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Chapitre II

COMPLÉMENTS D'ANALYSE

§ 1. Convolution

Désignons par X, X' et X" des ensembles ouverts de R", par K, K' et

K" des ensembles compacts de X, X' et X" respectivement. On suppose

que X' contient l'ensemble

X — X" {te Rw | il existe x g X et y e X" tels que t — x — y)
et que K' contient l'ensemble

K — K" { t e R" | il existe x g K et y e K" tels que t x - y }

Pour toute fonction u de (X', C), toute fonction v de %>°c (X", C) et

tout point x de X, on pose

(u*v)(x) fX"U(x-y)v(y)dfi(y) (v*u)(x)

où jj, désigne la mesure de Lebesgue dans Rn. Il est clair que u*v est une
fonction continue et on a l'inégalité

Il U*V \\l!,K < Il U \\L1,K' Il V ||l!,X" •

En particulier, l'application bilinéaire

* : (X\ C) x < (X\ C) <ë°[X, C)

se prolonge de manière unique en une application bilinéaire séparément
continue (et même hypocontinue)

* : Ljo, (X'9 C) x L\{X\ C) L{oc (X, C)

que l'on appelle le produit de convolution.

Pour toute fonction u de Ll{oc (X\ C) et toute fonction v de j}c {X", C),
le support de u * v est contenu dans l'ensemble

X n (supp (m) + supp (v))
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En particulier, le produit de convolution induit une application bilinéaire

* : L\(R", C) x L\(R", C) -> L\(Rn, C).

Proposition 1. Pour tout couple (/?, q) d'éléments conjugués de [1, oo],

toute fonction u de Lfoc (Xj C) et toute fonction v de Lf, (X", C), on a

Il U *V I L°°,K < Il U II LP,K' Il V Lq,K" •

On peut supposer u et v continues. Il résulte de l'inégalité de Holder
([5], théorème (3.8)) que l'on a

| u*v)(x)I < Jx, I u0)v(x-y)\dn || jj || v || L\K,.

pour tout point v de K, ce qui démontre l'assertion.

Corollaire 1. Désignons par u une fonction de L\oc (X', C) et par v

une fonction de L}c{jX" 9 C). Si l'une des deux est continue, il en est de

même de u*v.
Supposons par exemple u continue et le support de v contenu dans K".

Pour toute fonction h de (XC), la fonction u*h est continue et l'on a

Il U*h II L00 ,K < 1 U II if ,K' Il h II Lœ,K" '

Ceci montre que u*v est limite dans (X, C) d'une suite de fonctions
continues, d'où l'assertion.

Corollaire 2. Pour tout couple (p, q) d'éléments conjugués de [1, oo],
le produit de convolution induit une application bilinéaire

* : Lfoc (X\ C) x Ll ÇT, C) ^ (X, C).

Corollaire 3. Désignons par u une fonction de LÏoc (X\ C), par v

une fonction de L* (X"9 C) et par m un entier naturel (ou le symbole oo

Si l'une des fonctions est m-fois continûment dérivable, il en est de même
de u*v et l'on a

Da (u *v) (Daw) *v (resp. Da (u *v) u * (D*v))

pour tout multi-indice oc de longueur au plus m.
La démonstration est analogue à celle du corollaire 1. Elle est laissée

en exercice au lecteur.

Proposition 2. Pour tout élément p de [1, oo], toute fonction u de

AoC Q et toute fonction v de Lf, {X'j C), on a

Il «*qip.* < MU**-.
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On peut supposer que p et son conjugué q sont réels et que les fonctions u
et v sont continues. Pour toute fonction h de (X, C), le théorème de

Fubini montre que l'on a

| jx (u*v)hd[iI< |KXK. I u(y)v([
et l'inégalité de Holder implique la relation

| (u *v) hdp | < u j} K> v II Lp Kr II h II K

En particulier, si h est la fonction définie par

h{x) (u*v)(x) | (u*v)(x) \p~2 si xeK et (u*v)(x) ^ 0

h(x) 0 si x$K ou (u*v)(x) 0,

on a
p/«

Ü^IU'.k (Ik I u*v {"dI

Par conséquent,

II u*v\\lp,k \x{u*v)hdii<||w||jri,K' |MUp>k"

ce qui démontre la proposition.

