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o (- )"hy, oy (0 - w)™hy) = (O - w)™u, (hy, .oy hy)

et I'assertion résulte de la premiére partie de la démonstration.

Désignons par s une forme différentielle méromorphe sur X et par B
I'image des points de ramification de u et des pdles de s. Pour tout ensemble
ouvert simplement connexe ¥ de Y\B, I’ensemble u~! (V) est formé de p
composantes connexes Uy, ..., U, et la restriction de # a chacun des U, est
un isomorphisme sur V. On désigne par v, Iisomorphisme réciproque et
I’on pose

w=297(s) + ... +v}5(s).
La forme différentielle w est holomorphe sur V" et I'on obtient par recolle-
ment une forme différentielle holomorphe u,, (s) sur Y\B.

PrOPOSITION 3. La forme différentielle u, (s) est holomorphe (resp.
méromorphe ) sur Y si s est holomorphe (resp. méromorphe) sur X.

La démonstration est laissée en exercice au lecteur. Elle est tout a fait
analogue a celle de la proposition 2.

§ 5. EXEMPLES

(1) Quelques remarques sur la droite projective.

On fait opérer le groupe G (2; C) des matrices carrées inversibles
d’ordre 2 dans P! par la formule

d b
(Wo:wy) = (2¢:2;) <c a) = (dzy+cz; :bzg+azy).

Cette opération est continue. Dans C, identifi¢ a 'ensemble
Uy = {(20321)51)1 | zo # O} >
cette formule prend I’aspect suivant

az + b
cz +d

Une transformation de ce type est un automorphisme de P* appelé homo-
graphie. Le noyau de 'opération contenant les homothéties, on peut se
restreindre au groupe S/ (2; C) des matrices de déterminant 1. Le noyau
est alors réduit au centre de S/ (2; ©), i.e. le sous-groupe d’ordre 2 formé
de I'identité et de son opposé. Ainsi le groupe des homographies apparait
comme le quotient de S/ (2; C) par son centre.
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Le groupe d’isotropie du point (0: 1) s’identifie au sous-groupe de
G (2; C) formé des matrices de la forme

1 b
0 a)’
Ce sont aussi les homographies qui opérent sur C.

PrROPOSITION 1. (1) Les automorphismes de C sont exactement les
homographies laissant fixe le point (0: 1).

(2) Les automorphismes de P! sont exactement les homographies.

Soit # un automorphisme de C. On peut écrire

u(z) = Y az*

keN

ol les g, sont des nombres complexes et ou la série converge uniformément
sur tout ensemble compact de C. Puisque u est un homéomorphisme, il
résulte du théoréeme de Weierstrass (§ 1, théoréme 1, corollaire 7) que les
a, sont presque tous nuls. Le théoréme fondamental de I’algébre montre
que le polynome u est de degré au plus 1, ce qui démontre la premiére
assertion.

Démontrons la seconde. Puisque le groupe des homographies contient
le groupe d’isotropie de (0: 1), il suffit de vérifier qu’il opére transitivement
sur P!, ce qui est trivial.

Tout ensemble ouvert d’une courbe holomorphe est une courbe holo-
morphe. En particulier, les ensembles

D={zeC| |z|]<1l} et H={zeC|Im(z)>0)}
sont des courbes holomorphes. Remarquons que ’homographie w définie par

z —1

z +1i

w(z) =

induit un isomorphisme de H sur D. Avant de décrire les automorphismes
de ces deux courbes, nous allons établir un lemme qui nous sera utile par
la suite.

Désignons par X un voisinage ouvert connexe de I’origine dans C et
par G le groupe des automorphismes de X. Pour tout élément g du groupe
d’1sotropie G de I’origine, on pose

.. 0g
J(g)—E(O)-
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On définit ainsi un homomorphisme j de G, dans C*,

LemMmE 1. On suppose X borné.
(1) Le nombre complexe j(g) est de module 1.
(2) Si j(g) estégal al, alors g est [’identité.

Les deux assertions sont évidentes si g est linéaire. Sinon, on peut écrire

g(z) =a,z + ) a2z’

vI>n

pour tout point z suffisamment voisin de I’origine, ou les a, sont des nombres
complexes tels que

a; =j(g) et a,#0.

Pour tout entier naturel k, on a de méme

g*(z) = b®z 4+ Y b®

v>>n
et un calcul élémentaire fournit les relations

b,® =di et bY =diTla, ¥ (@7,
0=<v<k
Puisque X est borné, il résulte de la formule de Cauchy (§ 1, théoréme 1,
corollaire 1) qu’il existe une constante M telle que
16,0 ] = latla, ¥ (@< M
0=v<k
pour tout entier naturel £. Ceci n’est possible que si | a, | est au plus égal
4 1. Le méme raisonnement appliqué a 'automorphisme g~ ' démontre la
premicre assertion.
Supposons a; égal a 1. La formule ci-dessus montre que 'on a

b, = ka, e |b®| = |ka,| <M
~ ce qui est absurde, et par conséquent g est I’identité.

