Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 21 (1975)

Heft: 1: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: INTRODUCTION A LA THEORIE DES SURFACES DE RIEMANN
Autor: Guenot, J. / Narasimhan, R.

Kapitel: Chapitre I COMPLEMENTS D'ANALYSE

DOI: https://doi.org/10.5169/seals-47334

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-47334
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

234 —

CHAPITRE II

COMPLEMENTS D’ANALYSE

§ 1. CONVOLUTION

Désignons par X, X’ et X'’ des ensembles ouverts de R", par K, K’ et
K" des ensembles compacts de X, X’ et X' respectivement. On suppose
que X' contient ’ensemble

X—X'={teR|ilexistexeXetye X" telsquet = x — y}
et que K’ contient I’ensemble
K—K'" ={teR"|ilexiste xeKetyeK" " telsquet = x — y}.

Pour toute fonction u de ° (X’, C), toute fonction v de €2 (X", C) et
tout point x de X, on pose

W) (x) = fxux=»v()du(y) = [y u(Mvx—=y)du(y) = (v=u)(x)

ol u désigne la mesure de Lebesgue dans R”. 1l est clair que u*v est une
fonction continue et on a I’inégalité

R PSS 1 PR L RYeR
En particulier, ’application bilinéaire
1 F°X',CO)x €2(X",C) »€°(X, 0

se prolonge de maniére unique en une application bilinéaire séparément
continue (et méme hypocontinue)

x: LL (X',C)x LL(X",C) - L..(X,0)

que I’on appelle le produit de convolution.
Pour toute fonction u de L. (X', C) et toute fonction v de L., (X', C),
le support de u*v est contenu dans ’ensemble

X ~ (supp (u) + supp (v)).
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En particulier, le produit de convolution induit une application bilinéaire
1 Li(R",0) x L (R", €) » L (R", O).

PROPOSITION 1. Pour tout couple (p, q) d’éléments conjugués de [1, o],
toute fonction u de L (X', C) et toute fonction v de L¢. (X", C), ona

s o = [l 2|9 -

On peut supposer u et v continues. Il résulte de 'inégalité de Holder
([5], théoréme (3.8)) que 'on a

@) () | < Jx luvEx=—y) lde() < |ul|Fx |v]
pour tout point x de K, ce qui démontre 1’assertion.
COROLLAIRE 1. Désignons par u une fonction de L. (X', C) et par v
une fonction de L. (X", C). Si l'une des deux est continue, il en est de
méme de u*v.

Supposons par exemple u continue et le support de v contenu dans K.
Pour toute fonction 4 de . (X', C), la fonction u*A est continue et 'on a

[wson = Julste [ ]oone
Ceci montre que uxv est limite dans L. (X, C) d’une suite de fonctions

loc
continues, d’ou 'assertion.

COROLLAIRE 2. Pour tout couple (p, q) d’éléments conjugués de [1, o],
le produit de convolution induit une application bilinéaire

*: LP (X',C) x LI(X",C) - %°(X, C).

COROLLAIRE 3. Désignons par u une fonction de Llloc (X', C), par v
une fonction de L (X", C) et par m un entier naturel (ou le symbole oo ).
Si ['une des fonctions est m-fois continiiment dérivable, il en est de méme
de uxv etl’'ona

D* (u*v) = (D*u)*v (resp. D" (u+v) = ux* (D))

pour tout multi-indice o de longueur au plus m.

La démonstration est analogue a celle du corollaire 1. Elle est laissée
en exercice au lecteur.

PROPOSITION 2. Pour tout élément p de [l, o], toute fonction u de
L. (X', C) et toute fonction v de Lg. (X",C), ona

lusolre<fulite [o]2x-
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On peut supposer que p et son conjugué g sont réels et que les fonctions u
et v sont continues. Pour toute fonction 2 de L{ (X, C), le théoréme de
Fubini montre que ’on a

| Jx o) hdp | < [xxg lu (o Ge—y) h(x) [ dp(x) dp(y)
et 'inégalité de Holder implique la relation

| Jx@s)hdu| < [ute [v]re [B]tk-

En particulier, si 4 est la fonction définie par

{ h(x) = (u*v)(x) | (u*v)(x) |?~2 si xeK et (u*v)(x) #£0

h(x) =0 si x¢ K ou (uxv)(x) = 0,
on a P/
A H Lk = (g luxv[Pdp'/t = ” u*y ”LP,K :
Par conséquent,
/
Juso] g = fx@soyhdp < Ju|pe [o]ore [uso]

ce qui démontre la proposition.

