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§ 4. COURBES HOLOMORPHES

Nous allons maintenant nous limiter a I’étude des courbes holomorphes
(appelées aussi surfaces de Riemann). Nous avons toujours supposé les
vari€tés (topologiques, différentielles ou holomorphes) paracompactes.
Un célébre théoréme de Rado affirme que cette hypothése est superflue
dans le cas des courbes holomorphes (voir par exemple [6]). Nous n’utili-
serons pas ce résultat qui, au demeurant est trés particulier a la dimension
complexe 1.

THEOREME 1. Soient X et Y deux courbes holomorphes et soit u une
application holomorphe de X dans Y. On suppose X connexe. Alors u
est ouverte ou constante.

Supposons u non constante. L’assertion étant locale, on se raméne
aisément au cas ol X et Y sont des ensembles ouverts de C. Soit x, un
point de X. II suffit de montrer que u (X) est un voisinage de u (x,) (toutes
les composantes connexes d’'un ensemble ouvert de X sont ouvertes). Pour
ce faire, on peut supposer que u (x,) est nul. Il existe alors un disque D
de centre x, relativement compact dans X tel que u ne s’annule pas sur
dD (§ 1, théoréme 1, corollaire 3). Posons

p = inf |u(z)].

zegD

Il suffit de montrer que tout point w de Y n’appartenant pas a u (X) est de
module strictement supérieur a g On peut évidemment supposer qu’il est

de module strictement inférieur a p et I’on définit une fonction holomorphe f

sur X en posant
1

u(z) —w

(@) =

- Pour tout point z de D, on a

f(2) =

1 1

"D —w] =%’

On en déduit que (§ 1, théoréme 1, corollaire 1),

1 1
— = |f(xo) | < ”f”ap‘—‘—
p —

| w | wl

- ce qui démontre ’assertion.
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CoROLLAIRE | (Principe du maximum). Soit X une courbe holomiorphe
connexe et soit f une fonction holomorphe sur X. Sila fonction f posséde

un maximum relatif, elle est constante.
Soit x, un point de X et soit K un voisinage compact de x, tel que

|lf(xo) | = ||f”K

L’ensemble f(K) est contenu dans le disque fermé de centre O et de rayon
l f(x0) |, ce n’est donc pas un voisinage de f(x,) et par conséquent f est
constante.

COROLLAIRE 2. Soit X une courbe holomorphe connexe et soit K une
partie compacte de X distincte de X. Pour toute fonction holomorphe f
sur X, on a

[ flox =171 x-

En effet, si f atteint son maximum en un point de K, elle est constante.

COROLLAIRE 3. Toute fonction holomorphe sur une courbe holomorphe
compacte et connexe est constante.

COROLLAIRE 4. Soient X et Y deux courbes holomorphes connexes et
soit u une application holomorphe de X dans Y. On suppose X compacte.
Si Y est ouverte, [’application u est constante. Si Y est compacte, [’appli-
cation u est constante ou surjective.

Remarque 1.

Le théoréme 1 et ses corollaires demeurent valables si X est de dimension
supérieure a 1. C’est une conséquence facile du cas traité ici.

PROPOSITION 1. Soient X et Y deux courbes holomorphes et soit u une
application holomorphe de X dans Y. On suppose que u n’est constante
sur aucune composante connexe de X. Pour tout point x, de X, il existe
une carte ¢ de X centrée en x,, une carte Y de Y centrée en u(x,)
et un entier m Strictement positif tels que

qus(Z) — Zm .

Soit ¢ (resp. ) une carte de domaine U (resp. V) centrée en x, (resp.
u (xo)). L’expression de u dans (¢, ) est une fonction holomorphe f sur




— 210 —

¢ (U), nulle a I’origine mais non identiquement nulle. Si ¢ (U) est un disque
suffisamment petit, il existe un entier m et une fonction g holomorphe
inversible sur ¢ (U) tels que

f(2) = z"g(2)

(§ 1, théoréme 1, corollaire 3). Il existe alors une fonction holomorphe 4
sur ¢ (U) dont la puissance m® est égale a g. En diminuant au besoin ¢ (U),
on peut supposer que I’application 6 définie par

0(z) = zh(2)

est un isomorphisme de ¢ (U) sur un ensemble ouvert de C. 1l suffit alors de
remplacer ¢ par 0 - ¢.

COROLLAIRE. Soient X et Y deux courbes holomorphes et soit u une
application holomorphe de X dans Y. Si u est injective au voisinage d’'un
point, elle est de rang 1 en ce point.

On conserve les notations et les hypothéses de la proposition 1. L’entier
m— 1 est indépendant des cartes ¢ et . On 'appelle 'indice de ramification
de u au point x, et on le désigne par v, (1). On dit que x, est un point de
ramification de u si v, (u) est strictement positif. Pour que x, soit un point
de ramification de u, il faut et il suffit que le rang de u au point x, soit
nul (autrement dit, les points de ramification sont exactement les points
critiques). L’ensemble des points de ramification est fermé et discret.