Revenons a nos homographies. Remarquons tout d’abord que les
homographies laissant fixe H sont exactement celles a coefficients réels

et de déterminant positif. Ceci résulte immédiatement des définitions. Notons
que dans ce cas on a I’égalité

Im(w) =




— 217 —

En utilisant Iisomorphisme ®, on montre aisément que les homo-
graphies laissant fixe D sont celles de la forme
Pz +{
qz +p

w

avec |p|*—lq|® =1

PROPOSITION 2. (1) Les automorphismes de D sont exactement les
homographies laissant fixe D.

(2) Les automorphismes de H sont exactement les homographies laissant
fixe H.

11 faut vérifier que le groupe des homographies laissant fixe D opére
transitivement dans D ce qui est immédiat et qu’il contient le groupe
d’isotropie de l’origine. Or le lemme 1 montre que ce dernier groupe est
formé des rotations de centre 0, d’ou I’assertion.

On appelle fonction rationnelle sur C toute fonction méromorphe
s’écrivant comme le quotient de deux polyndmes. Les fonctions rationnelles
sur C forment un sous-corps de 2 (C) isomorphe au corps C (7T") des frac-
tions rationnelles 2 une indéterminée.

LEMME 2. Les fonctions rationnelles sur C sont exactement les fonctions
méromorphes sur P1.

On vérifie aisément que toute fonction rationnelle sur C est une fonction
méromorphe sur P (il suffit d’exprimer cette fonction dans I’autre carte de
P1). Réciproquement, soit f une fonction méromorphe sur P'. On désigne
par u la restriction & C du diviseur de f et ’on pose

g(2) = [] (=07O.
u(f)#0
Ceci a bien un sens puisque le support de u est fini. Il est clair que g est
une fonction rationnelle sur C donc méromorphe sur P! et que le diviseur

de fg est nul en dehors du point (0: 1). Cette derniére fonction est donc
constante (§ 4, lemme 1), d’ou I’assertion.

(2) Le faisceau des fonctions holomorphes sur C.

Pour tout point x de C, on désigne par 0, ’anneau des germes en x de

fonctions holomorphes. Soit @ I'ensemble [] @, et soit = la projection
xeX
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canonique de @ dans C. Pour tout ensemble ouvert U de C et toute fonction
holomorphe f sur U, on pose

NU,f) ={(x,u)eO|xeU et u=f,}.

PROPOSITION 3. Les ensembles du type N (U,f) forment une base de
topologie sur (. Pour cette topologie, l’espace O est séparé et la projection «
est un homéomorphisme local.

Si 'ensemble N (U, f) n N (V, g) est non vide, il existe par définition
un point x de U n V ou les germes f, et g, coincident. Les fonctions fet g
coincident donc sur un voisinage ouvert ¥ de x dans U n V. On en déduit
que ’ensemble

NW,f) = N(W,9)

est contenu dans N (U, f) nn N (V, g), ce qui démontre la premiére assertion.

Munissons @ de la topologie engendrée par les N (U, f). Soient (x, f,) et
(¥, g,) deux points distincts de ¢. On désigne par U et V" des voisinages ou-
verts de x et y respectivement sur lesquels f et g sont holomorphes. L’en-
semble N (U, f) est un voisinage de (x, f,) et ’ensemble N (V, g) un voi-
sinage de (¥, g,). Si x et y sont distincts, on peut supposer U et V' disjoints.
Il en est alors de méme de N (U, f) et N (¥, g). Si x et y sont confondus,
on peut supposer U et V connexes et égaux. Les germes de f et g sont dis-
tincts au point x, donc en tout point de U (principe du prolongement ana-
lytique). Ceci montre que @ est séparé.

La derniére assertion est triviale.

Il résulte de la proposition 3 et du théoréme de Poincaré-Volterra
(appendice II, théoréme 1) que toute composante connexe de @ est une
surface topologique (de type dénombrable). On la munit de I'unique struc-
ture holomorphe faisant de = un isomorphisme local.

Chacune des composantes connexes de ¢ est donc une courbe holo-
morphe ouverte.

Soit X la composante connexe d’un point (x, f,) de 0. La fonction f
définie sur X par

Fu) =u(y)

est holomorphe. En effet, pour tout voisinage ouvert U de y et toute fonc-
tion holomorphe g sur U dont le germe au point y est égal a u, on a

~

f=9g-m.
On dit que f est le prolongement analytique de f.



— 219 —

(3) Quotients de courbes holomorphes

Dans tout ce numéro, on désigne par X une courbe holomorphe connexe,
par G le groupe des automorphismes de X et par I' un sous-groupe pro-
prement discontinu de G ).

LEMME 3. (1) L’espace des orbites X|I" est séparé.

(2) Pour tout point x,, le groupe d’isotropie I, est fini et il existe
un systéme fondamental de voisinages U de x, vérifiant les conditions
suivantes :

y(U)ynU =g si y¢l,
{y(U)=U si yely,.

