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u0((\j/( \l/-u)m)hn)O •

et l'assertion résulte de la première partie de la démonstration.

Désignons par s une forme différentielle méromorphe sur X et par B
l'image des points de ramification de u et des pôles de s. Pour tout ensemble

ouvert simplement connexe V de Y\B, l'ensemble u-1 (V) est formé de p
composantes connexes Uu Up et la restriction de u à chacun des Uk est

un isomorphisme sur V. On désigne par vk l'isomorphisme réciproque et
l'on pose

w V* (s) + +v*(s).
La forme différentielle w est holomorphe sur V et l'on obtient par recollement

une forme différentielle holomorphe u* (s) sur Y\B.

Proposition 3. La forme différentielle (V) est holomorphe (resp.

méromorphe) sur Y si s est holomorphe (resp. méromorphe) sur X.
La démonstration est laissée en exercice au lecteur. Elle est tout à fait

analogue à celle de la proposition 2.

§ 5. Exemples

(1 Quelques remarques sur la droite projective.

On fait opérer le groupe G (2 ; C) des matrices carrées inversibles
d'ordre 2 dans P1 par la formule

fd b\
Oo • Wi) (z0 :zf)[ (dz0+cz1 : bz0 +azf).

\c aj

Cette opération est continue. Dans C, identifié à l'ensemble

U0 {Oo : | z0 0}

cette formule prend l'aspect suivant

az + b
w

cz + d

Une transformation de ce type est un automorphisme de P1 appelé
homographie. Le noyau de l'opération contenant les homothéties, on peut se

restreindre au groupe SI (2; C) des matrices de déterminant 1. Le noyau
est alors réduit au centre de SI (2; C), i.e. le sous-groupe d'ordre 2 formé
de l'identité et de son opposé. Ainsi le groupe des homographies apparaît
comme le quotient de SI (2; C) par son centre.
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Le groupe d'isotropie du point (0: 1) s'identifie au sous-groupe de

G (2; C) formé des matrices de la forme

Ce sont aussi les homographies qui opèrent sur C.

Proposition 1. (1) Les automorphismes de C sont exactement les

homographies laissant fixe le point (0: 1).

(2) Les automorphismes de P1 sont exactement les homographies.
Soit u un automorphisme de C. On peut écrire

où les ak sont des nombres complexes et où la série converge uniformément
sur tout ensemble compact de C. Puisque u est un homéomorphisme, il
résulte du théorème de Weierstrass (§ 1, théorème 1, corollaire 7) que les

ak sont presque tous nuls. Le théorème fondamental de l'algèbre montre

que le polynôme u est de degré au plus 1, ce qui démontre la première
assertion.

Démontrons la seconde. Puisque le groupe des homographies contient
le groupe d'isotropie de (0: 1), il suffit de vérifier qu'il opère transitivement
sur P1, ce qui est trivial.

Tout ensemble ouvert d'une courbe holomorphe est une courbe
holomorphe. En particulier, les ensembles

D { z e C | | z 1 < 1} et H { z e C | Im (z) > 0 }

sont des courbes holomorphes. Remarquons que l'homographie œ définie par

induit un isomorphisme de H sur D. Avant de décrire les automorphismes
de ces deux courbes, nous allons établir un lemme qui nous sera utile par
la suite.

Désignons par X un voisinage ouvert connexe de l'origine dans C et
par G le groupe des automorphismes de X. Pour tout élément g du groupe
d'isotropie G0 de l'origine, on pose

u(z) £ akzk

Z
co(z)

z 4- i

dg
us) /(°).

oz
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On définit ainsi un homomorphisme j de G0 dans C*.

Lemme 1. On suppose X borné.

(1) Le nombre complexe j (g) est de module 1.

(2) Si j (g) est égal à 1, alors g est l'identité.

Les deux assertions sont évidentes si g est linéaire. Sinon, on peut écrire

g(z)axz + £ avz"

pour tout point z suffisamment voisin de l'origine, où les av sont des nombres

complexes tels que

«î j(g) et an ¥= 0

Pour tout entier naturel k, on a de même

gk(z) b^z + X K(k)zv
v^n

et un calcul élémentaire fournit les relations

&!<*>= flî et bn^^a\£(a'r1)'.
O^v <k

Puisque X est borné, il résulte de la formule de Cauchy (§ 1, théorème 1,

corollaire 1) qu'il existe une constante M telle que

\b.<»\ \aï~lan I (O'KM
O^v <fc

pour tout entier naturel k. Ceci n'est possible que si | a± | est au plus égal
à 1. Le même raisonnement appliqué à l'automorphisme g~l démontre la
première assertion.

Supposons a1 égal à 1. La formule ci-dessus montre que l'on a

bn(k) kan et | bn{k) | | kan | < M

ce qui est absurde, et par conséquent g est l'identité.