Corollaire. Pour tout élément p de [1, oo], le produit de convolution

induit des applications bilinéaires

* : L/0C(X\ C) x L»C(X", C) - Lf0C(X, C)

et

* : Lfoc(X', C) x Llc(X", C) - L?oc(X, C).

Munissons l'espace numérique R" de la norme | | définie par

|(x1? ...,x„) | max \xj\.

On appelle fonction marteau sur R" toute fonction cj) de ^ (R", R) à valeurs

dans le segment [0, 1], dont le support est contenu dans la boule unité et

telle que
Il ^ Il L1, R71 J Rn<j> dp 1

De telles fonctions existent (appendice I, lemme 3). Pour tout nombre réel s

strictement positif, on désigne par </>g la fonction de #® (Rn, R) définie par

s (*) S~" (j)
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Le support de (f)e est contenu dans la boule de rayon e et l'on a encore

Il 0e 1 L1, Rn 1
•

Proposition 3. Pour toute fonction u de %>°c (R'\ C) (resp. 0 (RM, C))9
le produit de convolution u*(j)e converge vers u dans ^°c (R", C) (resp.

0 (R", C)) lorsque s tend vers 0.

Pour tout ensemble compact K de R", on pose

Ke { x g Rn | il existe y e K tel que [ y - x | < s }

Pour tout point x de K, on a la relation

u (x)- (u*<j>e)(x) jKe(u(x)- u (y)) (j)e {x -y) (y)

et l'assertion résulte immédiatement de la continuité uniforme de u sur Ke.

Corollaire. Pour toute variété différentielle X et tout fibré vectoriel
complexe n sur X, l'ensemble <6 (X, n) est dense dans les espaces
<g°c{X,n) et %°(X,n).

Proposition 4. Pour tout nombre réel p au moins égal à l et toute
fonction u de Lpc (Rn, C) (resp. Lpoc (R", C)J, le produit de convolution
u*(j)£ converge vers u dans Lpc (Rn, C) (resp. Lpoc(Rn,C)) lorsque c

tend vers 0.

Pour tout ensemble compact K de Rn et toute fonction v de < (R", C),
on a

Il u-u*<j)t\ lp>k<!m-»I lp>k + ||»-»*<£, || + I I

et par conséquent (proposition 2),

Il » Il LP,K < Il « -V II LP,K + n(K)1,P I V ~V*<f>e\\ L=0>K

+ I V~U1 LP,KS

L'assertion est alors une conséquence de la proposition 3 et de la densité de

< (R", C) dans Vc(R",C) (resp. Lfoc (R", C)).

Corollaire. Pour toute variété différentielle X, tout fibré vectoriel
complexe n sur X et tout nombre réel p au moins égal à 1, l'ensemble

c (X, n) est dense dans les espaces Lp (X, n) et Lpoc (X, n).

Pour toute fonction w de (Rw x Rn, C), toute fonction u de (Rn, C)
et tout point x de R", on pose

w (m) (x) JR„ w (x, y) u (y) du (y).



— 238 —

Proposition 5. (1) La fonction w (u) est continue.

(2) Si la restriction au support de w de la deuxième projection de

R" x R" dans R" est propre, la fonction w (u) est à support compact.

(3) Pour tout ensemble compact K' de R" et tout ensemble compact
K" de Rn contenant le support de u, on a

Il w(w) Il L2,K' ^ Il W II L2,K'XK" Il U II L2,K" •

Les deux premières assertions résultent immédiatement des définitions,
la troisième de l'inégalité de Holder.

Corollaire. L 'application bilinéaire

N : (Rn x RM, C) x < (Rn, C) -> (R", C)
définie par

N (w, u) w(u)

se prolonge de manière unique en une application bilinéaire séparément
continue (et même hypocontinue)

1V: Lfoc (RB x R", C) x L; (R», C) -> L,2oc (R", C).