Désignons par = la projection canonique de X sur X/I'. Pour démontrer
(1), il faut montrer que la diagonale de X/I' x X/I' est fermée ou ce qui
revient au méme que son image réciproque A par © X 7 est fermée dans
X x X. Par définition, on a

A={(x,y)eXx X|ilexiste yetel que y = y(x) } .

Désignons par (x,, Y,y Une suite de 4 qui converge vers un peint (x, y)
de X X X etsoient K et L des voisinages compacts de x et y respectivement.
Pour 7 suffisamment grand, le point x, appartient a K et le point y, appar-
tient a L. On désigne par 7y, un élément de I' transformant x, en y,. Par
hypothese, il existe une infinité d’entiers n pour lesquels y, coincide avec un
élément fixe y de I'. On en déduit que y transforme x en y, d’ou I’assertion.
Démontrons (2). Soit K un voisinage compact de x,. On pose

S={yel[y(K)nK # 3}

et 'on désigne par yy, ..., 9, les €léments de S\I', . Pour tout entier j compris
entre 1 et n, il existe un voisinage V; de x, dans K tel que V; n y; (V) soit
vide. Il suffit alors de poser
1=j=<n
'YGFxO
LEMME 4. Pour tout point x, de X, le groupe d’isotropie I, est cyclique.
Désignons par U un voisinage connexe de x, vérifiant les conditions
du lemme 3. On peut supposer que U est le domaine d’une carte ¢ centrée

1) Ceci signifie que pour tout ensemble compact K de X, ensemble

{yel' | y(KYNK # @ }

est fini.
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en x, et que ¢ (U) est borné. L’expression d’un élément y de I',, dans la
carte ¢ est alors un automorphisme y, de ¢ (U) laissant fixe 'origine et
le lemme 2 montre que 'application # de I',, dans C* définie par

n@) =j,)

est un homomorphisme injectif de I',, dans U, ce qui démontre le lemme.

THEOREME 1. Désignons par ©n la projection canonique de X dans [’espace
des orbites X|I'. 1l existe une structure holomorphe et une seule sur X|I'
vérifiant la condition suivante :

(Q) Pour tout ensemble ouvert U de X|I', [’application =* induit une
bijection de O (U) sur l’ensemble des fonctions holomorphes I'-inva-
riantes de O (n™* (U)).

L’unicité résulte immédiatement de la condition (Q) (§ 2, lemme 1).
Désignons par Y I’espace des orbites X/I'. Les points fixes d’un automor-
phisme y distinct de I'identité sont isolés (§ 1, théoréme 1, corollaire 3).
Il résulte alors du lemme 3 que I’ensemble A des points fixes de I (i.e. ’en-
semble de tous les points fixes des automorphismes de I' distincts de 1’iden-
tité) est fermé discret, de méme que son image B. Ce lemme montre aussi
que la restriction de # a X\A4 est un revétement de Y\B. On munit Y\B
de I'unique structure holomorphe qui fait de = un isomorphisme local. Il
est clair que la condition (Q) est vérifiée pour tout ensemble ouvert U de Y\B.

Il reste a prolonger la structure holomorphe de Y\B aux points de B.
La question étant locale, on peut supposer que X est un voisinage ouvert
borné de 1’origine dans C et que tous les éléments de I' laissent fixe I’ori-
gine. En particulier, le groupe I est fini cyclique d’ordre p. On définit une
fonction holomorphe /# sur X en posant

h(z) = []7(2)
yell
L’ordre de & a l’origine étant p, on peut supposer en diminuant au besoin X

que & est de la forme
h = u?

ol u est un isomorphisme de X sur un voisinage de I’origine (§ 4, propo-
sition 1). La fonction 4 étant I'-invariante, elle définit par passage au quo-
tient une application continue ¢ de Y sur 'image Z de A. Quitte & diminuer
Z, on peut supposer que la restriction de 4 (resp. ) a X\{0} est un revé-
tement a p feuillets de Z\{0} (resp. Y\{n(0)}). En particulier, I’application ¢
est un homéomorphisme de Y sur Z induisant un isomorphisme de Y\{n(0)}
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sur Z\{0}. Autrement dit, cette application est une carte de ¥ compatible
avec la structure holomorphe de Y\{n(0)}.

Il reste & voir que la structure holomorphe ainsi définie vérifie la condi-
tion (Q). Tout d’abord, I’application n est holomorphe par définition.
D’autre part, toute fonction I'-invariante f sur X définit par passage au
quotient une fonction continue sur Y qui est holomorphe sur Y\{n(0)}.
Le théoréme de Weierstrass (§ 1, théoréme 1, corollaire 7) montre qu’elle est
holomorphe sur Y ce qui achéve la démonstration du théoréme.

Avant de donner des exemples concrets, nous allons établir un critére
permettant de reconnaitre aisément si un sous-groupe I" du groupe des auto-
morphismes de D (ou de H) est proprement discontinu. Rappelons tout
d’abord que le groupe des automorphismes de D (ou de H) est naturellement
muni d’une topologie (et méme d’une structure de groupe de Lie), a savoir
celle provenant de la topologie de G (2; C) (numéro 1).