Revenons à nos homographies. Remarquons tout d'abord que les

homographies laissant fixe H sont exactement celles à coefficients réels

et de déterminant positif. Ceci résulte immédiatement des définitions. Notons

que dans ce cas on a l'égalité
Im(z)

Im(w)
|cz + d |
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En utilisant l'isomorphisme œ, on montre aisément que les

homographies laissant fixe D sont celles de la forme

w
+

- avec | p |
2 - | q \

2 1

qz + p

Proposition 2. (1) Les automorphismes de D sont exactement les

homographies laissant fixe D.

(2) Les automorphismes de H sont exactement les homographies laissant

fixe H.

Il faut vérifier que le groupe des homographies laissant fixe D opère

transitivement dans D ce qui est immédiat et qu'il contient le groupe
d'isotropie de l'origine. Or le lemme 1 montre que ce dernier groupe est

formé des rotations de centre 0, d'où l'assertion.

On appelle fonction rationnelle sur C toute fonction méromorphe
s'écrivant comme le quotient de deux polynômes. Les fonctions rationnelles

sur C forment un sous-corps de Jf (C) isomorphe au corps C (T) des

fractions rationnelles à une indéterminée.

Lemme 2. Les fonctions rationnelles sur C sont exactement les fonctions
méromorphes sur P1.

On vérifie aisément que toute fonction rationnelle sur C est une fonction
méromorphe sur P1 (il suffit d'exprimer cette fonction dans l'autre carte de

P1). Réciproquement, soit / une fonction méromorphe sur P1. On désigne

par u la restriction à C du diviseur de / et l'on pose

g(z)n (z-0""(î).
«(0*0

Ceci a bien un sens puisque le support de u est fini. Il est clair que g est

une fonction rationnelle sur C donc méromorphe sur P1 et que le diviseur

dtfg est nul en dehors du point (0: 1). Cette dernière fonction est donc
constante (§ 4, lemme 1), d'où l'assertion.

(2) Le faisceau des fonctions holomorphes sur C.

Pour tout point x de C, on désigne par 0X l'anneau des germes en x de
fonctions holomorphes. Soit 0 l'ensemble n ». et soit n la projection

xeX
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canonique de G dans C. Pour tout ensemble ouvert U de C et toute fonction
holomorphe / sur U, on pose

N(U,f { (x, u) e G | x e U et u fx}
Proposition 3. Les ensembles du type N(U,f) forment une base de

topologie sur G. Pour cette topologie, l'espace (9 est séparé et la projection n
est un homéomorphisme local.

Si l'ensemble N (U,f) n N (V, g) est non vide, il existe par définition
un point x de U n V où les germes fx et gx coïncident. Les fonctions/ et g
coïncident donc sur un voisinage ouvert W de x dans U n V. On en déduit

que l'ensemble

N(WJ) N(W,g)
est contenu dans N (U,f) n N (V, g), ce qui démontre la première assertion.

Munissons (9 de la topologie engendrée par les N (£/,/). Soient (x,fx) et

(y, gy) deux points distincts de (9. On désigne par U et V des voisinages
ouverts de x et y respectivement sur lesquels / et g sont holomorphes.
L'ensemble N(U,f) est un voisinage de (x,/*) et l'ensemble N (F, g) un
voisinage de (y, gy)- Si x et y sont distincts, on peut supposer U et V disjoints.
Il en est alors de même de N (U, f) et N (F, g). Si x et y sont confondus,

on peut supposer U et V connexes et égaux. Les germes de / et g sont
distincts au point x, donc en tout point de U (principe du prolongement
analytique). Ceci montre que (9 est séparé.

La dernière assertion est triviale.

Il résulte de la proposition 3 et du théorème de Poincaré-Yolterra
(appendice II, théorème 1) que toute composante connexe de (9 est une
surface topologique (de type dénombrable). On la munit de l'unique structure

holomorphe faisant de n un isomorphisms local.
Chacune des composantes connexes de G est donc une courbe

holomorphe ouverte.
Soit X la composante connexe d'un point (x,fx) de G. La fonction /

définie sur X par

/ (y, u) — u (y)

est holomorphe. En effet, pour tout voisinage ouvert U de y et toute fonction

holomorphe g sur U dont le germe au point y est égal à u, on a

f g-te.
On dit que / est le prolongement analytique de /.
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(3) Quotients de courbes holomorphes

Dans tout ce numéro, on désigne par X une courbe holomorphe connexe,

par G le groupe des automorphismes de X et par F un sous-groupe

proprement discontinu de G 1).

Lemme 3. (1) L'espace des orbites X\F est séparé.

(2) Pour tout point x0, le groupe d'isotropie rxQ est fini et il existe

un système fondamental de voisinages U de x0 vérifiant les conditions

suivantes :

y (U) n U 0 si y$rxQ

y (U) U si yerxo.