Supposons de plus X et Y connexes et u propre (ce qui implique que u est
surjective en vertu du théoréme 1). L’image B des points de ramification de u
(i.e. ensemble des valeurs critiques) est fermé discret, de méme que son
image réciproque 4. La restriction de u & X\4 est un revétement de Y'\B
dont le nombre de feuillets est le degré de u (chap. 0, § 4, théoréme 4). 1l
résulte immédiatement des définitions que 1’on a

deg(w) = 3 v.(w

xeu-1(y)

pour tout point y de Y.

Dans toute la suite, on désigne par X une courbe holomorphe que ’on
suppose connexe pour fixer les idées.

Soit 7 un fibré en droites holomorphe sur X et soit ¢ une carte de X
centrée en un point x. Tout germe non nul s de 4~ (n), s’€crit d’une maniere
et d’une seule
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ou m est un entier relatif appelé lordre de s et v un germe de 0 (n), ne
s’annulant pas en x. En particulier, les zéros et les poles d’une section méro-
morphe s non identiquement nulle sont isolés. On vérifie aisément que I’ordre
du germe s, coincide avec I'ordre de s au point x. Le lemme suivant en
découle aussitot (chap. 0, § 5, proposition 2).

LEMME 1. Supposons X compacte. Toutes les sections méromorphes de
ont pour ordre la classe de Chern de .
En particulier, toutes les fonctions méromorphes sur X sont d’ordre 0.

La deuxiéme assertion s’exprime aussi en disant que le nombre de
poles d’une fonction méromorphe est égal au nombre de ses z€ros.

LEMME 2. Soit u une application holomorphe non constante de X dans
une courbe holomorphe Y.

(1) Pour toute fonction méromorphe h sur Y et pour tout point x de X,
on a

0. (u*(h) = (ve(w) + 1) 0, (h).

(2) Pour toute forme différentielle méromorphe s sur Y et pour tout
point x de X, ona

0, (u*(5)) = (v (@) + 1) 0, (8) + ve(u).

C’est une conséquence immédiate des définitions.

Soit u une fonction méromorphe sur X et soit u la fonction holomorphe
sur R (u) qui lui est associée. On identifie C a I’ensemble ouvert U, de P!
défini par

Up = {(20:2,)€P" | zy # 0}

et 'on prolonge u en posant
2(x) = (0:1)

pour tout pdle x de u. On vérifie aisément que 1’application # de X dans
P! ainsi définie est holomorphe. On identifie de cette maniére les fonctions
meromorphes sur X aux applications holomorphes de X dans P! non
identiquement égales & (0: 1) ).

Si X est compacte, on peut en particulier parler du degré d’une fonction
méromorphe non constante: c’est le degré de l’application holomorphe

1) On prendra garde que cette identification n’est plus possible si X est de dimension
strictement supé€rieure a 1.
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correspondante. Il résulte de ces définitions que c’est aussi le nombre de
poles (avec multiplicité) ou le nombre de zéros (avec multiplicité) de cette
fonction.

Soit x un point de X et soit s une forme différentielle holomorphe sur
X\{x}. Pour toute carte ¢ de domaine U centrée en x, telle que ¢ (U) soit
un disque de C, on a

sly =fdp et f=Zak<15"
keZ
ol f'est une fonction holomorphe sur U\ {x} et (@) .z une famille de nombres
complexes (§ 1, théoréme 1, corollaire 6). La formule suivante permet de
calculer le résidu de s au point x (chap. 0, § 5)

1 1
Rés(s, 0 = — | s=3 ak—.f $dp = a.
2in Jap kez  2IT Jop
ou D désigne un disque de centre x relativement compact dans ¢.

Soit 7 un fibré vectoriel holomorphe de rang pur p sur X et soit # une
partie principale de 7. Pour tout point x de X, il existe un voisinage ouvert U
de x et une section méromorphe s de n sur U représentant u [ p- On peut
toujours supposer que U est le domaine commun a une carte @ de 7 et a
une carte ¢ de X centrée en x et que de plus ¢ (U) est un disque. L’expression
de s dans @ est alors un p-uple (s4, ..., 5,) de fonctions méromorphes sur U
et Pon a

;= 2, ¢
keZ
pour tout entier j compris entre 1 et p. Notons que les a; ; d’indice stricte-
ment négatif sont presque tous nuls (§1, théoréme 1, corollaire 7). La
restriction de u & U est représentée par le p-uple

(Z ay %, s Y, ap,kqﬁ"> .

k<O k<O

En particulier, I’ensemble des points de X ou u est non nul est fermé discret.
Soit # un diviseur de X et soit x un point de X. Il existe un fibré en

droites holomorphe n sur X et une section méromorphe s non nulle de =

dont le diviseur est « (§ 3, lemme 3). L’ordre de s au point x (ou 'ordre de s

si X est compacte) ne dépend que de u (loc. cit.). On 'appelle 'ordre de u

au point x (oul'ordre de u) et on le désigne par 0, (u) (resp. O (v)).
L’application y («) de X dans Z définie par

2w (x) = 0, (u)
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est nulle en dehors d’un ensemble fermé discret. Le lemme suivant est une
conséquence immédiate de ces définitions.

