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§ 4. Courbes holomorphes

Nous allons maintenant nous limiter à l'étude des courbes holomorphes
(appelées aussi surfaces de Riemann). Nous avons toujours supposé les

variétés (topologiques, différentielles ou holomorphes) paracompactes.
Un célèbre théorème de Radô affirme que cette hypothèse est superflue
dans le cas des courbes holomorphes (voir par exemple [6]). Nous n'utiliserons

pas ce résultat qui, au demeurant est très particulier à la dimension
complexe 1.

Théorème 1. Soient X et Y deux courbes holomorphes et soit u une

application holomorphe de X dans Y. On suppose X connexe. Alors u

est ouverte ou constante.

Supposons u non constante. L'assertion étant locale, on se ramène
aisément au cas où I et 7 sont des ensembles ouverts de C. Soit x0 un
point de X. Il suffit de montrer que u (X) est un voisinage de u (x0) (toutes
les composantes connexes d'un ensemble ouvert de X sont ouvertes). Pour
ce faire, on peut supposer que u (x0) est nul. Il existe alors un disque D
de centre x0 relativement compact dans X tel que u ne s'annule pas sur
3D (§ 1, théorème 1, corollaire 3). Posons

p inf | u (z) |

zedD

Il suffit de montrer que tout point w de Y n'appartenant pas à u (X) est de

p
module strictement supérieur à -. On peut évidemment supposer qu'il est

de module strictement inférieur à p et l'on définit une fonction holomorphe/
sur X en posant

I/o) I -A— •

u(z) — w

Pour tout point z de 3D, on a
1 1

/ 0) 7—TT ; < : •

| u(z)-w | | w |

On en déduit que (§ 1, théorème 1, corollaire 1),

A i/oo)i <i/iu—A
I w | p — I W I

ce qui démontre l'assertion.
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Corollaire 1 (Principe du maximum). Soit X une courbe holomorphe

connexe et soit f une fonction holomorphe sur X. Si la fonction f possède

un maximum relatif elle est constante.

Soit x0 un point de X et soit K un voisinage compact de x0 tel que

l/(Xo)l Il/Il*.
L'ensemble f (K) est contenu dans le disque fermé de centre 0 et de rayon

|/(x0) |, ce n'est donc pas un voisinage de f(x0) et par conséquent / est

constante.

Corollaire 2. Soit X une courbe holomorphe connexe et soit K une

partie compacte de X distincte de X. Pour toute fonction holomorphe f
sur X, on a

Il / \\ 8K H f I K •

o

En effet, si / atteint son maximum en un point de K, elle est constante.

Corollaire 3. Toute fonction holomorphe sur une courbe holomorphe

compacte et connexe est constante.

Corollaire 4. Soient X et Y deux courbes holomorphes connexes et

soit u une application holomorphe de X dans Y. On suppose X compacte.
Si Y est ouverte, / 'application u est constante. Si Y est compacte, / 'application

u est constante ou surjective.

Remarque 1.

Le théorème 1 et ses corollaires demeurent valables si X est de dimension
supérieure à 1. C'est une conséquence facile du cas traité ici.

Proposition 1. Soient X et Y deux courbes holomorphes et soit u une
application holomorphe de X dans Y. On suppose que u n \est constante
sur aucune composante connexe de X. Pour tout point x0 de X, il existe
une carte (j) de X centrée en x09 une carte \jj de Y centrée en u (x0)
et un entier m strictement positif tels que

Uu (z) zm

Soit <p (resp. i//) une carte de domaine U (resp. centrée en x0 (resp.
u (x0)). L'expression de u dans ((j>, i//) est une fonction holomorphe / sur
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4> (U), nulle à l'origine mais non identiquement nulle. Si (j) (U) est un disque
suffisamment petit, il existe un entier m et une fonction g holomorphe
inversible sur (j) (U) tels que

/(z) zmg(z)

(§ 1, théorème 1, corollaire 3). Il existe alors une fonction holomorphe h

sur (j) (U) dont la puissance nf est égale kg. En diminuant au besoin (j) (U),
on peut supposer que l'application 9 définie par

9 (z) z h (z)

est un isomorphisme de (j) (U) sur un ensemble ouvert de C. Il suffit alors de

remplacer </> par 9 • (p.

Corollaire. Soient X et Y deux courbes holomorphes et soit u une

application holomorphe de X dans Y. Si u est injective au voisinage d'un
point, elle est de rang 1 en ce point.

On conserve les notations et les hypothèses de la proposition 1. L'entier
m — 1 est indépendant des cartes (j) et \j/. On l'appelle Yindice de ramification
de u au point x0 et on le désigne par vXQ (u). On dit que x0 est un point de

ramification de u si vXQ (u) est strictement positif. Pour que x0 soit un point
de ramification de u, il faut et il suffit que le rang de u au point x0 soit
nul (autrement dit, les points de ramification sont exactement les points
critiques). L'ensemble des points de ramification est fermé et discret.

Supposons de plus X et Y connexes et u propre (ce qui implique que u est

surjective en vertu du théorème 1). L'image B des points de ramification de u

(i.e. l'ensemble des valeurs critiques) est fermé discret, de même que son

image réciproque A. La restriction de u k X\A est un revêtement de Y\B
dont le nombre de feuillets est le degré de u (chap. 0, § 4, théorème 4). Il
résulte immédiatement des définitions que l'on a

deg(w) X v*(")
xeu-l(y)

pour tout point y de Y.

Dans toute la suite, on désigne par X une courbe holomorphe que l'on

suppose connexe pour fixer les idées.

