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Chapitre III

THÉORÈME DE DUALITÉ

§ 1. Lemme de Grothendieck

Pour tout couple d'entiers (j, k), on définit par récurrence un opérateur
différentiel sur C en posant

djJl

ôzj ôzk ôz\ôz3 1 ôz'

ô3j + k-l ô3H

dz \ôz3 ôz

Pour tout entier m au moins égal à j + k et pour tout ensemble ouvert
X de C, cet opérateur se prolonge en une application linéaire continue de

dj+]c
H^c (X, C) dans H£c 3 k (X, C) que l'on désigne encore par -

ôz3 ôzk

Pour toute fonction u de Hoc (X, C) et toute fonction h de ^ (X, C),

on a la formule d'intégration par parties

ô3+ku

ÔZ3 ÔZ'
-hd}i= (-1)J+k

Ôj+kh

ÔZ3 ÔZk
dju

En effet, pour h fixé, les deux membres sont des formes linéaires continues

sur HfoC (X, C) qui coïncident sur ^ (X, C).

Remarquons d'autre part que la topologie de Hoc (X, C) est définie

par la famille de semi-normes

Qj + k

I m,K
~~~ max

j + k^rn ÔZ3 ÔZ LZ,K

lorsque K parcourt l'ensemble des parties compactes de X

Lemme 1. Pour toute fonction u de H+1 (X, C), on a

ôu ÔU

ôz m
ÔZ
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Par récurrence, on se ramène immédiatement au cas où m est nul, par
densité et continuité au cas où u appartient à (X, C). La formule d

intégration par parties montre alors que l'on a

du

dz

2

L2 X

du

dz

2

dfi
du du I

du —

x dz dz J

r d2ü
il du

^ dz dz

du

dz L
du

dz

2

dji —

du dû j

— — du - |

x dz dz j
r ô2uju —— du
|

x dz dz

et

ce qui démontre l'assertion.

Remarque L
11 résulte en particulier du lemme 1 que l'on a

du
lli2' Tzmax L2

pour toute fonction u de Hl {X, C). Par conséquent, l'application

j,-L): Hk(X,C) -> L{X,C) © Li (X, C)

où j désigne l'injection canonique est continue d'image fermée pour toute

partie compacte K de X.

Rappelons que les fonctions kotk définies sur C* par

fc(z)
1

et
TCZ

k(z) -4
71Z

appartiennent à L{oc (C, C).

Désignons par D le disque de rayon r et de centre 0 dans C et par a une
fonction de #J (A R) égale à 1 au voisinage de 0. On pose

doc „ doc
oc

dz
et

Remarquons que les fonctions a'/c et oc"k appartiennent à #f (D, C). Par
conséquent, si X et X' sont des ensembles ouverts de C tels que X contienne
X' + D, le produit de convolution induit des applications linéaires continues

(ak)*: Ljoc (X, C) - L\oc{X', C) et : L/oc(JXC) - L/oc(X', C)

(cc 'k)*:L(oc(X, C) (X', C) et («'£)*: Ç ,C) (X', C).
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Théorème 1 (Grothendieck).Le produit de convolution induit des applications

linéaires continues

(ak)*:LÏoc(X,C)^Htoc(X',C) et (ak)*: C) -> C)

et l'on a

d / » ö
((a/c)*w) u \x> + (a k)*w et —((a/c)*w) w |a" + (a'fc)*u

dz "dz

pour toute fonction u de L*oc (X, C).
Soit u une fonction de (X, C). On sait que (ock)*u appartient à

tf00 (X', C) et l'on a

1

((afc)*«) (0 - m (z) a (C - z)
d/^ (z) 1

C — z lin JD
u (C + z) a - z)

dz a dz

pour tout point £ de X'. On a donc

d 1

--((afc)*w) (0 lim ——
OZ e-+0 2Ï7T

du dz a dz
— (C + z) a - z)

D\z>e dz z

où Z>£ désigne le disque de centre 0 et de rayon s. La formule de Stokes

(chap. 0, § 4, théorème 2, corollaire) montre que l'on a

•2
((eck)*m) (C) lim 2_

tfz £^0 2(71

dz
w (£ + z) a — z)—

öi>£ z

+ lim
£->0 2Z7T

w(C+ z)a"(-z)
dz a dz

-D\I>£

