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CHAPITRE II

COMPLEMENTS D’ANALYSE

§ 1. CONVOLUTION

Désignons par X, X’ et X'’ des ensembles ouverts de R", par K, K’ et
K" des ensembles compacts de X, X’ et X' respectivement. On suppose
que X' contient ’ensemble

X—X'={teR|ilexistexeXetye X" telsquet = x — y}
et que K’ contient I’ensemble
K—K'" ={teR"|ilexiste xeKetyeK" " telsquet = x — y}.

Pour toute fonction u de ° (X’, C), toute fonction v de €2 (X", C) et
tout point x de X, on pose

W) (x) = fxux=»v()du(y) = [y u(Mvx—=y)du(y) = (v=u)(x)

ol u désigne la mesure de Lebesgue dans R”. 1l est clair que u*v est une
fonction continue et on a I’inégalité

R PSS 1 PR L RYeR
En particulier, ’application bilinéaire
1 F°X',CO)x €2(X",C) »€°(X, 0

se prolonge de maniére unique en une application bilinéaire séparément
continue (et méme hypocontinue)

x: LL (X',C)x LL(X",C) - L..(X,0)

que I’on appelle le produit de convolution.
Pour toute fonction u de L. (X', C) et toute fonction v de L., (X', C),
le support de u*v est contenu dans ’ensemble

X ~ (supp (u) + supp (v)).
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En particulier, le produit de convolution induit une application bilinéaire
1 Li(R",0) x L (R", €) » L (R", O).

PROPOSITION 1. Pour tout couple (p, q) d’éléments conjugués de [1, o],
toute fonction u de L (X', C) et toute fonction v de L¢. (X", C), ona

s o = [l 2|9 -

On peut supposer u et v continues. Il résulte de 'inégalité de Holder
([5], théoréme (3.8)) que 'on a

@) () | < Jx luvEx=—y) lde() < |ul|Fx |v]
pour tout point x de K, ce qui démontre 1’assertion.
COROLLAIRE 1. Désignons par u une fonction de L. (X', C) et par v
une fonction de L. (X", C). Si l'une des deux est continue, il en est de
méme de u*v.

Supposons par exemple u continue et le support de v contenu dans K.
Pour toute fonction 4 de . (X', C), la fonction u*A est continue et 'on a

[wson = Julste [ ]oone
Ceci montre que uxv est limite dans L. (X, C) d’une suite de fonctions

loc
continues, d’ou 'assertion.

COROLLAIRE 2. Pour tout couple (p, q) d’éléments conjugués de [1, o],
le produit de convolution induit une application bilinéaire

*: LP (X',C) x LI(X",C) - %°(X, C).

COROLLAIRE 3. Désignons par u une fonction de Llloc (X', C), par v
une fonction de L (X", C) et par m un entier naturel (ou le symbole oo ).
Si ['une des fonctions est m-fois continiiment dérivable, il en est de méme
de uxv etl’'ona

D* (u*v) = (D*u)*v (resp. D" (u+v) = ux* (D))

pour tout multi-indice o de longueur au plus m.

La démonstration est analogue a celle du corollaire 1. Elle est laissée
en exercice au lecteur.

PROPOSITION 2. Pour tout élément p de [l, o], toute fonction u de
L. (X', C) et toute fonction v de Lg. (X",C), ona

lusolre<fulite [o]2x-
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On peut supposer que p et son conjugué g sont réels et que les fonctions u
et v sont continues. Pour toute fonction 2 de L{ (X, C), le théoréme de
Fubini montre que ’on a

| Jx o) hdp | < [xxg lu (o Ge—y) h(x) [ dp(x) dp(y)
et 'inégalité de Holder implique la relation

| Jx@s)hdu| < [ute [v]re [B]tk-

En particulier, si 4 est la fonction définie par

{ h(x) = (u*v)(x) | (u*v)(x) |?~2 si xeK et (u*v)(x) #£0

h(x) =0 si x¢ K ou (uxv)(x) = 0,
on a P/
A H Lk = (g luxv[Pdp'/t = ” u*y ”LP,K :
Par conséquent,
/
Juso] g = fx@soyhdp < Ju|pe [o]ore [uso]

ce qui démontre la proposition.

COROLLAIRE. Pour tout élément p de [1, o], le produit de convolution
induit des applications bilinéaires

«: Ly (X', C) x LE(X",C) > L. (X, C)
et
x: LP (X', C)x LL(X",C) - LE (X, C).

Munissons I’espace numérique R” de la norme | | définie par

l(xla-":xn)l = Imax lle'
1=j=n

On appelle fonction marteau sur R" toute fonction ¢ de €% (R”, R) a valeurs
dans le segment [0, 1], dont le support est contenu dans la boule unité et
telle que

”d’”Ll,R” =/§R"<l>d,u =1.

De telles fonctions existent (appendice I, lemme 3). Pour tout nombre réel ¢
strictement positif, on désigne par ¢, la fonction de €% (R", R) définie par

X
¢£ (X) =g " (]S <—£> y
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Le support de ¢, est contenu dans la boule de rayon ¢ et ’on a encore
| b ot mm = 1.

PROPOSITION 3. Pour toute fonction u de €% (R", C) (resp. € ?'(R”, O)),
le produit de convolution ux¢, converge vers u dans %° (R",C) (resp.
%° (R", C)) lorsque & tend vers O.