Désignons par n la projection canonique de X sur X/F. Pour démontrer

(1), il faut montrer que la diagonale de X\F x X/F est fermée ou ce qui
revient au même que son image réciproque A par n x n est fermée dans

X x X. Par définition, on a

A {(x,y) e X x x\il existe y e r tel que y y (x) }

Désignons par (xm yn)neN une suite de A qui converge vers un point (x, y)
de X x X et soient KetL des voisinages compacts de x et y respectivement.
Pour n suffisamment grand, le point xn appartient à K et le point yn appartient

à L. On désigne par yn un élément de F transformant xn en yn. Par

hypothèse, il existe une infinité d'entiers n pour lesquels yn coïncide avec un
élément fixe y de F. On en déduit que y transforme x en y, d'où l'assertion.

Démontrons (2). Soit K un voisinage compact de x0. On pose

5 {yer\y(K)nK ^0}
et l'on désigne par yu yn les éléments de S\FXQ. Pour tout entier j compris
entre 1 et «, il existe un voisinage Vj de x0 dans K tel que Vj n yj (Vf) soit
vide. Il suffit alors de poser

U= n y(Vj).
1

yerxQ

Lemme 4. Pour tout point x0 de X, le groupe d'isotropie rxQ est cyclique.
Désignons par U un voisinage connexe de x0 vérifiant les conditions

du lemme 3. On peut supposer que U est le domaine d'une carte (p centrée

') Ceci signifie que pour tout ensemble compact K de X, l'ensemble

\yer\y(K)nK^0^

est fini.
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en x0 et que (j) (U) est borné. L'expression d'un élément y de rx0 dans la
carte <fi est alors un automorphisme y^ de <fi (U) laissant fixe l'origine et
le lemme 2 montre que l'application rj de rxQ dans C* définie par

n(y) j (y*)

est un homomorphisme injectif de Fxo dans U, ce qui démontre le lemme.

Théorème 1. Désignons par n la projection canonique de X dans l'espace
des orbites XjF. Il existe une structure holomorphe et une seule sur XjF
vérifiant la condition suivante :

(Q) Pour tout ensemble ouvert U de X/T, l'application n* induit une

bijection de (9 (U) sur l'ensemble des fonctions holomorphes F-invariantes

de (9 (n~1 (U)).

L'unicité résulte immédiatement de la condition (Q) (§ 2, lemme 1).

Désignons par F l'espace des orbites X\F. Les points fixes d'un automorphisme

y distinct de l'identité sont isolés (§ 1, théorème 1, corollaire 3).

Il résulte alors du lemme 3 que l'ensemble A des points fixes de F (i.e.
l'ensemble de tous les points fixes des automorphismes de F distincts de l'identité)

est fermé discret, de même que son image B. Ce lemme montre aussi

que la restriction de n à X\A est un revêtement de Y\B. On munit Y\B
de l'unique structure holomorphe qui fait de n un isomorphisme local. Il
est clair que la condition Q) est vérifiée pour tout ensemble ouvert U de Y\B.

Il reste à prolonger la structure holomorphe de Y\B aux points de B.

La question étant locale, on peut supposer que X est un voisinage ouvert
borné de l'origine dans C et que tous les éléments de r laissent fixe l'origine.

En particulier, le groupe f est fini cyclique d'ordre p. On définit une
fonction holomorphe h sur X en posant

h(z) n y(z)
yer

L'ordre de h à l'origine étant p, on peut supposer en diminuant au besoin X
que h est de la forme

h up

où u est un isomorphisme de X sur un voisinage de l'origine (§ 4, proposition

1). La fonction h étant T-invariante, elle définit par passage au
quotient une application continue (j) de Y sur l'image Z de h. Quitte à diminuer

Z, on peut supposer que la restriction de h (resp. n) à X\{0} est un
revêtement à p feuillets de Z\{0} (resp. Y\{n(0)}). En particulier, l'application (j)

est un homéomorphisme de Y sur Z induisant un isomorphisme de 7\{ti;(0)}
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sur Z\{0}. Autrement dit, cette application est une carte de Y compatible
avec la structure holomorphe de T\{7i(0)}.

Il reste à voir que la structure holomorphe ainsi définie vérifie la condition

(0. Tout d'abord, l'application n est holomorphe par définition.
D'autre part, toute fonction T-invariante / sur X définit par passage au

quotient une fonction continue sur Y qui est holomorphe sur 7\{7c(0)}.
Le théorème de Weierstrass (§ 1, théorème 1, corollaire 7) montre qu'elle est

holomorphe sur Y ce qui achève la démonstration du théorème.

Avant de donner des exemples concrets, nous allons établir un critère

permettant de reconnaître aisément si un sous-groupe T du groupe des auto-
morphismes de D (ou de H) est proprement discontinu. Rappelons tout
d'abord que le groupe des automorphismes de D (ou de H) est naturellement
muni d'une topologie (et même d'une structure de groupe de Lie), à savoir
celle provenant de la topologie de G {2; C) (numéro 1).