On a d'autre part

1

£— 0 2Ï7T

et

dz 1

lim — J u (C + z) a — z) — lim —
di)o z £-> 0^71

(*2,%

u(Ç+£ew)oc(-sei6)dO u(Q

1

lim -T-
£->0 2Z7T

dz a dz 1

u (C + z) a - z) -
D\DS Z 71

((a"k)*u)(0

'

^ vr ^'(z)u (z) a (C - z)
x c- Z

ce qui démontre la formule dans ce cas.

Désignons par 2 une fonction de ^ (%'> Par ^ un ensemble

compact de X contenant l'ensemble supp (2) + D. En vertu de ce qui
précède, il existe des constantes c' et c" telles que
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II X ((a/c)*w) I i2 < c' u ||L2,x et

pour toute fonction u de ^°° (X, C). Ceci montre que l'application (afc)*

de ^°° (X, C) dans ^°° (2T, C) est continue lorsque l'on munit la source

de la topologie induite par Lfoc (X, C) et le but de la topologie induite par
Hloc (X\ C) (remarque 1). Par densité et continuité, on en déduit le

théorème pour l'application (ock) *. L'assertion relative à (ak) * s'en déduit

par conjugaison.

Remarque 2.

On montre de la même manière que le produit de convolution induit des

applications linéaires continues

k* : L2(C, C) - Hloc(C, C) et U : L2C(C, C) - H\oc{C, C)

pour toute fonction u de L2 (C, C). En particulier, les applications induites

d d
par —-et — sur les germes à l'origine de fonctions continûment dérivables

dz ôz

sont surjectives.

Soit X une courbe holomorphe et soit % un fibré vectoriel holomorphe
sur X.

L'opérateur d" se prolonge en une application continue de 1
(X', n)

dans H£c (X, n®Q0,1). Pour toute section u de H^oc (X, n) et toute section
h de (X, on a la formule d'intégration par parties

En effet, pour h fixé, les deux membres sont des formes linéaires continues
sur Hloc (X, n) qui coïncident sur (.X, n) (chap. 0, § 4, théorème 2,
corollaire et chap. I, § 2, lemme 5).

Remarque 3.

L'application

et que l'on a

(k*u) u et
dz

—- (k * u) u
dz

$x(d"u,h) - \x(u,d"h) 1).

(j, d : Hx X,n)-> (X, 7t) © L\ ©ß0'1)

1) Les notations sont celles de chap. 0, § 4, exemple 1.
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où j désigne l'injection canonique est continue d'image fermée pour toute
partie compacte K et X. C'est une conséquence immédiate des définitions et
de la remarque 1.

Théorème 2. On désigne par u une section de Lfoc (X, n) et par m un

entier naturel S'il existe une section v de Hc (X, 7c®00,1) telle que

$x(v,h) - Jx(m,

pour toute section h de (X,n*®Q1,0),alors u appartient à H\"0^1 {X,

La question étant locale, on se ramène immédiatement au cas où X est

un ensemble ouvert de C et % le fibré produit Cx. L'hypothèse signifie donc
du

que la dérivée faible — existe et appartient à Hloc (X, C). Désignons pardz

X' un ensemble ouvert relativement compact dans X, par D un disque de

centre 0 tel que X contienne Xf + D et par a une fonction de ^ (X, R)
égale à 1 au voisinage de 0. Il résulte du théorème 1 que l'on a

ô du
u \x> — ((afc)*Mj — (a k)*u (afc)* — — (a k)*u.

Par récurrence sur m, il résulte de ce même théorème que u | Xf appartient
à H^ç1 (X\ C), ce qui démontre l'assertion.

Corollaire (Théorème de régularité). On conserve les notations et les

hypothèses du théorème 2. Si v est indéfiniment dérivable, il en est de même

de u. En particulier, si v est nulle, la section u est holomorphe.