Pour toute fonction w de Lfoc (R" x R", C), l'application linéaire continue

N(w,): L2C(R",C) -> Lj2
c (R", C)

s'appelle Yopérateur de noyau w.

Proposition 6. On désigne par w une fonction de Lfoc (Rn x R"? C),

par K' et K" des ensembles compacts de Rn vérifiant la relation

supp (w) n (Rn x K') c: K" x Kr

L 'opérateur de noyau w induit alors un opérateur compactde Lf (R", C)

Ll (Rw, C).

Désignons par || w || la norme de l'opérateur w dans l'espace de Banach
des applications linéaires continues de L\. (Rn, C) dans Ll„ (Rn, C). On a

l'inégalité
Il W II < Il W || L2,K'*K"

et puisque les opérateurs compacts forment un sous-espace fermé de cet

espace de Banach ([2], théorème (11.2.10)), on se ramène aussitôt au cas

où w est la fonction caractéristique d'un pavé de R" x R". L'image de vv

Ceci signifie que l'image de la boule unité est un ensemble relativement compact.
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est alors un sous-espace vectoriel de dimension 1, ce qui achève la démonstration

de la proposition.

Corollaire. On désigne par u une fonction de L\ (R", C), par K' et

K" des ensembles compacts de Rn vérifiant la relation

supp(u) 4- K' a K".

Le produit de convolution u * induit alors un opérateur compact de Lf (R", C)

dans Li» (RB, C).
La norme de l'opérateur u* vérifie la relation

Il «* < 1 u u L1.R»

Comme dans la proposition 6, on se ramène immédiatement au cas où u

appartient à ^°c (R", C). On remarque alors que u* n'est autre que
l'opérateur de noyau

w(x9y) u(x-y)
et l'on applique la proposition 6.

§ 2. Espaces de Sobolev

On désigne par X un ensemble ouvert de R" et par a un multi-indice
de Nn. On dit qu'une fonction u de Ljloc (X, C) est faiblement dérivable
d'ordre a s'il existe une fonction v de Lfoc (X, C) vérifiant la relation

\xhvdp — l)la< jxuDah dp,

pour toute fonction h de ^ (X9 C). Si elle existe, une telle fonction v est

unique (chap. 0, §4, lemme 2 et chap. II, § 1, proposition 4, corollaire).
On l'appelle la dérivée faible d'ordre a de u.

Lemme 1. On désigne par X un pavé ouvert

X Xx x x Xn

de Rn et par u une fonction de L\oc (X, C). On suppose que l'on a

r ôh
u du 0

J x dxt

pour toute fonction h de (X, C). La fonction u est alors indépendante
de x1. De manière plus précise, pour presque tout point (x29 x„) de
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X2 x x Xm la fonction partielle u x2, xn) est presque partout
constante.

Il résulte du théorème de Fubini que l'on a

pour toute fonction h de (Xl9 C) et pour presque tout point (x2,xn)
de X2 x x Xn (loc. cit.). La mesure de Lebesgue sur R induit une forme
linéaire ô sur (Xl9 C) dont le noyau est l'image de l'opérateur différentiel

L'équation ci-dessus montre que la forme linéaire k (x2,..., x„) définie sur

^(Z1?C)par
Â(x2, ...,x„)(g) jXlu

est proportionnelle à ö ce qui démontre l'assertion (loc. cit.).

Proposition 1. On désigne par X un ensemble ouvert de R", par m

un entier naturel.

(1) Toute fonction u de (X, C) est faiblement dérivable d'ordre oc

pour tout multi-indice a de longueur au plus m et sa dérivée faible d'ordre
a coïncide avec sa dérivée partielle usuelle Dau.

(2) Toute fonction u de L(oc (X, C) faiblement dérivable d'ordre a

pour tout multi-indice a de longueur au plus m et dont les dérivées faibles
d'ordre a sont continues pour tout multi-indice oc de longueur m appartient
à Vm(X,C).

La première assertion est une conséquence immédiate de la formule
d'intégration par parties. Démontrons la seconde. La question étant locale,

on peut supposer que X est un pavé de la forme

Par récurrence, on se ramène immédiatement au cas où m est égal à 1. Pour

tout entierj compris entre 1 et n, il existe donc une fonction Vj de (X, C)
vérifiant la relation

f dh
u(t,x2, ...9xn)-—-{t)dt 0

J Xi dxi

^:^(XuC)^^(Xl9C).