Lemme 5. Pour qu 'un sous-groupe r du groupe des automorphismes de

D (ou de H) soit proprement discontinu, il faut et il suffit qu 'il soit discret.
La condition est évidemment nécessaire: si une suite (yn)„eN d'éléments

deux à deux distincts de f converge vers l'identité, la suite (yn (0))weN

converge vers 0 et T ne peut pas être proprement discontinu.
Montrons qu'elle est suffisante. Désignons par

?z + ^ ,2 ,2w avec \p\ - \ q\ 1

qz + p

une transformation de r (proposition 2). Un calcul élémentaire montre que
l'on a

A lib î <1.
P

Soit r un nombre réel strictement compris entre 0 et 1. Si z et w sont tous
deux de module au plus égal à r, on a

\l* + PI \PII - z + 1 I ^ \p1(1-r) et 1 fP IP (1

On en déduit qu'il n'existe qu'un nombre fini d'éléments de T transformant
un point z de module au plus égal à r en un point w de module au plus égal
à r, d'où l'assertion.

Désignons par œL et œ2 deux nombres complexes linéairement
indépendants sur R et par r le groupe d'automorphismes de C engendré par les
translations

l«Z +P\
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y1 (z) z + cot et y2 (z) z + co2

Il est clair que r est proprement discontinu et n'a pas de points fixes. La
courbe holomorphe C/T se désigne par T(col9co2)> Elle est compacte et

connexe et l'application canonique de C dans T (col5 co2) est le revêtement
universel de T (co1, (o2).

On appelle courbe elliptique toute courbe holomorphe isomorphe à une
courbe de la forme T (co1, co2). Remarquons que le groupe des automor-
phismes d'une courbe elliptique opère de manière transitive.

Nous allons chercher à quelles conditions deux courbes elliptiques sont
isomorphes.

Tout d'abord, quitte à remplacer cot par — col5 on peut supposer que le

nombre complexe défini par

t co1 co 21

a une partie imaginaire strictement positive. Considérons ensuite l'auto-
morphisme 0 de C défini par

6 (z) co~2
1

z

Par passage aux quotients, il définit un isomorphisme de T (cou œ2) sur
T (t, 1). Pour étudier une courbe elliptique, on peut donc toujours supposer
qu'elle est de la forme T (t, 1) avec t dans H. Un tel nombre complexe

s'appelle un module de la courbe elliptique.
Soient X et Y deux courbes elliptiques et soit u un isomorphisme de X

sur Y. On désigne par n et p les revêtements universels de C dans X et Y

respectivement. Quitte à modifier u par un automorphisme de Y, on peut

supposer que l'on a

u (n (0)) (0).

Il existe alors un automorphisme v de C et un seul tel que

v (0) 0 et p - v u - n

Cet automorphisme est de la forme

v(z) az

où a est un nombre complexe non nul (proposition 1). De plus, puisqu'il
passe aux quotients, il existe des entiers relatifs a, ù, c et d tels que

az ao + b
et ad — be 1

a c<t + d
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en désignant par t et a des modules de X et Y respectivement. On en déduit

que X et Y sont isomorphes si et seulement si les modules t et a sont dans

la même orbite pour l'action de SI (2; Z).
Le quotient de 57(2; Z) par son centre est un sous-groupe discret T du

groupe des automorphismes de H. Il résulte alors du lemme 5 et du théorème

1 qu'il existe sur H/T une structure holomorphe canonique. On

notera que les classes d'isomorphie de courbes elliptiques sont en

correspondance biunivoque avec les points de HjT.

Remarque 1.

La courbe H/E est isomorphe à C. Ceci résulte par exemple de l'existence

et des propriétés de la fonction modulaire J ([3], Kap. IV, § 3, Satz 3).

(4) Courbes algébriques

On dit qu'une partie X de l'espace numérique C" est algébrique si elle est

le lieu des zéros d'une famille de polynômes. L'ensemble a des polynômes de

C [T1? Tn] qui s'annulent sur X est un idéal que l'on appelle Y idéal de X.

On notera que X est aussi le lieu des zéros de toute famille de générateurs
de a. En particulier, le théorème de la base de Hilbert ([4], chap. VI, § 2,

théorème 1) montre que X est le lieu des zéros d'une famille finie de

polynômes.

Soit X un ensemble algébrique de Cn et soit a son idéal.

On dit qu'une fonction définie sur X et à valeurs complexes est régulière
si elle est la restriction d'une fonction polynomiale sur C". L'ensemble des

fonctions régulières sur X est une sous-algèbre de ^° (X, C) qui s'identifie
canoniquement à C [Tu Tn]/a.