LEMME 5. Pour qu’un sous-groupe I’ du groupe des automorphismes de
D (oude H) soit proprement discontinu, il faut et il suffit qu’il soit discret.

La condition est évidemment nécessaire: si une suite (7,),.n d’éléments
deux & deux distincts de I' converge vers I'identité, la suite (7, (0))nen
converge vers 0 et I' ne peut pas étre proprement discontinu.

Montrons qu’elle est suffisante. Désignons par

pz +4q
W =
qz + p

une transformation de I' (proposition 2). Un calcul élémentaire montre que
I’'on a

avec  |pl>—|q|* =1

1w = 22120 -

lgz + p|? p
Soit  un nombre réel strictement compris entre 0 et 1. Si z et w sont tous
deux de module au plus égal a r, on a

<1.

1
PP —=r?"
On en déduit qu’il n’existe qu’un nombre fini d’éléments de I' transformant

un point z de module au plus égal & r en un point w de module au plus égal
a r, d’ou I’assertion.

lgz +p| =|pl| |%z+1|é|p|(1—r) et 1 —p? <

Désignons par w,; et w, deux nombres complexes linéairement indé-

pendants sur R et par I' le groupe d’automorphismes de C engendré par les
translations
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71(2) =z4+ 0, et y,(2) =z + w,.

Il est clair que I' est proprement discontinu et n’a pas de points fixes. La
courbe holomorphe C/I' se désigne par T (w,, ®,). Elle est compacte et
connexe et I’application canonique de C dans T (o, ®,) est le revétement
universel de T (w,, w,).

On appelle courbe elliptique toute courbe holomorphe isomorphe a une
courbe de la forme T (w,, ®,). Remarquons que le groupe des automor-
phismes d’une courbe elliptique opére de manicre transitive.

Nous allons chercher a quelles conditions deux courbes elliptiques sont
isomorphes.

Tout d’abord, quitte a remplacer w, par —w,, on peut supposer que le
nombre complexe défini par

T = w;w,!

a une partie imaginaire strictement positive. Considérons ensuite 1’auto-
morphisme 0 de C défini par

0(z) = w3'z.

Par passage aux quotients, il définit un isomorphisme de T (w,, w,) sur
T (z, 1). Pour étudier une courbe elliptique, on peut donc toujours supposer
qu’elle est de la forme T (7, 1) avec 7 dans H. Un tel nombre complexe
s’appelle un module de la courbe elliptique.

Soient X et Y deux courbes elliptiques et soit # un isomorphisme de X
sur Y. On désigne par 7 et p les revétements universels de C dans X et ¥
respectivement. Quitte & modifier # par un automorphisme de Y, on peut
supposer que l’on a

u(m(0)) = p(0).
1l existe alors un automorphisme v de C et un seul tel que
20 =0 e pv=u-'m.
Cet automorphisme est de la forme
v(z) = az

ol o est un nombre complexe non nul (proposition 1). De plus, puisqu’il
passe aux quotients, il existe des entiers relatifs a, b, ¢ et d tels que

{arzaa-l—b

et ad —bc =1,
« =co +d
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en désignant par 7 et ¢ des modules de X et ¥ respectivement. On en déduit
que X et Y sont isomorphes si et seulement si les modules 7 et ¢ sont dans
la méme orbite pour ’action de S/ (2; Z).

Le quotient de S7(2; Z) par son centre est un sous-groupe discret I du
groupe des automorphismes de H. Il résulte alors du lemme 5 et du théo-
réme 1 quil existe sur H/I' une structure holomorphe canonique. On
notera que les classes d’isomorphie de courbes elliptiques sont en corres-
pondance biunivoque avec les points de H/I'.

Remarque 1.

La courbe H/I" est isomorphe a C. Ceci résulte par exemple de existence
et des propriétés de la fonction modulaire J ([3], Kap. 1V, § 3, Satz 3).

(4) Courbes algébriques

On dit qu’une partie X de ’espace numérique C" est algébrique si elle est
le lieu des zéros d’une famille de polynémes. L’ensemble a des polyndmes de
CI[T,, ..., T,] qui s’annulent sur X est un idéal que I’on appelle I’idéal de X.
On notera que X est aussi le lieu des zéros de toute famille de générateurs
de a. En particulier, le théoréme de la base de Hilbert ([4], chap. VI, § 2,
théoréme 1) montre que X est le lieu des zéros d’une famille finie de poly-
ndmes.

Soit X un ensemble algébrique de C" et soit a son idéal.

On dit qu'une fonction définie sur X et a valeurs complexes est réguliére
si elle est la restriction d’une fonction polynomiale sur C". L’ensemble des
fonctions réguliéres sur X est une sous-algébre de ° (X, C) qui s’identifie
canoniquement a C [Ty, ..., T,}/a.

On dit qu’un point x de X est régulier s’il existe un voisinage ouvert U
de x dans C" tel que U n X soit une sous-variété (holomorphe) de U. Un
point est dit singulier s’il n’est pas régulier.