COROLLAIRE. Pour tout élément p de [1, o], le produit de convolution
induit des applications bilinéaires

«: Ly (X', C) x LE(X",C) > L. (X, C)
et
x: LP (X', C)x LL(X",C) - LE (X, C).

Munissons I’espace numérique R” de la norme | | définie par

l(xla-":xn)l = Imax lle'
1=j=n

On appelle fonction marteau sur R" toute fonction ¢ de €% (R”, R) a valeurs
dans le segment [0, 1], dont le support est contenu dans la boule unité et
telle que

”d’”Ll,R” =/§R"<l>d,u =1.

De telles fonctions existent (appendice I, lemme 3). Pour tout nombre réel ¢
strictement positif, on désigne par ¢, la fonction de €% (R", R) définie par

X
¢£ (X) =g " (]S <—£> y
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Le support de ¢, est contenu dans la boule de rayon ¢ et ’on a encore
| b ot mm = 1.

PROPOSITION 3. Pour toute fonction u de €% (R", C) (resp. € ?'(R”, O)),
le produit de convolution ux¢, converge vers u dans %° (R",C) (resp.
%° (R", C)) lorsque & tend vers O.

Pour tout ensemble compact K de R", on pose

K, = {xeR"|ilexiste yeKtel que |y — x| <

€

Pour tout point x de K, on a la relation
u(x) = (W) (x) = Jg, (ux) —u®)d.(x—y)du(y)
et I’assertion résulte immédiatement de la continuité uniforme de u sur K,.

COROLLAIRE. Pour toute variété différentielle X et tout fibré vectoriel
complexe m sur X, [’'ensemble €% (X,n) est dense dans les espaces

€° (X, n) et ¥°(X, n).

PROPOSITION 4. Pour tout nombre réel p au moins égal @ 1 et toute
fonction u de L% R C) (resp. L{_ (R", C)), le produit de convolution
u*¢, converge vers u dans LY (R",C) (resp. L{.(R", C)) lorsque e

tend vers 0.
Pour tout ensemble compact K de R" et toute fonction » de %2 (R", C),

on a
[u—uxg. | p o< u—v] 2+ [v=vd.] 2k + | =)0, | 17
et par conséquent (proposition 2),
fu—uxd, | 2 <|u—v| Pk + (K Py —vg, || Lo g
+ “v—u ” P k. -
L’assertion est alors une conséquence de la proposition 3 et de la densité de

%2 (R", C) dans LZ (R”, C) (resp. L7 (R”, C)).

COROLLAIRE. Pour toute variété différentielle X, tout fibré vectoriel

complexe © sur X et tout nombre réel p au moins égal & 1, I’ensemble
¢c (X, ) est dense dans les espaces L% (X, r) et L. (X, ).

Pour toute fonction w de ¢° (R” % R”, C), toute fonction u de #° (R”, C)
et tout point x de R", on pose

w@w) () = Jga wCx, »)u () du(y).
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PROPOSITION 5. (1) La fonction w (u) est continue.

(2) Si la restriction au support de w de la deuxiéme projection de
R"* X R* dans R" est propre, la fonction w (u) est a support compact.

(3) Pour tout ensemble compact K' de R" et tout ensemble compact
K" de R" contenant le support de u, on a

| w@| 20 < | W] L2k xx | ]| L2,k -

Les deux premicres assertions résultent immédiatement des définitions,
la troisiéme de I'inégalité de Holder.

COROLLAIRE. L ‘application bilinéaire
N: #°R"xR",C) x ¥°(R", C) - ¥°(R", C)
définie par
N(w,u) = w(u)

se prolonge de maniere unique en une application bilinéaire séparément
continue (et méme hypocontinue )

N: L2 (R"xR",C)x L2(R",C) - L} .(R", C).

Pour toute fonction w de L. (R" X R", C), I’application linéaire continue
N(w, ):L%(R*, C) -» L} .(R", C)

s’appelle I'opérateur de noyau w.