On dit qu'un point x de X est régulier s'il existe un voisinage ouvert U
de x dans Cn tel que U n X soit une sous-variété (holomorphe) de U. Un
point est dit singulier s'il n'est pas régulier.

Il résulte de cette définition que l'ensemble des points réguliers de X
est une partie ouverte de X et une sous-variété localement fermée de C1.

On dit que X est irréductible s'il satisfait l'une des conditions suivantes
dont on vérifie aisément qu'elles sont équivalentes:

(1) L'idéal a est premier.

(2) Si X est réunion de deux ensembles algébriques, l'un au moins est

égal à X.

Supposons X irréductible. On appelle dimension algébrique de X le
degré de transcendance du corps des fractions de l'anneau C [Tx, Tn]/a.
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On appelle courbe algébrique affine tout ensemble algébrique irréductible
de dimension algébrique 1 dans un certain espace numérique.

Lemme 5. Soient z, al9 ak des nombres complexes vérifiant la relation

z + a1z + + ak — 0
On a l'inégalité

z | < 2 max ifl/im

Désignons par r le maximum des | aj |1/j. On peut supposer r non nul et

l'on a

-) +-r r \r + + 0.

On en déduit que

2 k 2 2
< i + + +

r r r

ce qui démontre l'assertion.

Lemme 6. Soit U un voisinage ouvert connexe du point (0: 1) dans P1

et soient u0, uk des fonctions méromorphes sur U. On suppose que uQ

est non nulle. Il existe alors des nombres réels r et M strictement positifs
et un entier relatif m tels que

| z i z2 | < M

pour tout couple (zl9 z2) de nombres complexes vérifiant les relations

| zA | > r et u0(z1) z2 + + uk(zx) 0

Soit m un entier vérifiant la relation

0(0:1) (Wy) — 0(0:1) (uo)
m < inf

1 J

et soit r un nombre réel strictement positif tel que u0 soit holomorphe
inversible et les ul9..., uk holomorphes au voisinage de la couronne

C { z e C | |z|>r}.
Pour tout entier j compris entre 1 et n, on définit une fonction holomorphe
au voisinage de C en posant

Wj (z) Uj (z) (z)~ 1 ZmJ
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L'ordre au point (0: 1) de cette fonction étant positif, on pose

M 2 max || wy ]| 1/3.

Si (zl5 z2) est un couple de nombres complexes vérifiant les conditions de

l'énoncé, on a

(z?z2)k + w^zJizïz^-1 + + wk(Zl) 0.

On conclut en appliquant le lemme 5.

Lemme 7. Soit X un sous-ensemble algébrique strict de Cn et soit f une

fonction holomorphe sur C"\X Si f est bornée au voisinage de chaque point
de C", elle se prolonge en une unique fonction holomorphe g sur Cn. Si

de plus il existe une constante M et un entier naturel k tels que

|/(z) \<M\z\k
pour tout point z de Cn\X9 alors g est polynomiale.

Soit { un point de C. Quitte à effectuer un changement linéaire de

coordonnées, on peut supposer qu'il existe un polydisque D' x D" de

centre £ dans C"-1 x C tel que

(D'xdD')nX 0

(§ 3, démonstration lemme 1). Supposons /bornée sur D' x D". Pour tout
point (zl9 zn_1) de D', la fonction partielle/(z1? zn_ 1? se prolonge
en une fonction holomorphe g (z1?..., z„_ 1? sur D" (§1, théorème 1,

corollaire 1) et l'on a
1

g (zi,= 2in
f(zu •••,

az

pour tout point zn de D". On vérifie aisément que cette fonction g est

holomorphe sur D' x D'% ce qui démontre la première assertion.
Démontrons la seconde. Il existe une famille (aa)a6Nri de nombres

complexes telle que

g(z)E et I | < Me'"111
aeA

pour tout nombre réel strictement positif r (§ 1, théorème 1, corollaire 1).

L'assertion en découle aussitôt.

Pour la commodité du lecteur, les résultats d'algèbre nécessaires à la
démonstration du théorème suivant sont groupés dans l'appendice III.
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Théorème 2. Soit X un ensemble algébrique irréductible de dimension

algébrique k. Il existe des fonctions régulières uu ...,uk sur X et un
ensemble algébrique N de Ck vérifiant les conditions suivantes :

(1) L'application u («1? uk) de X dans Ck est propre à fibres
finies.

(2) Tous les points de X\u~1 (N) sont réguliers et la restriction de u
à cet ensemble est un isomorphisme local (donc en particulier un revêtement

fini de Ck\N d'après (1)).
(3) L'ensemble X\u~x (N) est connexe et dense dans X.