X X± X x Xn.

1
x
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pour toute fonction h de (X,C).Montrons par récurrence sur que

est continue par rapport aux jpremières variables et que l'on a

du
Vj '

Pour tout point x de Z, on pose

W (x) y Vj (X"L 5 5 ^j— 1 5 L ^j+ 1 ' • • • > **0 dt

Il est clair que w est une fonction continue sur X et l'on a

dw

Il résulte alors du lemme 1 que u — w est indépendante de xj9 ce qui établit
l'assertion.

Si elle existe, la dérivée faible d'ordre a d'une fonction u de L\oc (X, C)

se désigne par Dau. La proposition 1 montre que cela ne risque pas
d'entraîner de confusion.

Lemme 2. On désigne par X, X' et X" des ensembles ouverts de RM

tels que X' contienne X — X", par u une fonction de L{oc (X\ C), par
v une fonction de L\ (X'\ C) et par a un multi-indice de N". Si l'une des

fonctions est faiblement dérivable d'ordre a, il en est de même de u*v et

l'on a

Da(w*t>) (Dau)*^ (resp. D* (u*v) u* (Dav))

C'est une conséquence immédiate du théorème de Fubini.

Soit X un ensemble ouvert de Rn et soit m un entier naturel. On désigne

par HfoC (X, C) l'ensemble des fonctions u de Lfoc (Z, C) dont les dérivées

faibles Dau existent et appartiennent à Lfoc (X, C) pour tout multi-indice a
de longueur au plus m. C'est un espace de Fréchet pour la topologie la
moins fine rendant continues les applications Da de H£0 (X, C) dans

A2oc(XC).
Soit X une variété différentielle et soit % un fibré vectoriel complexe

sur X. On désigne par Hfoc (X, n) l'ensemble des sections s de % vérifiant la
condition suivante : pour toute carte $ de n et toute carte (j) de Z ayant même
domaine U, les fonctions coordonnées de appartiennent à

C (U), C). C'est de manière évidente un espace vectoriel localement
convexe et complet. C'est un espace de Fréchet si Z est dénombrable à

l'infini.
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Pour tout ensemble compact K de X, on désigne par (X, n) le sous-

espace fermé de H£c (X, n) formé des sections dont le support est contenu
dans K.

On désigne par H (X, n) l'ensemble des sections à support compact
de H?oc (X, n), muni de la topologie vectorielle limite inductive des espaces
HmK{X,n).

Notons que les inclusions canoniques

H&(X,n)<= Kc(X,iz)<=H°oc(X,n) Lfoc(X, n)
et

Hmc'(X,n) c <= iî°c(X,7t)

sont continues pour tout entier m' au moins égal à m.

Proposition 2. On désigne par X, X' et X" des ensembles ouverts de

Rn tels que X' contienne X — X". Pour tout entier naturel m, le produit
de convolution induit des applications bilinéaires continues (et même hypo-
continues

* : L\oc {X', C) x Hmc {X", C) - H"'oc (X, C)

* : KC(X',C)x LUX", C) -> (X, C)

* : Lfoc (X', C) x H(X",C) -> V (X, C)

* : IIZAX', C) x L2c (X", C) -» <f» (.,C).
C'est une conséquence immédiate des définitions et des propriétés du

produit de convolution.

Corollaire 1. On désigne par m un entier naturel et par </> une fonction
marteau sur RM. Pour toute fonction u de H (Rn, C) (resp. Hoc(Rn,C)),
le produit de convolution w*<^e converge vers u dans Hmc (Rn, C) (resp.

HfoC (RM? C) lorsque e tend vers 0.

Corollaire 2. Pour toute variété différentielle X, tout fibré vectoriel

complexe % sur X et tout entier naturel m, l'ensemble të(X,n) est

dense dans les espaces H (Z, n) et Hfoc (X, n).

