /0%u N o*u 0
0zoz  4\ox?  ox:)
Il résulte de cette définition que u est harmonique si et seulement si sa partie
réelle et sa partie imaginaire sont harmoniques.
On désigne par 5 (X, k) (avec k égal & R ou C) ’ensemble des fonctions

harmoniques sur X a valeurs dans k.
Remarquons que # (X, k) est une sous-algébre fermée de %* (X, k).

PROPOSITION 1. Supposons X simplement connexe. Pour qu’une fonction

u de %* (X, R) soit harmonique, il faut et il suffit qu’elle soit la partie réelle
d’une fonction holomorphe.

La suffisance résulte de ce qui précede. Si u est harmonique, la forme

, . ou
différentielle — dz est holomorphe, donc fermée. 1l existe par conséquent

0z
une fonction holomorphe %z sur X telle que
1 0
“dh = 24z
2 0z
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(chap. 0, § 5, théoréme 1, corollaire 1). On en déduit que
Laaemy =% a4 M az 2 g
2 0z ‘ a9z 2=
ce qui démontre I’assertion.

COROLLAIRE 1 (Principe du prolongement analytique). Soit u une
Jfonction harmonique sur un ensemble ouvert connexe X de C. Les conditions
suivantes sont équivalentes :

(1) La fonction u est identiquement nulle.

(2) 1l existe un point de X ou le germe de u est nul.

(3) Il existe un point de X ou toutes les dérivées partielles de u sont
nulles.

11 suffit de montrer que (3) implique (1). On peut supposer u a valeurs
réelles. On désigne par { un point de X ou toutes les dérivées partielles de
u sont nulles et par # une fonction holomorphe telle que

ou 1 0h
u=Re(h) et —=—-—
0z 20z
au voisinage de {. On en déduit que 4 est constante, purement imaginaire,
et que u est nulle au voisinage de {, ce qui établit I’assertion.

CoROLLAIRE 2 (Propriété de la moyenne). Soit u une fonction harmonique
sur un ensemble ouvert X de C et soit D un disque de centre { relative-
ment compact dans X. On a

1
u(l) = E;zJ‘ u(z)dz .
oD

On peut supposer u a valeurs réelles. L’assertion est alors une consé-
quence immédiate de la proposition 1 et de la formule de Cauchy (chap. I,
§ 1, théoréme 1, corollaire 1).

COROLLAIRE 3. Pour tout ensemble ouvert X de C, les topologies
induites sur # (X, k) par L. (X,Kk) et €® (X,K) coincident.

La démonstration est analogue a celle du théoréme de Weierstrass
{(chap. 1, § 1, théoréme 1, corollaire 4).

COROLLAIRE 4 (Principe du maximum). Soit u une fonction harmonique
sur un ensemble ouvert connexe X de C. Si u possede un maximum relatif
en un point { de X, elle est constante.
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En vertu du principe du prolongement analytique, il suffit de montrer
que u est constante au voisinage de {. Quitte a multiplier # par une constante
convenable, on peut supposer u ({) réel positif. Pour r suffisamment petit,
on a par hypothese

M@) = sup |u(z)|<u().

lz—¢]=r

Réciproquement, la propriété de moyenne montre que # ({) est majoré par
M (r). Ceci montre que la fonction g définie par

g(z) = Re(u () ~u(2)

est réelle positive. Elle s’annule en un point z si et seulement si u (z) est
égal a u ({). On conclut en remarquant que I'intégrale de g sur le bord du
disque de centre { et de rayon r est nulle.

LeMME 1. Soit | la fonction définie sur C* par la formule
1 2
I(z) = ~log|z|*.
T

(1) La fonction [ appartient @ L., (C, C).

(2) La fonction [ est faiblement dérivable d’ordre (1,0) et (0,1). On a
ol 1
_— == — et .
Jz 7wz 0Z mnz

La premiére assertion découle d’un calcul élémentaire en coordonnées
polaires. Démontrons la seconde. Pour toute fonction 4 de €% (C, C), on a

1 ol
jkhd,u=——.limJ‘ —hdz A dZ
C C\D,

i,.50 z

(on utilise les notations du paragraphe 1). La formule de Stokes montre
alors que I’on a

1 1 oh
thdu=—_limf lhd2+—-,jl——d2/\d2.
C 2i ¢50 Job, 2t Je 0z

On conclut en remarquant que I’on a

1
—.liva lhdz = 0.
oD

l -0

L’autre assertion se démontre de la méme maniére.
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Désignons par D le disque de centre 0 et de rayon r dans C et par «
une fonction de €< (D, R) égale a 1 au voisinage de 0. On pose

, O . Oa 0%u

== T b=

Si X et X’ sont des ensembles ouverts de C tels que X contienne X' + D,
le produit de convolution induit des applications linéaires continues

(al)x: L2 (X,C) - 4°(X',C) et (BD)=: L2 (X,C) —%* (X', C)

PrROPOSITION 2. Le produit de convolution induit une application linéaire
continue

(al)*: L2 (X, C) - H. (X', C)
et l'on a
az
0z0Z

((al)xu) = u |y + (@'k+a’k+p)*u
pour toute fonction u de L (X, C).
Il résulte du lemme 1 que 'on a
0 , 0 , _
52((“1)*”) = ('D)*u + (ak)*u et BE((ocl)*u) = (o' D*u + (ak)*u .