Il résulte de cette définition que ’ensemble des points réguliers de X
est une partie ouverte de X et une sous-variété localement fermée de C".

On dit que X est irréductible s’il satisfait I’'une des conditions suivantes
dont on vérifie aisément qu’elles sont équivalentes:

(1) L’idéal a est premier.
(2) Si X est réunion de deux ensembles algébriques, I’'un au moins est
¢gal a X.

Supposons X irréductible. On appelle dimension algébriqgue de X le
degré de transcendance du corps des fractions de ’anneau C [T, ..., T }/a.
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On appelle courbe algébrique affine tout ensemble algébrique irréductible
de dimension algébrique 1 dans un certain espace numérique.

LEMME 5. Soient z, ay, ..., a, des nombres complexes vérifiant la relation

¢ 4 a ¢t

+ see + ak == 0-
On a l’inégalité

|z| <2 max |[a;|'.
1=j=k

Désignons par r le maximum des | a; |'//. On peut supposer r non nul et
I'on a
2\*  a, [z\¥! a
o) T M § o + i+ = =0.
r r\r r
On en déduit que

i
<14 |-
r

ce qui démontre ’assertion.

LEMME 6. Soit U un voisinage ouvert connexe du point (0:1) dans P*
et soient U, ..., u, des fonctions méromorphes sur U. On suppose que u,
est non nulle. 1l existe alors des nombres réels r et M strictement positifs
et un entier relatif m tels que

|27z | <M
pour tout couple (z,z,) de nombres complexes vérifiant les relations
lzg | =71 et ug(z)z5 + ... +u(zy) =0,
Soit m un entier vérifiant la relation

m < inf 0(0:1)(“j)_0(0:1)(uo)
S .

1=<j=<k J

et soit » un nombre réel strictement positif tel que u, soit holomorphe
inversible et les uq, ..., 4, holomorphes au voisinage de la couronne

C={zeC| |z|>r}.

Pour tout entier j compris entre 1 et n, on définit une fonction holomorphe
- au voisinage de C en posant

w;(2) = u;(2)ug(z) ' z™ .
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L’ordre au point (0: 1) de cette fonction étant positif, on pose

M=2 max |w, H 1
1=j=k

Si (z,, z,) est un couple de nombres complexes vérifiant les conditions de
I’énoncé, on a

(z7z,)F + wy(z) (2T2) " + ... + we(z) = 0.

On conclut en appliquant le lemme 5.

LEMME 7. Soit X un sous-ensemble algébrique strict de C" et soit f une
fonction holomorphe sur C"\X. Si f est bornée au voisinage de chaque point
de C", elle se prolonge en une unique fonction holomorphe g sur C". Si
de plus il existe une constante M et un entier naturel k tels que

f@I<M|z[f

pour tout point z de C"\X, alors g est polynomiale.

Soit ¢ un point de C". Quitte & effectuer un changement linéaire de
coordonnées, on peut supposer qu’il existe un polydisque D’ X D” de
centre { dans C*~! x C tel que

(D'x3D YN X =

(§ 3, démonstration lemme 1). Supposons f bornée sur D’ X D”. Pour tout
point (z4, ..., z,_ ;) de D’, la fonction partielle f(zq, ..., z,— 1, ) S€ prolonge
en une fonction holomorphe ¢ (z4,..., Z,-1, ) sur D" (§1, théoréme 1,
corollaire 1) et ’on a

f(Zla“" n 1>Z)
5ty d
9 (24 Zn) 2lnf z z

—Z,

pour tout point z, de D”. On vérifie aisément que cette fonction g est holo-
morphe sur D' X D", ce qui démontre la premiére assertion.
Démontrons la seconde. 1l existe une famille (a,),.n- de nombres com-
plexes telle que
g(2) = ¥ a,z% et |a,| <M<l
acA

pour tout nombre réel strictement positif » (§ 1, théoréme 1, corollaire 1).
L’assertion en découle aussitot.

Pour la commodité du lecteur, les résultats d’algébre nécessaires a la
démonstration du théoréme suivant sont groupés dans ’appendice I11.
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THEOREME 2. Soit X wun ensemble algébrique irréductible de dimension
algébrique k. 1l existe des fonctions régulieres uy,...,u, sur X et un
ensemble algébrique N de C* vérifiant les conditions suivantes :

(1) L’application u = (uy,...,u,) de X dans C* est propre a fibres
finies.

(2) Tous les points de X \u™' (N) sont réguliers et la restriction de u
a cet ensemble est un isomorphisme local (donc en particulier un revétement
fini de CK\N d’aprés (1)).

(3) L’ensemble X\u™'(N) est connexe et dense dans X.

Supposons X plongé dans I’espace numérique C". On désigne par A4
I’anneau C [T}, ..., T3], par K son corps des fractions, par B I’anneau des
fonctions réguliéres sur X et par L son corps des fractions. Quitte a effectuer
un changement linéaire de coordonnées dans C", on peut supposer que 1’on
est dans la situation suivante:

(a) Les classes uy, ..., u, de T'q, ..., T} dans B sont algébriquement indé-
pendantes. Elles engendrent un sous-anneau sur lequel B est entier. Autre-
ment dit, Papplication canonique de 4 dans C [T}, ..., T,] induit une injec-
tion de A dans B et B est un A-module de type fini.