Supposons X plongé dans l'espace numérique Cn. On désigne par A
l'anneau C [Tl9 Tk], par K son corps des fractions, par B l'anneau des

fonctions régulières sur X et par L son corps des fractions. Quitte à effectuer

un changement linéaire de coordonnées dans C", on peut supposer que l'on
est dans la situation suivante:

(a) Les classes uu uk de Tx, Tk dans B sont algébriquement
indépendantes. Elles engendrent un sous-anneau sur lequel B est entier. Autrement

dit, l'application canonique de A dans C [Tu Tn] induit une injection

de A dans B et B est un yl-module de type fini.

(b) La classe a de Tk+1 dans B est un générateur de L sur K.

Désignons par p le polynôme minimal de a dans K[Tk+1]. C'est un
polynôme monique irréductible, et puisque a est entier sur A et A factoriel,
il appartient à A [Tk+1]. On a donc un isomorphisme

AlTk+1]l(p)

Désignons par m le degré de p et par A son discriminant. On a les inclusions

ÀB <=. A [a] c B

En particulier, il existe pour tout entier j compris entre k + 2 et n un
polynôme rj de degré strictement inférieur à m dans A [Tk+1] tel que le
polynôme

qj ATj -
appartienne à l'idéal b de X.

Lemme 8. Il existe un entier naturel v tel que Avb soit contenu dans l'idéal
engendré par p,qk+2,

Désignons par q un polynôme de degré v dans C [Tu Tn]. Modulo
l'idéal engendré par qk+2> •••> <ln,polynôme Avq est congru à un polynôme
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r de A [Tk+1\ (à savoir le polynôme Avq (Tu Tk+U A 1rk+2, A 1rn)).

La division euclidienne des polynômes montre que modulo l'idéal engendré

par p,qk+z, qn, on Peut choisir r de degré strictement inférieur à m.

Si q appartient à b9 il en est de même de r qui est donc nul (car p est le

polynôme minimal de a). Ceci montre que Avq appartient à l'idéal engendré par

p, qk+ 2, qn. On conclut en remarquant que b est de type fini.

Revenons à notre théorème. L'ensemble TV des zéros de A est un sous-

ensemble algébrique strict de Ck (car p est irréductible).
Démontrons (1). On voit comme précédemment que le polynôme

minimal pj de la classe de T} appartient à A [Tj[ pour tout entier ./ compris

entre k + 2 et n. Tout point (zl9 z„) de X vérifiant les équations

P (zl5 •••5 zk+l) Pk + 2 (Zl> • • -5 z/c> Zk + 2) ••• Pn (Z15 • • • z/c? Zn) ~~ ®
P

l'assertion découle du lemme 5.

Démontrons (2). On définit une application i// de C" dans Cn~k en posant

\l/(zl9 z„)

(p (Z15 * * * ' Zk + l)? Pk + 2 (Z1 ' * * * Zk ' Zk + 2)? • • • Pn (Z1 • • * ' Zfcs Zn)) *

L'ensemble Z des zéros de \j/ coïncide avec X sur (Ck\N) x Cn~k (lemme 8).

dp
Puisque (Ci? Ck+1) est non nu^ en tout point (Ci, C«) de

Z\w_1 (TV), l'application partielle \j/ (Ci, Ck, est de rang n~*k au point
(Cfc+i, Cn)- On conclut à l'aide du théorème des fonctions implicites
(appendice I, théorème 3).

Démontrons (3). On désigne par Y l'ensemble des zéros de p dans
Cfc+1, par v1 la restriction à Y de la première projection de Cfc x C dans
Ck et par v2 la restriction à Z de la première projection de Ck+1 x Qn~k~i
dans Ck+1. Il est clair que l'image de v2 est contenue dans Y et que l'on a

u v1 - v2

De plus, il résulte aisément de ce qui précède que v2 induit un isomorphisme
de X\u~x (N) sur (TV). Démontrons par l'absurde que ce dernier
ensemble est connexe. Supposons qu'il existe deux ensembles ouverts non
vides disjoints Y' et Y" recouvrant T\w-1 (TV). Pour tout point z de Cfc\TV,

on pose

P (z>Tk+i) Il (Tk+1— zk+1)
(z,zk+i)eY'

P (Z> Tk+l) — ]^[ (Tk+1 — Zk+l) '
(z»zfc+l )eY"
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On a par définition

P(z, Tk+1p'(z,Tk+1)p"(z,
et il suffit de montrer que les coefficients de p' et p" sont des fonctions
polynomials. Tout d'abord, ces coefficients sont des fonctions holomorphes sur
Ck\N (§ 4, proposition 2), et puisque vx est propre, ils demeurent bornés au

voisinage de tout point de N. On conclut à l'aide des lemmes 6 et 7.

Il reste à montrer que X\u~x (N) est dense dans X. C'est une
conséquence immédiate de l'irréductibilité de X et du lemme suivant.