LEMME 3. L’application 7y induit un isomorphisme de 9 (X) sur [’en-
semble des applications de X dans Z dont le support est fermé discret. Les
diviseurs positifs correspondent aux applications a valeurs dans N.

Soient X et Y deux courbes holomorphes connexes et soit u une appli-
cation holomorphe propre, non constante de degré p de X dans Y.

On désigne par Ay, ..., h, des fonctions méromorphes sur X et par o
un polyndéme de

CLT ;] 1=j=n1=k=p

symétrique en T}y, ..., T;, pour j fixé. Désignons par B I'image des points
de ramification de u et des pdles de %y, ..., 4,. Pour tout point y de Y\B,
la fibre #~" (¥) contient exactement p points x, ..., x, et 'on pose

Uy (ys .., ) (W) = o (h;(x).

L’hypothése faite sur ¢ montre que cette définition est indépendante de la

numérotation des points x4, ..., x,.

ProrosITION 2. La fonction u, (hy, ..., h,) est holomorphe (resp. méro-
morphe) sur 'Y si hy, ..., h, sont holomorphes (resp. méromorphes) sur X.
Supposons tout d’abord /44, ..., 4, holomorphes et montrons qu’il en est

de méme de
w = u,(hy,...,h,).

Pour tout ensemble ouvert simplement connexe V de Y\B, ’ensemble
u~ ! (V) est formé de p composantes connexes Uy, ..., U, et la restriction de u
a chacun des U, est un isomorphisme sur V. On désigne par v, I’isomor-
phisme réciproque. On a alors

wly = o(h; v

ce qui montre déja que w l v\g €st holomorphe. De plus, la fonction w
reste bornée au voisinage de tout point de B, ce qui démontre [’assertion
(§ 1, théoréme 1, corollaire 7).

Supposons maintenant 4, ..., s, méromorphes et ¢ homogéne de degré
g. Le raisonnement précédent montre que w [ y\p €st holomorphe. Soit
une carte de Y centrée en un point y de B. La fonction - u s’annule en
tout point de #~" (). Il existe par conséquent un entier naturel 7 tel que les
fonctions (1 -u)™h; soient holomorphes au voisinage de u~* (). On a alors
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o (- )"hy, oy (0 - w)™hy) = (O - w)™u, (hy, .oy hy)

et I'assertion résulte de la premiére partie de la démonstration.

Désignons par s une forme différentielle méromorphe sur X et par B
I'image des points de ramification de u et des pdles de s. Pour tout ensemble
ouvert simplement connexe ¥ de Y\B, I’ensemble u~! (V) est formé de p
composantes connexes Uy, ..., U, et la restriction de # a chacun des U, est
un isomorphisme sur V. On désigne par v, Iisomorphisme réciproque et
I’on pose

w=297(s) + ... +v}5(s).
La forme différentielle w est holomorphe sur V" et I'on obtient par recolle-
ment une forme différentielle holomorphe u,, (s) sur Y\B.

PrOPOSITION 3. La forme différentielle u, (s) est holomorphe (resp.
méromorphe ) sur Y si s est holomorphe (resp. méromorphe) sur X.

La démonstration est laissée en exercice au lecteur. Elle est tout a fait
analogue a celle de la proposition 2.

§ 5. EXEMPLES

(1) Quelques remarques sur la droite projective.

On fait opérer le groupe G (2; C) des matrices carrées inversibles
d’ordre 2 dans P! par la formule

d b
(Wo:wy) = (2¢:2;) <c a) = (dzy+cz; :bzg+azy).

Cette opération est continue. Dans C, identifi¢ a 'ensemble
Uy = {(20321)51)1 | zo # O} >
cette formule prend I’aspect suivant

az + b
cz +d

Une transformation de ce type est un automorphisme de P* appelé homo-
graphie. Le noyau de 'opération contenant les homothéties, on peut se
restreindre au groupe S/ (2; C) des matrices de déterminant 1. Le noyau
est alors réduit au centre de S/ (2; ©), i.e. le sous-groupe d’ordre 2 formé
de I'identité et de son opposé. Ainsi le groupe des homographies apparait
comme le quotient de S/ (2; C) par son centre.
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