PROPOSITION 6. On désigne par w une fonction de L; . (R"*xR", C),
par K' et K" des ensembles compacts de R" vérifiant la relation

supp(W) N (R"x K') « K" x K’

L ’opérateur de noyau w induit alors un opérateur compact 1) de Lz (R*, C)
Lz (R", C).

Désignons par || w || la norme de opérateur w dans I'espace de Banach
des applications linéaires continues de Lz (R", C) dans Lg. (R", C). On a
I’inégalité

[ wl <l wl e2xxx
et puisque les opérateurs compacts forment un sous-espace fermé de cet
espace de Banach ([2], théoréme (11.2.10)), on se rameéne aussitét au cas
ou w est la fonction caractéristique d’un pavé de R" x R". L’image de w

1) Ceci signifie que I'image de la boule unité est un ensemble relativement compact.
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est alors un sous-espace vectoriel de dimension 1, ce qui ach¢ve la démons-
tration de la proposition.

COROLLAIRE. On désigne par u une fonction de Ll (R" O), par K’ et
K’ des ensembles compacts de R* vérifiant la relation

supp(u) + K' = K" .

Le produit de convolution u* induit alors un opérateur compact de Lz (R", C)
dans Lg. (R", C).
La norme de Popérateur u* vérifie la relation

fus < Jul wign

Comme dans la proposition 6, on se rameéne immédiatement au cas out u
appartient & €2 (R”, C). On remarque alors que u* n’est autre que 'opé-
rateur de noyau

wx,y) = u(x—y)

et I’on applique la proposition 6.

§ 2. ESPACES DE SOBOLEV

On désigne par X un ensemble ouvert de R" et par o« un multi-indice
de N". On dit qu’une fonction u de L. (X, C) est faiblement dérivable
d’ordre o s’il existe une fonction v de L. (X, C) vérifiant la relation

fxhvduy = (=) [, uD*h dp

pour toute fonction 4 de €% (X, C). Si elle existe, une telle fonction v est
unique (chap. 0, §4, lemme 2 et chap. II, § 1, proposition 4, corollaire).
On Pappelle la dérivée faible d’ordre o de u.

LEMME 1. On désigne par X un pavé ouvert
X =X x..xX,

de R" et par u une fonction de L. (X,C). On suppose que l'on a

J oh p

u—du =

x 0%

pour toute fonction h de €7 (X, C). La fonction u est alors indépendante
de xi. De maniére plus précise, pour presque tout point (x,, ...,x,) de
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X, X .. X X,, la fonction partielle u(,x,, ..., x,) est presque partout
constante.

Il résulte du théoréme de Fubini que 'on a

oh
u(t,xyy .., x,) — (t)dt = 0
X1 axl

pour toute fonction 4 de €% (X, C) et pour presque tout point (x,, ..., X,)
de X, X ... x X, (loc. cit.). La mesure de Lebesgue sur R induit une forme
linéaire 6 sur €% (X, C) dont le noyau est I'image de ’opérateur différentiel

0
—— 167 (X1, 0 > %7 (X, O).
0x,

L’équation ci-dessus montre que la forme linéaire A (x,, ..., x,) définie sur
¢ (Xy, C) par

Ay s x)(9) = [x,u(t, x5, ..., %,) g () dt

est proportionnelle a é ce qui démontre 'assertion (/oc. cit. ).

PROPOSITION 1. On désigne par X un ensemble ouvert de R", par m
un entier naturel.

(1) Toute fonction u de €™ (X, C) est faiblement dérivable d’ordre o
pour tout multi-indice o de longueur au plus m et sa dérivée faible d’ordre
o coincide avec sa dérivée partielle usuelle D"u.

(2) Toute fonction u de L. (X,C) faiblement dérivable d’ordre o

pour tout multi-indice o de longueur au plus m et dont les dérivées faibles
d’ordre o sont continues pour tout multi-indice o de longueur m appartient

a %" (X, C).

La premiére assertion est une conséquence immédiate de la formule
d’intégration par parties. Démontrons la seconde. La question étant locale,
on peut supposer que X est un pavé de la forme

X=X1X...XXn.