La premiére assertion résulte donc du lemme de Grothendieck. Ce méme
lemme montre que ’on a

2

phpe ((aD)*u) = u |y + (a'k+o'k+pl)*u
Z

ce qui démontre I’assertion.

Soit X une courbe holomorphe.

On désigne par #° (X) et #*' (X) le noyau et le conoyau de ’appli-
cation

d-d": €X,C) - %X, ",
par #° (X) et . (X) le noyau et le conoyau de P’application
d-d: €.(X,C - %.(X,Q").

Remarquons que I’ensemble #°° (X) s’identifie & Pensemble des fonctions
harmoniques sur X (i.e. les fonctions dont ’expression dans toute carte est
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harmonique). En particulier, 'espace #° (X) est réduit aux fonctions
localement constantes si X est compacte (principe du maximum), ’espace
H#° (X) est nul si X est ouverte (principe du prolongement analytique).

On peut développer pour Popérateur d’ - d’’ une théorie semblable a
celle développée aux paragraphes précédents pour I'opérateur d’’. Nous
nous contenterons d’énoncer les résultats: les démonstrations sont laissées
en exercice au lecteur.

THEOREME 1. On désigne par u une fonction de L. (X, C) et par m
un entier naturel. S’il existe une forme différentielle v de Hp, (X, QY1)
telle que

jX hv == jX u (dl°d") (h)
pour toute fonction h de €% (X, C), alors u appartient & H''? (X,C).

COROLLAIRE (Théoréme de régularité). On conserve les notations et les
hypothéses du théoréme 1. Si v est indéfiniment dérivable, il en est de méme
de u. En particulier, si v est nulle, la fonction u est harmonique.

On appelle paramétrix de d’ - d"’ toute application linéaire continue P de
L (X, QYY) dans HZ (X, C) vérifiant les conditions suivantes

(1) Pour toute forme différentielle » de L2 (X, Q*''), la forme diffé-
rentielle
u — (d'-d"-P) (u)
est indéfiniment dérivable.

(2) Siu est a support compact, il en est de méme de P (u).
Les propriétés suivantes sont alors des conséquences du théoréme de
régularité:

(3) Si u est indéfiniment dérivable, il en est de méme de P (u).
(4) Pour toute fonction v de Hi (X, C), la fonction

v — (P-d"d") (u)

est indéfiniment dérivable.

THEOREME 2. L’opérateur d' - d'"' posséde une paramétrix.

COROLLAIRE. (1) Par restriction et passage aux quotients, les injections
canoniques de €” (X, C) et € (X, Q") dans Hi (X, C) et L2 (X, QM)

loc loc
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respectivement induisent des bijections de #°(X) et #'(X) sur le noyau
et le conoyau de [’opérateur

d'-d": H,.(X,C) - L2 (X, Q"").

(2) Par restriction et passage aux quotients, les injections canoniques
de €% (X, C) et 4= (X, Q%Y dans H> (X, C) et L% (X, Q%Y respective-
ment induisent des bijections de H#°(X) et HL(X) sur le noyau et le
conoyau de [’opérateur

d-d": H2(X,C) — L:(X, Qb1
Considérons les dualités canoniques d’espaces vectoriels topologiques

A: L2(X, Q") x L (X,C) - C
et
A4: LE (X, Q%) x L2(X,C) - C.

L’ensemble des fonctions harmoniques (resp. harmoniques a support
compact) sur X s’identifie & un sous-espace fermé de L2 (X, C) (resp.
L% (X, C)).

PROPOSITION 3. Pour qu’une forme différentielle u de L% (X, Q')
(resp. L2 (X, QYY) soit adhérente a [’image de ’opérateur
d-d": H>(X,C) » L2 (X, Q")
(resp. d'-d": HL.(X,C) - Li (X, Q") ),

il faut et il suffit qu’elle soit A-orthogonale au sous-espace H#° (X) (resp.
He(X)).

THEOREME 3 (Théoréme de dualité). (1) Si l'image de ’opérateur
d-d" : H*(X,C) » L2 (X, Q")

est fermée, les espaces vectoriels H L(X) et #° (X)) sont canoniguement
isomorphes.

(2) Sil’image de l’opérateur
d-d": H: (X,C) - L{ (X, Q")

est fermée, les espaces vectoriels #*' (X) et #°(X) sont canoniquement
isomorphes.



— 261 —

Remarque 1.
Pour toute partie compacte K de X, I’application
(jioJzrd’,d"d") s HE(X,0) » LY (X, ©) ® Lg (X, Q") ® L (X, ")

ol j, et j, désignent les injections canoniques de Hg (X, C) dans L Z(X, C)
et de Hyg (X, Q°1) dans Lz (X, Q%) respectivement, est injective d’image
fermée (§ 1, lemme 1).

PROPOSITION 4. Pour toute partie compacte K de X, [’opérateur
d-d : Hp(X,C) —» Lg(X, QYY)

a une image fermée et un noyau de dimension finie.
En particulier, si X est compacte connexe, l’intégration des formes
différentielles de degré 2 induit un isomorphisme de #' (X) sur C.
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