C'est une conséquence immédiate du théorème 2 et du lemme de Sobolev

(chap. II, § 2, théorème 1, corollaire).

Lemme 2. Pour tout point x de X, il existe des voisinages ouverts U
et V de x et une application linéaire continue P de L^oc (X, n ® ß0'1)
dans Hioc(U,n) vérifiant les conditions suivantes :

(1) Pour toute section u de Lfoc (X, ntgïQ0'1), la section

u \u — (d"'P) (u)
est indéfiniment dérivable.

(2) L'application P s'annule sur l'ensemble des sections de

Lfoc (X, n (x) ß0'1) dont la restriction à V est nulle.

La question étant locale, on peut supposer que X est un ensemble ouvert
de C et que % est le fibré produit Cx. On désigne par V un voisinage ouvert
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de x dans X, par U un voisinage ouvert relativement compact de x dans V

et par D un disque centré à l'origine tel que V contienne U + D. Toute

section u de Lfoc (X, n®Q0,i) s'écrit

u (ul9 Up) dz

où ul9up sont des fonctions de Lfoc (X\ C). Il suffit de poser

P(u) ((ock)*ul9 ...9(otk)*Up)

où a est une fonction de (D, R) égale à 1 au voisinage de 0 (théorème 1).

Théorème 3. Il existe une application linéaire continue P de

Lfoc (X, n®Q0,1) dans H^oc (X, n) vérifiant les conditions suivantes :

(1) Pour toute section u de L%oc(X, 71&Q0'1), la section

u — (d"-P) 0u)

est indéfiniment dérivable.

(2) Si u est à support compact, il en est de même de P (u).

Il existe deux recouvrements ouverts localement finis (£/t)I6i et (Vx)xeI

de X9 tels que Ux soit relativement compact dans Vx et Vt relativement compact

dans X et, pour chaque indice i, une application linéaire continue Px de

Lfoc (X9 71 ®Q0,1) dans H/oc (UX9 n) vérifiant les conditions du lemme 2. On
désigne par (at)ieI une partition de l'unité subordonnée au recouvrement

WXel.
Pour toute section u de Lfoc (X, n®Q0,1) et pour tout couple (i9k)

d'indices la section

v*t pM) ~ PK(u)

est indéfiniment dérivable sur Ux n UK (théorème de régularité). On désigne

par vKX la section de ^°° (Ul9 n) obtenue en prolongeant aKvKl par 0 et
l'on pose

v, £
Kel\{i}

(chap. 0, § 2, lemme 1). On a

»,-»*= »K, P,(u)

et par conséquent les sections P, (u) - vl se recollent en une section P (u)
de H{oc X, n).Il est clair que P est linéaire continue et l'on a

" I vi ~ (d"'P)(u)|t/( u\U+ d"v,

ce qui démontre (1).
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Pour démontrer (2), il suffit de remarquer que le support de P (u) est

contenu dans u Ul
tel'

I' — { i e 11 il existe k g / tel que Uv n UK ^ 0 et KKnsupp(w) # 0 }.

Ceci résulte aisément de la construction et de ce que Pt (u) est nul chaque
fois que le support de u ne rencontre pas Vv

On appelle paramétrix de d" toute application linéaire continue P
vérifiant les conditions du théorème 3.

Si P est une paramétrix de d'\ le théorème de régularité montre que
P (iu) est indéfiniment dérivable si u l'est. De même, pour toute section v
de H(oc (X, 7i) la section

v — (P'd") (v)
est indéfiniment dérivable.

Il résulte d'autre part du théorème du graphe fermé que les applications
linéaire

1 —d'-P\ L?oc (X, tl®Q0,1) ->

et

1 -P'd"\H{jX,n) -> Wœ(X,n),

1 -d"-P: L2c (.X, n 0f20'1) -> (X, 7c ® ß0'1)
et

1 -P'd": H\ (X, 7r) -> (X, 7i)

sont continues.

Proposition 1.(1) Par restriction et passage aux quotients, les injections