Pour tout ensemble compact K de R", on pose

K, = {xeR"|ilexiste yeKtel que |y — x| <

€

Pour tout point x de K, on a la relation
u(x) = (W) (x) = Jg, (ux) —u®)d.(x—y)du(y)
et I’assertion résulte immédiatement de la continuité uniforme de u sur K,.

COROLLAIRE. Pour toute variété différentielle X et tout fibré vectoriel
complexe m sur X, [’'ensemble €% (X,n) est dense dans les espaces

€° (X, n) et ¥°(X, n).

PROPOSITION 4. Pour tout nombre réel p au moins égal @ 1 et toute
fonction u de L% R C) (resp. L{_ (R", C)), le produit de convolution
u*¢, converge vers u dans LY (R",C) (resp. L{.(R", C)) lorsque e

tend vers 0.
Pour tout ensemble compact K de R" et toute fonction » de %2 (R", C),

on a
[u—uxg. | p o< u—v] 2+ [v=vd.] 2k + | =)0, | 17
et par conséquent (proposition 2),
fu—uxd, | 2 <|u—v| Pk + (K Py —vg, || Lo g
+ “v—u ” P k. -
L’assertion est alors une conséquence de la proposition 3 et de la densité de

%2 (R", C) dans LZ (R”, C) (resp. L7 (R”, C)).

COROLLAIRE. Pour toute variété différentielle X, tout fibré vectoriel

complexe © sur X et tout nombre réel p au moins égal & 1, I’ensemble
¢c (X, ) est dense dans les espaces L% (X, r) et L. (X, ).

Pour toute fonction w de ¢° (R” % R”, C), toute fonction u de #° (R”, C)
et tout point x de R", on pose

w@w) () = Jga wCx, »)u () du(y).
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PROPOSITION 5. (1) La fonction w (u) est continue.

(2) Si la restriction au support de w de la deuxiéme projection de
R"* X R* dans R" est propre, la fonction w (u) est a support compact.

(3) Pour tout ensemble compact K' de R" et tout ensemble compact
K" de R" contenant le support de u, on a

| w@| 20 < | W] L2k xx | ]| L2,k -

Les deux premicres assertions résultent immédiatement des définitions,
la troisiéme de I'inégalité de Holder.

COROLLAIRE. L ‘application bilinéaire
N: #°R"xR",C) x ¥°(R", C) - ¥°(R", C)
définie par
N(w,u) = w(u)

se prolonge de maniere unique en une application bilinéaire séparément
continue (et méme hypocontinue )

N: L2 (R"xR",C)x L2(R",C) - L} .(R", C).

Pour toute fonction w de L. (R" X R", C), I’application linéaire continue
N(w, ):L%(R*, C) -» L} .(R", C)

s’appelle I'opérateur de noyau w.

PROPOSITION 6. On désigne par w une fonction de L; . (R"*xR", C),
par K' et K" des ensembles compacts de R" vérifiant la relation

supp(W) N (R"x K') « K" x K’

L ’opérateur de noyau w induit alors un opérateur compact 1) de Lz (R*, C)
Lz (R", C).

Désignons par || w || la norme de opérateur w dans I'espace de Banach
des applications linéaires continues de Lz (R", C) dans Lg. (R", C). On a
I’inégalité

[ wl <l wl e2xxx
et puisque les opérateurs compacts forment un sous-espace fermé de cet
espace de Banach ([2], théoréme (11.2.10)), on se rameéne aussitét au cas
ou w est la fonction caractéristique d’un pavé de R" x R". L’image de w

1) Ceci signifie que I'image de la boule unité est un ensemble relativement compact.
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est alors un sous-espace vectoriel de dimension 1, ce qui ach¢ve la démons-
tration de la proposition.

COROLLAIRE. On désigne par u une fonction de Ll (R" O), par K’ et
K’ des ensembles compacts de R* vérifiant la relation

supp(u) + K' = K" .

Le produit de convolution u* induit alors un opérateur compact de Lz (R", C)
dans Lg. (R", C).
La norme de Popérateur u* vérifie la relation

fus < Jul wign

Comme dans la proposition 6, on se rameéne immédiatement au cas out u
appartient & €2 (R”, C). On remarque alors que u* n’est autre que 'opé-
rateur de noyau

wx,y) = u(x—y)

et I’on applique la proposition 6.

§ 2. ESPACES DE SOBOLEV

On désigne par X un ensemble ouvert de R" et par o« un multi-indice
de N". On dit qu’une fonction u de L. (X, C) est faiblement dérivable
d’ordre o s’il existe une fonction v de L. (X, C) vérifiant la relation

fxhvduy = (=) [, uD*h dp

pour toute fonction 4 de €% (X, C). Si elle existe, une telle fonction v est
unique (chap. 0, §4, lemme 2 et chap. II, § 1, proposition 4, corollaire).
On Pappelle la dérivée faible d’ordre o de u.

LEMME 1. On désigne par X un pavé ouvert
X =X x..xX,

de R" et par u une fonction de L. (X,C). On suppose que l'on a

J oh p

u—du =

x 0%

pour toute fonction h de €7 (X, C). La fonction u est alors indépendante
de xi. De maniére plus précise, pour presque tout point (x,, ...,x,) de
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