Lemme 9. L'adhérence de X\u~x (N) est un ensemble algébrique.
Pour toute fonction polynomiale / sur Cn et pour tout point z de Ck\N,

on pose

ef(z,T) n z„)).
(z,zfr+1,...,zn)eX

On vérifie comme précédemment que les coefficients de 9f sont des fonctions

polynomiales. Nous allons montrer que l'adhérence V de X\w-1 (N) est

égale à l'ensemble algébrique W défini par

W{(zl5z„)eC" | 0/(z1,..,,zft,/(z1,...,z„)) 0

pour tout f e C [T1? T„] }

Tout d'abord, il résulte des définitions que W contient V. Réciproquement,
soit (Ci,O un point de W et montrons qu'il appartient à la fibre

E

Raisonnons par l'absurde. Puisque E est fini, il existe un polynôme f qui
s'annule au point (Ci,..., C») mais ne s'annule en aucun point de E. Ceci

implique en particulier que 0 est une racine du polynôme 0f (Ci,..., C&> T).
Il existe alors une suite(z(/},..., z(^)ieN de Ck\N qui converge vers (Ci, C/c)

et une suite (a7-)ieN de C qui converge vers 0, telles que a7- soit une racine du

polynôme 6j (z([\ ziJk\ T) pour tout entier j (continuité des racines d'un
polynôme).

On désigne par z0) un point de X\u~1 (N) se projetant sur (z((\ z{£)
tel que/(z(7)) soit égal à ocj. La restriction de u à V étant propre, on peut

supposer, quitte à passer à une sous-suite, que (zU))JeN converge vers un

point z de V. On en déduit que

/(z) lim f(z(J)) 0
co

ce qui est absurde.
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Corollaire. L'ensemble des points singuliers d'une courbe algébrique

affine X est fini. L'ensemble des points réguliers est une courbe holomorphe

connexe et dense dans X.

Théorème 3. Pour toute courbe algébrique X de Cn, il existe une courbe

holomorphe X et une application holomorphe non constante n de X dans

Cn vérifiant les conditions suivantes :

(1) L'image de n est contenue dans X.

(2) Pour toute courbe holomorphe Y et toute application holomorphe v

de Y dans Qn constante sur aucune composante connexe de Y, il existe une

application holomorphe et une seule v de Y dans X telle que

Le couple (X, n) est déterminé à isomorphisme près par ces conditions.

De plus, l 'application n est propre (à fibres finies). Elle induit un isomorphisme

de X\iz'1 (A) sur X\A, en désignant par A l'ensemble des points
singuliers de X.

Désignons par u une fonction régulière sur X et par N un ensemble fini
de C vérifiant les conditions du théorème 2. Pour tout point £ de N, il
existe un disque D de centre £ et de rayon r dans C tel que la restriction de

wàC1 (Z>\{£}) soit un revêtement à m feuillets de D\{Q. Désignons par
Uu..., Up les composantes connexes de w"1 (Z>\{£}). La restriction de u
à Uj est un revêtement à mj feuillets de D\{£} et l'on a

Désignons par Dj le disque centré à l'origine et de rayon r1/mi dans C et

par if/j l'application de Dj dans D définie par

La restriction de xj/j à Dj\{0} est un revêtement à feuillets de D\{£}.
Il existe donc un unique homéomorphisme hj de Dfi{0} sur Uj rendant le

diagramme suivant commutatif

71 ' V V

m m1 + + mp

ij/j (z) zmJ + C •

D.\{0}

\ S'

£\U}
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Cette application est en fait un isomorphisme. On désigne par X l'espace
obtenu en recollant X\u~x (N) et les Dj au moyen des homéomorphismes
hj (lorsque £ parcourt N), par n l'application réciproque de l'injection

canonique de X\u~1 (N) dans X et par l'application réciproque de

l'injection canonique de Dj dans X. On vérifie aisément que X est une
surface topologique et que les (j)j sont des cartes holomorphiquement compatibles

avec toute carte de X\u~x (N). On munit X de la structure
holomorphe correspondante.

L'application n est une application holomorphe à valeurs dans C",

définie sur le complémentaire d'un ensemble fini de X. Puisqu'elle demeure
bornée au voisinage de chaque point, elle se prolonge en une application

holomorphe de X dans Cn.

Il est clair que l'application tc est propre à fibres finies, que son image

est contenue dans X et qu'elle induit un isomorphisme de X\7i_1 (A) sur

X\A (§4, proposition 1, corollaire). Il reste à vérifier la condition (2).

L'image réciproque de A est un ensemble fini et l'on pose

v n'1 -v1x^-1(4,

On vérifie aisément que v se prolonge par continuité aux points de ~1

ce qui achève la démonstration du théorème.

Le couple (X, n) construit dans le théorème 3 s'appelle la normalisation

(ou la désingularisation) de X. Le lemme suivant est une conséquence immédiate

de ce qui précède.