canoniques de ^°° (X, n) et (X, 7i(x)£20,1) dans H(oc (X, 7c) ef

Aoc (X respectivement induisent des isomorphismes de H° (X, n)
et H1 (X, 7i) ix/r /p noyau et le conoyau de l 'application

d": Hlc(X,n) -> Lfoc (X, n 0Q°4)

(%) restriction et passage aux quotients, les injections canoniques
de %?(X,7i) et <e*{X, 710Q0'1)dansHlc (X, n) et L2c (X, tl^Q0'1)
respectivement induisent des isomorphismes de H° (X, n) et Hj. (X, n) sur
le noyau et le conoyau de l 'application

d": Hl (X,n)- L(X,0
C'est une conséquence immédiate de l'existence d'une paramétrix.



§ 2. Dualité

On désigne toujours par X une courbe holomorphe et par n un fibré

vectoriel holomorphe sur X.

Rappelons que l'on a deux dualités canoniques d'espaces vectoriels

topologiques (chap. 0, § 4, exemple 1)

A: Lç (X, U0Q0'1) x Lf0C(X,n* ®Q1,0) -» C
et

A: L12oc(Z,7i0ß0'1) x L2 (X, 7i* 0O1'0) ->• C

L'ensemble des sections holomorphes (resp. holomorphes à support compact)

de n* ® É21'0 s'identifie à un sous-espace fermé de Lfoc (X, 7i*®Q1,0)

(resp. L2c{X,7i*®QU0)).

Proposition 1. Pour qu'une section u de L2(X, iz®Q0,i) (resp.
Lfoc (X, n ®Q0,1)) soit adhérente à l'image de l'opérateur

d": H\ (X, n) -» L2 (X,7i®Q0,1)
d": Hloc(X,n)^L?oc(X,n®Q0>1))

il faut et il suffit qu 'elle soit A — orthogonale au sous-espace G (X, 7t* ® ß1'0)

(resp. Gc(X,n*®QU0)).
Pour toute section h de Hl (X, n) et toute section v de G (X, n* ®Q1,0),

on a

A(d"h,v) — Jx(h,d"v) 0,

ce qui montre la nécessité de la condition puisque la forme bilinéaire A

est séparément continue.

Réciproquement, désignons par a une forme linéaire continue sur
L2c (X, tl®Q0,1) nulle sur l'image de d". Par dualité, il existe une section
v de L(oc (X, 7r* ® ß1'0) telle que

A v) a

En particulier, pour toute section h de ^ (X, n), on a

A(d"h,v) §x(d h, v) a(d"h) 0,

Il résulte alors du théorème de régularité (§ 1, théorème 2, corollaire) que
v est holomorphe et l'on a

a (m) — A (u,v) 0

On conclut à l'aide du théorème de Hahn-Banach.

L'Enseignement mathém., t. XXI, fasc. 2-3-4. 17
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Théorème 1. Par restriction et passage au quotient, les bijections
canoniques

A x: L2c(X,tl®Q°'1)-
et

A2:Lfoc(X,n®Q0-1)-
induisent des bijections

Ay: L2(X,n®Q°'1)lhTd" ->
et

~A2: Lf0C(X,n®Q°'1)lï^d" -+&c(X,n*®Qu.

Il résulte de la proposition 1 que les applications A1 et A2 sont bien
définies et injectives. Le théorème de Hahn-Banach montre qu'elles sont
surjectives.

Corollaire (Théorème de dualité). (1) Si l'image de l'opérateur

d":Hl(X,n)-*
est fermée, les espaces vectoriels H* (X, n) et H° (X, n* ® ß1,0)' sont

canoniquement isomorphes.

(2) Si l 'image de l 'opérateur

d": HL(X,n) Lfoc(X,n®Q

est fermée, les espaces vectoriels H1 (X, n) et H® (X, ti* ®Q1,0)' sont

canoniquement isomorphes.

Remarque 1.

Il résulte aisément du théorème du graphe fermé que les applications

A x et A 2 du théorème 1 sont des isomorphismes.

Proposition 2. Pour toute partie compacte K de X, l'opérateur

d": Hk(X, n) -> L|(X, n(g)Q0,i)

a une image fermée et un noyau de dimension finie.
Désignons par j l'injection canonique de H& (X, n) dans L| (X, n) et

considérons les applications linéaires continues