(b) La classe « de T}, dans B est un générateur de L sur K.

Désignons par p le polyndme minimal de « dans K [T}, ,]. C’est un
polynéme monique irréductible, et puisque a est entier sur A4 et 4 factoriel,
il appartient & 4 [T}, ;]. On a donc un isomorphisme

A[T;44]/(p) =~ Ala] = B.

Désignons par m le degré de p et par 4 son discriminant. On a les inclusions
ABc A[a] = B.

En particulier, il existe pour tout entier j compris entre k+2 et » un poly-
noéme r; de degré strictement inférieur & m dans A4 [T}, ] tel que le poly-
ndme

q; = AT; —r;

J J

appartienne a I'idéal b de X.

LEMME 8. 1] existe un entier naturel v tel que A’b soit contenu dans [’idéal
engendré par p, gy 2y - Gy

Désignons par ¢ un polyndme de degré v dans C [Ty, ..., T,]. Modulo
’idéal engendré par g4 », ..., g, le polynéme A4%g est congru a un polyndme
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rde A [T, ] (& savoir le polyndme 4°q (T, s Tis 1 4™ Frwas oo 4711))-
Ia division euclidienne des polyndmes montre que modulo I’idéal engendré
DAL P, Gys 25 - Gn, ON peut choisir r de degré strictement inférieur a m.
Si g appartient & b, il en est de méme de r qui est donc nul (car p est le poly-
ndéme minimal de o). Ceci montre que 4”q appartient a I’idéal engendré par
Dy Qi s --r Gn. ON conclut en remarquant que b est de type fini.

Revenons a notre théoréme. L’ensemble N des zéros de 4 est un sous-
ensemble algébrique strict de C* (car p est irréductible).

Démontrons (1). On voit comme précédemment que le polynéme
minimal p; de la classe de T; appartient a 4 [7';] pour tout entier j compris
entre k+2 et n. Tout point (z4, ..., z,) de X vérifiant les équations

p(zla'°'azk+1) = pk+2(zla"'>zk7 Zk+2) = e = pn(zlb'“azk: Zn) = 0:

I'assertion découle du lemme 5.
Démontrons (2). On définit une application y de C" dans C"~* en posant

U(zyyoos 2, =
(P (Z1s s Zew1)s Dt 2 (215 vvs Zios Zigr2)s ooos Gn (215 oo Zs Zn))‘

L’ensemble Z des zéros de i coincide avec X sur (C¥\N) x C*"~* (lemme 8).

0
Puisque P ({4 ..., {4+ 1) est non nul en tout point ({4, ..., {,) de
k+1

X\u~! (N), lapplication partielle ¢ ({4, ..., {x, ) est de rang n—k au point
(Cisqs s £). On conclut & I'aide du théoréme des fonctions implicites
(appendice I, théoréeme 3).

Démontrons (3). On désigne par Y l’ensemble des z€ros de p dans
C**1 par v, la restriction & Y de la premiére projection de C* x C dans
C* et par v, la restriction & X de la premiére projection de C**1 x Cr -1
dans C**1. 1l est clair que I'image de v, est contenue dans Y et que ’on a

u ='l)1'7}2.

De plus, il résulte aisément de ce qui précéde que v, induit un isomorphisme
de X\u=! (N) sur Y\vi! (N). Démontrons par I’absurde que ce dernier
ensemble est connexe. Supposons qu’il existe deux ensembles ouverts non
vides disjoints Y’ et ¥Y” recouvrant ¥\u~' (N). Pour tout point z de C¥\N,
on pose

p'(z, Tysy) = H (Ths1—Zk+1)
(2,2 1)€Y’
p (2, Ty = H (Tys1—2Zps1) -

(z,2k+1)eY”
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On a par définition

p(z, Tyyy) = p' (2, Tk+1)P” (z, Tis1)

et il suffit de montrer que les coefficients de p’ et p” sont des fonctions poly-
nomiales. Tout d’abord, ces coefficients sont des fonctions holomorphes sur
C*\N (§ 4, proposition 2), et puisque v, est propre, ils demeurent bornés au
voisinage de tout point de N. On conclut a ’aide des lemmes 6 et 7.

Il reste & montrer que X\u~! (N) est dense dans X. C’est une consé-
quence immédiate de I'irréductibilité de X et du lemme suivant.

LEMME 9. L adhérence de X\u™' (N) est un ensemble algébrique.
Pour toute fonction polynomiale f sur C" et pour tout point z de C¥\N,
on pose

0,(z, T) = 11 (T —f(2, Zgs 1> o> Z4)) -

(2,2 4 15+--sZn)eX

On vérifie comme précédemment que les coefficients de 0, sont des fonctions
polynomiales. Nous allons montrer que I’adhérence ¥V de X\u~' (N) est
¢gale a I’ensemble algébrique W défini par

W = {(Zlﬂ cees Zn) EC" ! Hf(zl, veey Zk,f(zl, ceny Zn)) == O
pour tout feC[Ty,...,T,]}.