Lemme 10. Soit X une courbe algébrique de C" et soit v une application

holomorphe d'une courbe holomorphe Y dans C". On suppose que l
'application v est propre (à fibre finies) et qu'elle induit un isomorphisme de

7\^-1 (A) sur X\A, en désignant par A l'ensemble des points singuliers
de X. Alors Y, v) est la normalisation de X.

Tout polynôme p de C [T0, Tn\ s'écrit d'une manière et d'une seule

p p0 + + pk

où pj est homogène de degré j. Pour tout point x de Cn+1 et tout nombre

complexe 2, on a

p(Xx) p0+ + Xkpk(x).
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En particulier, si p s'annule sur une partie de C+1\0 saturée pour la

projection canonique \j/ de C?z+1\0 dans P", il en est de même de chacun des p j.
Pour tout polynôme homogène p de C [T0, Tn], l'ensemble des zéros

de p dans C"+1\0 est saturé pour \J/. Son image dans Pn s'appelle (abusivement)

le lieu des zéros de p.
On dit qu'une partie X de P" est algébrique si elle est le lieu des zéros

d'une famille de polynômes homogènes. L'ensemble a des polynômes de

C [T0, Tn] qui s'annulent sur (X) est un idéal homogène (i.e.

engendré par des polynômes homogènes) que l'on appelle l'idéal de X.
On notera que X est aussi le lieu des zéros de toute famille de générateurs
de a. En particulier, le théorème de la base de Hilbert montre que X est le

lieu des zéros d'une famille finie de polynômes homogènes.
Soit X un ensemble algébrique de P" et soit a son idéal.
On dit qu'un point xdel est régulier s'il existe un voisinage ouvert U

de x dans P" tel que U n X soit une sous-variété (holomorphe) de U. Un
point est dit singulier s'il n'est pas régulier.

Il résulte de cette définition que l'ensemble des points réguliers de X est

une partie ouverte de X et une sous-variété localement fermée de P".
Pour tout entier j compris entre 0 et n, la trace de X sur l'ensemble

Uj {(z0:z„) eP" | zy- # 0}

est un sous-ensemble algébrique de C" dont l'idéal est donné par la formule
A

a_j {p e C [T0, Tj, Tn\ | il existe q e a tel que

p q(T0, 1, Tn)}

C'est une conséquence immédiate des définitions.
On dit que X est irréductible s'il vérifie l'une des conditions suivantes

dont on vérifie aisément qu'elles sont équivalentes :

(1) L'idéal a est premier.

(2) Si X est réunion de deux ensembles algébriques, l'un au moins est
égal à X.

Supposons X irréductible. On vérifie aisément que l'ensemble A défini
par

A | ^ e C (L0, Tn) | p et q homogènes de même degré et q $ a j
est un sous-anneau de C (T0) Tn) et que le quotient A/a A est un corps.
On l'appelle le corps des fonctions rationnelles sur X et on le désigne par
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K (2Q. On appelle dimension algébrique de X le degré de transcendance
de k (X).

Proposition 4. Soit X un ensemble algébrique de Pn et soit a son idéal.
Si X est irréductible et si Tj n 'appartient pas à a, la trace de X sur

Uj est irréductible et le corps k (X) des fonctions rationnelles sur X

s'identifie au corps des fractions de C [T0, Tp TJ jap
Désignons par p1 et p2 des polynômes de degré k1 et k2 respectivement

dans C [T0, Tp Tn] tels que le produit pxp2 appartienne à a_j. Ceci

signifie qu'il existe un polynôme q dans a tel que

Comme a est premier et que Tj n'appartient pas à a, on peut supposer que
q n'est pas divisible par Tp On a alors

d'où l'assertion. Le reste de la proposition est laissé en exercice au lecteur.

On appelle courbe algébrique projective tout ensemble algébrique
irréductible de dimension algébrique 1 dans un espace projectif.

Les deux théorèmes suivants sont des conséquences immédiates des

résultats correspondants du cas affine.

Théorème 4. L'ensemble des points singuliers d'une courbe algébrique

projective X est fini. L'ensemble des points réguliers est une courbe

holomorphe connexe et dense dans X.

Théorème 5. Pour toute courbe algébrique projective X de P", il existe

une courbe holomorphe X et une application holomorphe non constante

n de X dans P" vérifiant les conditions suivantes :

(1 L'image de n est contenue dans X.

(2) Pour toute courbe holomorphe connexe Y et toute application
holomorphe non constante v de Y dans Pn dont l 'image est contenue dans

A

A

PtPz 1(T0,1,
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Xil existe une application holomorphe v et une seule de Y dans X telle

que
71 ' V V

Le couple (X,tl) est déterminé à isomorphisme près par ces conditions.

De plus, la courbe X est compacte et connexe et l'application n induit un

isomorphisme de X\7r-1 (A) sur X\A, en désignant par A l'ensemble des

points singuliers de X.

Le couple (X,n) du théorème 5 s'appelle la normalisation (ou la désingu-
larisation) de X.
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