Hi (X, n) ==gp Li (X, n) ® L| (X, n®Q0'1)

L'application (j, d") est injective d'image fermée (§ 1, remarque 3). L'application

—j, 0) est un opérateur compact en vertu du lemme de Rellich
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(chap. II, § 2, théorème 2). L'assertion est alors une conséquence immédiate

d'un résultat classique sur les opérateurs compacts ([2], théorème (11.3.2)

et problème (11.3.2)).

Corollaire (Théorème de finitude). Si la courbe holomorphe X est

compacte, / 'image de l'opérateur

est fermée. Les espaces H1 (X, n) et H° (X, 7r*®ß1,0)' sont alors cano-

niquement isomorphes et les espaces H° (X, n) et H1 (X, n) sont de dimension

finie.
C'est une conséquence immédiate de la proposition 2 et du théorème

de dualité.

Soit X un ensemble ouvert de C. On dit qu'une fonction u de (X, C) est

harmonique si elle vérifie l'équation

Il résulte de cette définition que u est harmonique si et seulement si sa partie
réelle et sa partie imaginaire sont harmoniques.

On désigne par (X, k) (avec k égal à R ou C) l'ensemble des fonctions
harmoniques sur X à valeurs dans k.

Remarquons que (X, k) est une sous-algèbre fermée de (X, k).

Proposition 1. Supposons X simplement connexe. Pour qu 'une fonction
u de ^2 (X, R) soit harmonique, ilfaut et il suffit qu 'elle soit la partie réelle
d'une fonction holomorphe.

La suffisance résulte de ce qui précède. Si u est harmonique, la forme
du

différentielle — dz est holomorphe, donc fermée. Il existe par conséquent
dz

une fonction holomorphe h sur X telle que

d": H^X,^ -> L2(X,7t®ß°'1,>

§ 3. Le cas du Laplacien

Dans ce paragraphe, nous allons étudier l'opérateur différentiel
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(chap. 0, § 5, théorème 1, corollaire 1). On en déduit que

1 du du
~d(h-\-h) — dz H dz du
2 dz dz

ce qui démontre l'assertion.

Corollaire 1 (Principe du prolongement analytique). Soit u une

fonction harmonique sur un ensemble ouvert connexe X de C. Les conditions
suivantes sont équivalentes :

(1) La fonction u est identiquement nulle.

(2) Il existe un point de X ou le germe de u est nul.

(3) Il existe un point de X où toutes les dérivées partielles de u sont
nulles.

Il suffit de montrer que (3) implique (1). On peut supposer u à valeurs
réelles. On désigne par £ un point de X où toutes les dérivées partielles de

u sont nulles et par h une fonction holomorphe telle que

du 1 dh
u Re (h) et — — -—v

dz 2 dz

au voisinage de £. On en déduit que h est constante, purement imaginaire,
et que u est nulle au voisinage de £, ce qui établit l'assertion.

Corollaire 2 (Propriété de la moyenne). Soit u une fonction harmonique

sur un ensemble ouvert X de C et soit D un disque de centre relativement

compact dans X. On a

u (C) — I u (z) dz
1 f— u

JdD

On peut supposer u à valeurs réelles. L'assertion est alors une
conséquence immédiate de la proposition 1 et de la formule de Cauchy (chap. J,

§ 1, théorème 1, corollaire 1).

Corollaire 3. Pour tout ensemble ouvert X de C, les topologies
induites sur XL (Z, k) par L{oc (Z, k) et ^°° (Z, k) coïncident.

La démonstration est analogue à celle du théorème de Weierstrass

(chap. I, § 1, théorème 1, corollaire 4).

Corollaire 4 (Principe du maximum). Soit u une fonction harmonique