Corollaire 3. On désigne par u une fonction de L\ (Rn, C), par K'
et K" des ensembles compacts de Rn vérifiant la relation

supp(w) + K' c K"
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Pour tout entier naturel m, le produit de convolution u* induit un opérateur

compact de H\> (Rn, C) dans (Rn, C).

C'est une conséquence immédiate du corollaire de la proposition 6 du

paragraphe 1.

Lemme 3. Pour toute fonction u de H" (RM, C) dont le support est

contenu dans la boule de rayon r, on a

dnu
U 1 oûL°°,R" (2r)A"/2

dxt dxn L ,R

On peut supposer que u appartient à (Rw, C). On a alors

u (xl9
dnu

_r ÔXjl dxn

pour tout point (xl5..., x„) de R" et l'assertion résulte de l'inégalité de

Holder.

Théorème 1 (Sobolev). On désigne par X une variété différentielle de

dimension pure n, par n un fibré vectoriel complexe sur X et par m un

entier au moins égal à n. Alors l'ensemble Hc (X, n) est contenu dans

%m~n (X, 7r).

La question étant locale, il suffit de montrer que H (Rn, C) est contenu
dans ~n (R", C). Or toute fonction u de H (RM, C) est limite d'une suite

(uj)jeN de ^ (Rn, C), et puisque la suite (DaUj)jeN converge uniformément
vers Dau pour tout multi-indice a de longueur au plus m — n (lemme 3),
le théorème est une conséquence immédiate de la proposition 1.

Corollaire. Pour toute variété différentielle X et tout fibré vectoriel
complexe n sur X, on a

V«(X911) n *C(X,7t) et <C(X,7T)= n Hmc{X,n).
meN meN

Lemme 4. Il existe des fonctions (j)0,..., 4>n de Üc (Rm, R) telles que

i v dn
u 0o*M + 22 </>j *

1 ^j?=n j
pour toute fonction u de Hloc (Rm, C).
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On désigne par </)0 une fonction marteau sur R" et l'on pose pour tout
entier j compris entre 1 et n et pour tout point x de Rn,

bj(x) J xj44>j(x) |

Montrons tout d'abord que <pj appartient à L\ (Rm, R). Pour tout point
x de R"\0, on a

<f>j (x) Xj(jj (-j
.|x| W«""

ce qui prouve déjà que 4>j est continue sur R"\0, nulle en dehors de la boule
unité. D'autre part, on a

I I < | Xj | } <1 J
\n\x\n n)

ce qui démontre l'assertion.
Pour vérifier l'égalité de l'énoncé, on peut supposer que u appartient à

(RM, C). Pour tout couple (x,y) de points de RM, il résulte de la formule
de Taylor que l'on a

i
u(x)=u(y)+ y (Xj-yj) — (ty + (1

J 0 vXj

On multiplie les deux membres de cette égalité par 0O ipc—y) et l'on intègre

par rapport à y. Il vient

u(x) (4>0*u)(x)

'l du
+ X f f

l^j^n J Rn J 0 VXj

Si l'on remplace x + t (y —x) par y, chacune des intégrales du membre de

droite s'écrit

LU fx— y\ dt \ du du\- ('• s;)w
ce qui démontre le lemme.

Théorème 2 (Rellich). Soit X une variété différentielle et soit n unfibré
vectoriel complexe sur X. Pour tout ensemble compact K de X et tout
entier naturel m, l'injection canonique de H^+1 (X, n) dans H& (X,n)
est un opérateur compact.
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On se ramène aisément au cas où K est un ensemble compact de Rn et

% le fibré produit CR.
Conservons les notations du lemme 4 et désignons par K' un ensemble

compact de RM contenant l'ensemble

K + u supp (4>j).

11 résulte du corollaire 3 de la proposition 1 que les opérateurs

<l>0*:HT1ÇKt,C)-+HÏ,(Rn9C)
et

: HK+1 (R", C) -+ HmK, (R", C)
ÔXj

sont compacts. Il en est donc de même de l'injection canonique de

#x + 1(Rw, C) dans (R", C) et l'on conclut en remarquant que
EmK (R", C) est fermé dans H%. (R", C).
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