Tout d’abord, il résulte des définitions que W contient V. Réciproquement,
soit ({4, ..., {,) un point de W et montrons qu’il appartient a la fibre

E=u',..0)nV.

Raisonnons par I’absurde. Puisque E est fini, il existe un polyndme f qui
s’annule au point ({, ..., {,) mais ne s’annule en aucun point de E. Ceci
implique en particulier que O est une racine du polyndme 0, ({4, ..., {3, T).
11 existe alors une suite (z7, ..., 2 ;oy de C¥\ N qui converge vers ({4, ..., {;)
et une suite (a;) ;o de C qui converge vers 0, telles que «; soit une racine du
polyndme 6; (z“ ). ..., z¥, T) pour tout entier j (cont1nu1te des racines d’un
polyndéme).

On désigne par z) un point de X\u~* (N) se projetant sur (27, ..., z{)
tel que £ (z"?) soit égal & «;. La restriction de u & ¥ étant propre, on peut
supposer, quitte 3 passer A une sous-suite, que (z\)) . converge vers un
point z de V. On en déduit que

f(z) = lim f(z9) =0
J—> 00

ce qui est absurde.
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COROLLAIRE. L ’ensemble des points singuliers d’une courbe algébrique
affine X est fini. L ’ensemble des points réguliers est une courbe holomorphe
connexe et dense dans X.

THEOREME 3. Pour toute courbe algébrique X de C", il existe une courbe

holomorphe X et une application holomorphe non constante n de X dans
C" vérifiant les conditions suivantes :

(1) L’image de m est contenue dans X.

(2) Pour toute courbe holomorphe Y et toute application holomorphe v
de Y dans C" constante sur aucune composante connexe de Y, il existe une

application holomorphe et une seule v de Y dans X telle que

~

TV =9.

Le couple (X, m) est déterminé a isomorphisme pres par ces conditions.
De plus, I’application m est propre (a fibres finies). Elle induit un isomor-

phisme de X\n~' (A) sur X\A, en désignant par A [’ensemble des points
singuliers de X.

Désignons par u une fonction réguliére sur X et par N un ensemble fini
de C vérifiant les conditions du théoréme 2. Pour tout point { de N, il
existe un disque D de centre { et de rayon r dans C tel que la restriction de
ua u~ ' (D\{{}) soit un revétement a m feuillets de D\{{}. Désignons par
Ui, ..., U, les composantes connexes de u~1 (D\{{}). La restriction de u
a U; est un revétement a m; feuillets de D\{({} et I'on a

n’l:m1+...+mp.

Désignons par D; le disque centré a I’origine et de rayon r'/™ dans C et
par v ; 'application de D; dans D définie par

¥;(2) = 2" + (.

La restriction de ; & D;\{0} est un revétement & m; feuillets de D\{{}.
Il existe donc un unique homéomorphisme /; de D;\{0} sur U; rendant le
diagramme suivant commutatif
h.
DNO}——1 U,
\\ //
lpj N Y u

D\({)
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Cette application est en fait un isomorphisme. On désigne par X ’espace
obtenu en recollant X\u~" (N) et les D; au moyen des homéomorphismes
h; (lorsque { parcourt N), par n Papplication réciproque de I’injection

canonique de X\u"!(N) dans X et par ¢ ; Tapplication réciproque de

Uinjection canonique de D; dans X. On vérifie aisément que X est une sur-
face topologique et que les ¢ ; sont des cartes holomorphiquement compa-

tibles avec toute carte de X\u~! (N). On munit X de la structure holo-
morphe correspondante.

L’application 7 est une application holomorphe a valeurs dans C",

définie sur le complémentaire d’un ensemble fini de X. Puisqu’elle demeure
bornée au voisinage de chaque point, elle se prolonge en une application

holomorphe de X dans C".
Il est clair que I'application 7 est propre a fibres finies, que son image

est contenue dans X et qu’elle induit un isomorphisme de X\n~! (4) sur
X\A4 (§4, proposition 1, corollaire). Il reste a vérifier la condition (2).
L’image réciproque de A est un ensemble fini et 'on pose

- -1
V=T 0 | x\p-10a) -

On vérifie aisément que v se prolonge par continuité aux points de v ™! (4)
ce qui achéve la démonstration du théoréme.

Le couple (X, 7) construit dans le théoréme 3 s’appelle la normalisation
(ou la désingularisation) de X. Le lemme suivant est une conséquence immé-
diate de ce qui précede.

LemMME 10. Soit X une courbe algébrique de C" et soit v une application
holomorphe d’une courbe holomorphe Y dans C". On suppose que |’appli-
cation v est propre (a fibre finies) et qu’elle induit un isomorphisme de
Y\o~ ' (4) sur X\A, en désignant par A [’ensemble des points singuliers
de X. Alors (Y,v) est la normalisation de X.