sur un ensemble ouvert connexe X de C. Si u possède un maximum relatif
en un point C de Z, elle est constante.
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En vertu du principe du prolongement analytique, il suffit de montrer

que u est constante au voisinage de Ç. Quitte à multiplier u par une constante

convenable, on peut supposer u (Q réel positif. Pour r suffisamment petit,
on a par hypothèse

M (r) sup | u (z) | < u (0
\z-Ç\=r

Réciproquement, la propriété de moyenne montre que u (0 est majoré par
M (r). Ceci montre que la fonction g définie par

g (z) Re (u (Q - u (z))

est réelle positive. Elle s'annule en un point z si et seulement si u (z) est

égal à u (0. On conclut en remarquant que l'intégrale de g sur le bord du
disque de centre £ et de rayon r est nulle.

Lemme 1. Soit l la fonction définie sur C* par la formule

1
/ (z) - log | z

71

\2

(1) La fonction l appartient à Lfoc (C, C).

(2) La fonction l est faiblement dérivable d'ordre (1,0) et (0, 1). On a

ôl
_

1 ôl
_

1

dz 71Z dz 7TZ
'

La première assertion découle d'un calcul élémentaire en coordonnées
polaires. Démontrons la seconde. Pour toute fonction h de ^ (C, C), on a

1* 1 f* Ôl
khdg— — lim — h dz a dz

Je 2i e-»o Jc\De dz

(on utilise les notations du paragraphe 1). La formule de Stokes montre
alors que l'on a

Ç 1 * 1 C éhï khdg —lim Ihdz 2 — a
Je 2ï e->0 JdDe Jc dz

On conclut en remarquant que l'on a

1

lim
£-()

Ihdz — 0
ôdf

L'autre assertion se démontre de la même manière.
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Désignons par D le disque de centre 0 et de rayon r dans C et par a

une fonction de ^ (D, R) égale à 1 au voisinage de 0. On pose

da „ da d2 a
a' — a —3 ß

dz dz dzdz

Si X et X' sont des ensembles ouverts de C tels que X contienne X' + D,
le produit de convolution induit des applications linéaires continues

(al)*:Lfoc(X, C) - <?° (X',C)et (ßl)*: Lfoc(X, C) (X', C)

Proposition 2. Le produit de convolution induit une application linéaire
continue

(aï)*: Llc(X,C)-+Hlc(X',C)
et l'on a

d2
— ((al)*u) u \x' -f- (oc k a h -{-ßfy^u

dzdz

pour toute fonction u de Lfoc (X, C).

Il résulte du lemme 1 que l'on a

Ô Ô

— ((al)*u) (a'l)*u + (ak)*u et —((al)*u) (a"l)*u + (ak)*u
dz J dz

La première assertion résulte donc du lemme de Grothendieck. Ce même

lemme montre que l'on a

d2 _-((aZ)*w) u\x> + (oc'/c + a k +ßl)*u
dzdz

ce qui démontre l'assertion.

Soit X une courbe holomorphe.
On désigne par

0 (X) et Xd1 (X) le noyau et le conoyau de l'application

d' -d": tf(X,C) -ï&iXtQ1'1),

par (X) et (X) le noyau et le conoyau de l'application

d' -d" : (X, C) <$c (X, ß1-1)

Remarquons que l'ensemble 0 (X) s'identifie à l'ensemble des fonctions

harmoniques sur X (i.e. les fonctions dont l'expression dans toute carte est
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harmonique). En particulier, l'espace 0 (X) est réduit aux fonctions

localement constantes si X est compacte (principe du maximum), l'espace

(X) est nul si X est ouverte (principe du prolongement analytique).
On peut développer pour l'opérateur d'• d" une théorie semblable à

celle développée aux paragraphes précédents pour l'opérateùr d". Nous

nous contenterons d'énoncer les résultats: les démonstrations sont laissées