- Par récurrence, on se raméne immédiatement au cas ol m est égal a 1. Pour
tout entier j compris entre 1 et x, il existe donc une fonction v; de ° (X, C)

- vérifiant la relation
f . J‘ oh i
v:adp = — u—au
X ’ X axj
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pour toute fonction & de €% (X, C). Montrons par récurrence sur j que u
est continue par rapport aux j premiéres variables et que l'on a

ou
v, = —0
T Ox;

Pour tout point x de X, on pose
W(X) == ﬁ;’vl (xl, ey xj—l’ t, xj+1, seey xn) dt .
Il est clair que w est une fonction continue sur X et 'on a

ow
—_— P,

J
6xj

Il résulte alors du lemme 1 que u — w est indépendante de x;, ce qui établit
I’assertion.

Si elle existe, la dérivée faible d’ordre « d’une fonction u de L, (X, C)
se désigne par D*u. La proposition 1 montre que cela ne risque pas d’en-
trainer de confusion.

LEMME 2. On désigne par X, X' et X' des ensembles ouverts de R"
tels que X' contienne X — X', par u une fonction de L.. (X', C), par
v une fonctionde L% (X", C) et par o un multi-indice de N". Si [’une des
fonctions est faiblement dérivable d’ordre o, il en est de méme de uxv et
['on a

D* (u*v) = (D*u)*v (resp. D* (uxv) = u* (D)) .

C’est une conséquence immédiate du théoréme de Fubini.

Soit X un ensemble ouvert de R” et soit m un entier naturel. On désigne
par H{" (X, C) I’ensemble des fonctions u de L7 (X, C) dont les dérivées
faibles D*u existent et appartiennent & L _ (X, C) pour tout multi-indice «
de longueur au plus m. C’est un espace de Fréchet pour la topologie la
moins fine rendant continues les applications D* de Hj,. (X, C) dans
L. (X, ©).

Soit X une variété différentielle et soit = un fibré vectoriel complexe
sur X. On désigne par H . (X, n) I’ensemble des sections s de = vérifiant la
condition suivante: pour toute carte ¢ de 7 et toute carte ¢ de X ayant méme
domaine U, les fonctions coordonnées de (sg); appartiennent &
Hp. (¢ (U), C). Cest de maniére évidente un espace vectoriel localement

convexe et complet. C’est un espace de Fréchet si X est dénombrable 2
Pinfini.
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Pour tout ensemble compact K de X, on désigne par Hg (X, n) le sous-
espace fermé de H[,, (X, n) formé des sections dont le support est contenu
dans K.

On désigne par HY (X, n) ensemble des sections a support compact
de Hj,. (X, n), muni de la topologie vectorielle limite inductive des espaces
HY% (X, n).

Notons que les inclusions canoniques

H{:;(X, 7[) < Hl’gc(X9 7[) = Hlooc(Xan) = leoc(X> 75)
et
H? (X,m) « HS(X,n) « Ho(X,m) = Ly (X, m)

sont continues pour tout entier m’ au moins égal a m.

PROPOSITION 2. On désigne par X, X' et X' des ensembles ouverts de
R" tels que X' contienne X — X''. Pour tout entier naturel m, le produit
de convolution induit des applications bilinéaires continues (et méme hypo-
continues )
+: L (X',C) x H*(X",C) - H' (X, C)

x: H" (X',C) x Ly(X",C) — H (X, C)

x: L2 (X',C) x H*(X",C) » ¢" (X, C)

loc

# 1 Hig (X', 0) x Ly (X', C) - 4" (X,C).

C’est une conséquence immédiate des définitions et des propriétés du
produit de convolution.

COROLLAIRE 1. On désigne par m un entier naturel et par ¢ une fonction
marteau sur R". Pour toute fonction u de H, (R", C) (resp. H,.(R", C)),
le produit de convolution u*¢, converge vers u dans H, (R", C) (resp.
Hp. (R", C)) lorsque ¢ tend vers O.

COROLLAIRE 2. Pour toute variété différentielle X, tout fibré vectoriel
complexe n sur X et tout entier naturel m, [’ensemble €7 (X,n) est
dense dans les espaces H, (X, ) et Hj, (X, 7).