Tout polynéme p de C [Ty, ..., T,] s’écrit d’une manicre et d’une seule

P =DPo+ ...+ D

ol p; est homogéne de degré j. Pour tout point x de C"*! et tout nombre
complexe A, on a

p(Ax) = po + ... + AFp(x).
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En particulier, si p s’annule sur une partie de C"*'\0 saturée pour la pro-
jection canonique Y de C"*1\0 dans P”, il en est de méme de chacun des p;.

Pour tout polynéme homogéne p de C [T, ..., T,], 'ensemble des z€ros
de p dans C"*1\0 est saturé pour . Son image dans P" s’appelle (abusive-
ment) le lieu des zéros de p.

On dit qu’une partie X de P" est algébrique si elle est le lieu des zéros
d’une famille de polyndmes homogenes. L’ensemble a des polyndmes de
CIT,,...,T,] qui s’annulent sur ¥~ ! (X) est un idéal homogéne (i.e.
engendré par des polyndmes homogénes) que 'on appelle Uidéal de X.
On notera que X est aussi le lieu des zéros de toute famille de générateurs
de a. En particulier, le théoréme de la base de Hilbert montre que X est le
lieu des zéros d’une famille finie de polynémes homogénes.

Soit X un ensemble algébrique de P” et soit a son idéal.

On dit qu’un point x de X est régulier s’il existe un voisinage ouvert U
de x dans P" tel que U n X soit une sous-variété (holomorphe) de U. Un
point est dit singulier s’il n’est pas régulier.

Il résulte de cette définition que I’ensemble des points réguliers de X est
une partie ouverte de X et une sous-variété localement fermée de P”.

Pour tout entier j compris entre O et , la trace de X sur I’ensemble

UJ = {(ZO: 5 5§ Zn)EPn [ Zj ?é 0}

est un sous-ensemble algébrique de C" dont I’idéal est donné par la formule

A

a; ={peClTy, .., T} .., T,]| il existe g e a tel que

P = g(Lg ooy Li e T}

C’est une conséquence immédiate des définitions.
On dit que X est irréductible s’il vérifie I'une des conditions suivantes
dont on vérifie aisément qu’elles sont équivalentes:

(I) L’idéal a est premier.
(2) Si X est réunion de deux ensembles algébriques, I’un au moins est
égal a X.

Supposons X irréductible. On vérifie aisément que I’ensemble 4 défini
par

P
A= { ge CcTy...T,) | p et ¢ homogénes de méme degré et g ¢c_z}

est un sous-anneau de C (T, ..., T,) et que le quotient AlaA est un corps.
On Iappelle le corps des fonctions rationnelles sur X et on le désigne par




i

4
v

%
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Kk (X). On appelle dimension algébrique de X le degré de transcendance
de k (X).

PROPOSITION 4. Soit X un ensemble algébrique de P" et soit a son idéal.

St X est irréductible et si T; n’appartient pas a a, la trace de X sur

U; est irréductible et le corps 1« (X) des fonctions rationnelles sur X
A

s 'identifie au corps des fractions de C [Ty, ..., T}, ..., T,] |a;.
Désignons par p et p, des polynémes de degré k, et k, respectivement

dans C [T, ..., T}, ..., T,] tels que le produit p,p, appartienne a a ;. Ceci
signifie qu’il existe un polyndéme g dans a tel que
p1p2 = Q(TOB *rs 19 M 7-;!) *

Comme a est premier et que 7T; n’appartient pas a a, on peut supposer que
q n’est pas divisible par 7';. On a alors

pua, (T T (T T,
J 1 '1_"1- ooy T 2 T 9 cney T

-

J J J
e Tl‘zl-i-kl q (I?_ i Tf) —_ q
’ T; T; T;

d’ou l’assertion. Le reste de la proposition est laissé en exercice au lecteur.

On appelle courbe algébrique projective tout ensemble algébrique irré-
ductible de dimension algébrique 1 dans un espace projectif.

Les deux théorémes suivants sont des conséquences immédiates des
résultats correspondants du cas affine.

THEOREME 4. L ’ensemble des points singuliers d’une courbe algébrique
projective X est fini. L ’ensemble des points réguliers est une courbe holo-

- morphe connexe et dense dans X.

THEOREME 5. Pour toute courbe algébrique projective X de P", il existe

une courbe holomorphe X et une application holomorphe non constante

n de X dans P" vérifiant les conditions suivantes :
(1) L’image de m est contenue dans X.

(2) Pour toute courbe holomorphe connexe Y et toute application
holomorphe non constante v de Y dans P" dont l'image est contenue dans
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X, il existe une application holomorphe v et une seule de Y dans X telle
que

~

Ty =19.

Le couple (X,n) est déterminé a isomorphisme prés par ces conditions.
De plus, la courbe X est compacte et connexe et [’application © induit un

isomorphisme de X\n~' (A) sur X\A, en désignant par A [’ensemble des
points singuliers de X.

Le couple (X,n) du théoréme 5 s’appelle la normalisation (ou la désingu-
larisation) de X.
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