en exercice au lecteur.

Théorème 1. On désigne par u une fonction de Lfoc (X, C) et par m

un entier naturel. S'il existe une forme différentielle v de Hoc (X, Q1,1)

telle que
Jx hv Jxu(df-d")(h)

pour toute fonction h de (X, C), alors u appartient à 2 (X,C).

Corollaire (Théorème de régularité). On conserve les notations et les

hypothèses du théorème 1. Si v est indéfiniment derivable, il en est de même

de u. En particulier, si v est nulle, la fonction u est harmonique.

On appelle paramétrix de d'• d" toute application linéaire continue P de

Lioc (X, ß1'1) dans Hfoc (X, C) vérifiant les conditions suivantes

(1) Pour toute forme différentielle u de Lfoc(X, Q1,1), la forme
différentielle

u — (d'md"mP)(u)

est indéfiniment dérivable.

(2) Si u est à support compact, il en est de même de P (u).
Les propriétés suivantes sont alors des conséquences du théorème de

régularité :

(3) Si u est indéfiniment dérivable, il en est de même de P (u).

(4) Pour toute fonction v de Hfoc (X, C), la fonction

v — (P-d'-d") (u)

est indéfiniment dérivable.

Théorème 2. L'opérateur d'• d" possède une paramétrix.

Corollaire. 1) Par restriction et passage aux quotients, les injections
canoniques de ^°° (X, C) et ^°° (X, Q1'1) dans Hfoc (X, C) et Lfoc (X, Ö1'1)
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respectivement induisent des bijections de Xf0 (X) et 1 (X) sur le noyau
et le conoyau de l'opérateur

d'-d":Hloc(X>C)-^Lfoc(X,Q1'1).

(2) Par restriction et passage aux quotients, les injections canoniques
de (X, C) et (X, G1*1) dans H\ (X, C) et L2C (X, Q1'1) respectivement

induisent des bijections de Xf°c(X) et \ {X) sur le noyau et le

conoyau de l'opérateur

d'-d": H2c(X,C)^L2c(X,Q1-1).

Considérons les dualités canoniques d'espaces vectoriels topologiques

A: L2(X,ß1,1)x (X, C) -» C

et

A:L(0C(X,Q1-')x C) - C.

L'ensemble des fonctions harmoniques (resp. harmoniques à support
compact) sur X s'identifie à un sous-espace fermé de Lfoc (X, C) (resp.
L2 {X, C)).

Proposition 3. Pourqu'une forme différentielle u de L2 ß1,1)

(resp. L(oc (X, ß1,1)) soit adhérente à l'image de l'opérateur

d' d":H2(X,C) -> L? (X, ß1-1)

(resp.d'-d":H2oc(X,C) -> L,2oc (X, ß1'1) j,
ilfaut et il suffit qu'elle soit A-orthogonale au sous-espace (X) (resp.

Théorème 3 (Théorème de dualité). (1) Si l'image de l'opérateur

d'-d" : H2 (X, C) -» L2c (X, Q1'1)

est fermée, les espaces vectoriels (X) 0 (X)' iwz/1 canoniquement

isomorphes.

(2) Si l'image de l 'opérateur

d'-d": H20C (X, C) -> Lf0C(X, Q1-1)

est fermée, les espaces vectoriels 1 (X) et 2éd\ (X)' sont canoniquement

isomorphes.



Remarque 1.

Pour toute partie compacte K de X, l'application

UiJz'd", d'-d") : Hl(X, C) -> L|(X, C) © L2(X, Q0'1) 0 L2K(X, Q1-1)

où j\ et j2 désignent les injections canoniques de H\ (X, C) dans O
et de (X ß0,1) dans Lf (Z, ß0'1) respectivement, est injective d'image
fermée (§ 1, lemme 1).

Proposition 4. Pour toute partie compacte K de X, l 'opérateur

d'-d":Hl(X,C)->L$(X, Q1A)

a une image fermée et un noyau de dimension finie.
En particulier, si X est compacte connexe, l'intégration des formes

différentielles de degré 2 induit un isomorphisme de XP1 (X) sur C.
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