COROLLAIRE 3. On désigne par u une fonction de L. (R", C), par K’
et K" des ensembles compacts de R" vérifiant la relation

supp(u) + K' = K.
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Pour tout entier naturel m, le produit de convolution u* induit un opérateur
compact de H%. (R", C) dans Hy. (R", C).

C’est une conséquence immédiate du corollaire de la proposition 6 du
paragraphe 1.

LEMME 3. Pour toute fonction u de H,R", C) dont le support est
contenu dans la boule de rayon r, on a

n

/2
[l mn = (20) %, ... 0%,

L2 R"™

On peut supposer que u appartient a €% (R", C). On a alors

X1 Xn o"u
u(xl,...,x,,) = —md‘u
-r —-r 1-- n

pour tout point (xi, ..., x,) de R" et 'assertion résulte de l'inégalité de
Holder.

THEOREME 1 (Sobolev). On désigne par X une variété différentielle de
dimension pure n, par w un fibré vectoriel complexe sur X et par m un

entier au moins égal a n. Alors l’ensemble Hi,. (X, n) est contenu dans
" " (X, m).

La question étant locale, il suffit de montrer que H, (R”, C) est contenu
dans €7 " (R", C). Or toute fonction u de H, (R", C) est limite d’une suite
(u;) jex de €7 (R, C), et puisque la suite (D"u;) ;. converge uniformément
vers D*u pour tout multi-indice « de longueur au plus m — n (lemme 3),
le théoréme est une conséquence immédiate de la proposition 1.

COROLLAIRE. Pour toute variété différentielle X et tout fibré vectoriel
complexe n sur X, ona

¢ = 0 HLm e $200m = 0 HIXm).

LEMME 4. 1l existe des fonctions ¢, ..., d, de L.[R",R) telles que

0
U =o*u + Y, gb]*__u_

1=j=n 0x j

pour toute fonction u de H._(R" C).
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On désigne par ¢, une fonction marteau sur R” et I’on pose pour tout
entier j compris entre 1 et n et pour tout point x de R”,

' d
0,09 = | 59 (%) 5

Montrons tout d’abord que ¢; appartient & L; (R", R). Pour tout point

x de R"\0, on a
' ! x\ dt
009 = | x(3) 5
x| t)t

ce qui prouve déja que ¢ ; est continue sur R"\0, nulle en dehors de la boule
unité. D’autre part, on a

11 1
[d; ()| < lle(n|xl,, -;) < A

ce qui démontre I’assertion.

Pour vérifier I’égalité de I’énoncé, on peut supposer que u appartient a
€% (R", C). Pour tout couple (x,y) de points de R”, il résulte de la formule
de Taylor que I'on a

19
u(x) = u(y) + Z (xj—yj)f %(ty—l—(l—t)x)dt

1=j<n

On multiplie les deux membres de cette égalité par ¢, (x—y) et 'on intégre
par rapport & y. Il vient

u(x) = (¢o*u)(x)
J J_(ty+(1—t)x)(x =) ¢o (x —y)du(y)dt.
14;4,, Rn

Si ’on remplace x + 7 (y—x) par y, chacune des intégrales du membre de
droite s’écrit

E—py &y ou ou
J (J (x ,VJ) ¢0 ( ) tn+1> ox- (y) d,u (y) — (QSJ e 5;> (.X)

ce qui démontre le lemme.

THEOREME 2 (Rellich). Soit X une variété différentielle et soit © un fibré
vectoriel complexe sur X. Pour tout ensemble compact K de X et tout
entier naturel m, [’injection canonique de Hyg ' (X, n) dans Hg (X, )
est un opérateur compact.
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On se raméne aisément au cas ou K est un ensemble compact de R" et
n le fibré produit Cyn.
Conservons les notations du lemme 4 et désignons par K’ un ensemble
compact de R" contenant I’ensemble
K+ v supp(¢)).

O0=j=n
11 résulte du corollaire 3 de la proposition 1 que les opérateurs

¢o* : Hg™' (R", C) » H (R", C)
et
J m m
¢j*_ : }IK-*-1 (Rna C) — HK' (Rn> C)

0xj

sont compacts. Il en est donc de méme de l’injection canonique de
Hg*'(R*, C) dans Hy (R, C) et I'on conclut en remarquant que
Hy (R", C) est fermé dans Hg. (R", C).
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