Soit 7t un fibré en droites holomorphe sur X et soit (j) une carte de X
centrée en un point x. Tout germe non nul s de (n)x s'écrit d'une manière

et d'une seule

s fâv
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où m est un entier relatif appelé Vordre de s et v un germe de G (n)x ne

s'annulant pas en x. En particulier, les zéros et les pôles d'une section méro-

morphe s non identiquement nulle sont isolés. On vérifie aisément que l'ordre
du germe sx coïncide avec l'ordre de s au point x. Le lemme suivant en

découle aussitôt (chap. 0, § 5, proposition 2).

Lemme 1. Supposons X compacte. Toutes les sections méromorphes de n

ont pour ordre la classe de Chern de n.
En particulier, toutes les fonctions méromorphes sur X sont d'ordre 0.

La deuxième assertion s'exprime aussi en disant que le nombre de

pôles d'une fonction méromorphe est égal au nombre de ses zéros.

Lemme 2. Soit u une application holomorphe non constante de X dans

une courbe holomorphe Y.

(1 Pour toute fonction méromorphe h sur Y etpour toutpoint x de X,
on a

ox(u*(h)) (vx(u) + 1)0uM(h).

(2) Pour toute forme différentielle méromorphe s sur Y et pour tout
point x de X, on a

ox(m*(s)) (yx{u)+ 1) 0ll(x) (s) +

C'est une conséquence immédiate des définitions.

Soit u une fonction méromorphe sur X et soit u la fonction holomorphe
sur R (u) qui lui est associée. On identifie C à l'ensemble ouvert U0 de P1

défini par
U0{(z0 : Zi) eP1 | z0 # 0}

et l'on prolonge u en posant
u (x) =(0:1)

pour tout pôle x de u. On vérifie aisément que l'application u de X dans
P1 ainsi définie est holomorphe. On identifie de cette manière les fonctions
méromorphes sur X aux applications holomorphes de X dans P1 non
identiquement égales à (0: 1) 1).

Si X est compacte, on peut en particulier parler du degré d'une fonction
méromorphe non constante: c'est le degré de l'application holomorphe

b On prendra garde que cette identification n'est plus possible si X&st de dimension
strictement supérieure à 1.
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correspondante. Il résulte de ces définitions que c'est aussi le nombre de

pôles (avec multiplicité) ou le nombre de zéros (avec multiplicité) de cette
fonction.

Soit x un point de X et soit s une forme différentielle holomorphe sur

X\{x}. Pour toute carte </> de domaine U centrée en x, telle que (j) (U) soit
un disque de C, on a

SI V/# et / £
keZ

où/est une fonction holomorphe sur U\{x} et (ak)k&z une famille de nombres

complexes (§ 1, théorème 1, corollaire 6). La formule suivante permet de

calculer le résidu de .y au point x (chap. 0, § 5)

1 f 1

Rés (s, x)— 5 £ ak—2M JÔD fc6z 2m

où D désigne un disque de centre x relativement compact dans (j).

Soit n un fibré vectoriel holomorphe de rang pur p sur X et soit u une

partie principale de n. Pour tout point x de X, il existe un voisinage ouvert U
de x et une section méromorphe s de n sur U représentant u | v. On peut
toujours supposer que U est le domaine commun à une carte de n et à

une carte (j) de Xcentrée en x et que de plus (f) (U) est un disque. L'expression
de s dans $ est alors un/?-uple (^ sp) de fonctions méromorphes sur U
et l'on a

SJ IkeZ

pour tout entier j compris entre 1 et p. Notons que les aj k d'indice strictement

négatif sont presque tous nuls (§ 1, théorème 1, corollaire 7). La
restriction de u à U est représentée par le ^-uple

£ aUk(j)k,£\k< 0 k< 0 /
En particulier, l'ensemble des points de X où u est non nul est fermé discret.

Soit u un diviseur de X et soit x un point de X. Il existe un fibré en

droites holomorphe n sur X et une section méromorphe s non nulle de %

dont le diviseur est u (§ 3, lemme 3). L'ordre de s au point x (ou l'ordre de s

si X est compacte) ne dépend que de u (loc. cit.). On l'appelle Vordre de u

au point x (ou Vordre de u) et on le désigne par 0^ (w) (resp. 0 (:u)).

L'application x (u) de X dans Z définie par

4>k d# —

X(u)(x) 0x(u)
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est nulle en dehors d'un ensemble fermé discret. Le lemme suivant est une

conséquence immédiate de ces définitions.

Lemme 3. L'application % induit un isomorphisme de 2) (X) sur
l'ensemble des applications de X dans Z dont le support est fermé discret. Les

diviseurs positifs correspondent aux applications à valeurs dans N.

Soient X et Y deux courbes holomorphes connexes et soit u une
application holomorphe propre, non constante de degré p de X dans Y.

On désigne par hu ...,hn des fonctions méromorphes sur X et par o

un polynôme de

symétrique en TjU Tjp pour j fixé. Désignons par B l'image des points
de ramification de u et des pôles de hu hn. Pour tout point y de Y\B,
la fibre u~x (y) contient exactement p points xu xp et l'on pose

ua(hu ...,h„)(y) a(hj(xk)).

L'hypothèse faite sur a montre que cette définition est indépendante de la
numérotation des points xu xp.

Proposition 2. La fonction ua(hu hn) est holomorphe (resp. méro-

morphe) sur Y si hu hn sont holomorphes (resp. méromorphes) sur X.
Supposons tout d'abord hu hn holomorphes et montrons qu'il en est

de même de

w ua(hx,Pour tout ensemble ouvert simplement connexe V de Y\B, l'ensemble
w-1 (V) est formé de p composantes connexes U1, Up et la restriction de u
à chacun des Uk est un isomorphisme sur V. On désigne par vk l'isomor-
phisme réciproque. On a alors

W I V G (hj • vk)

ce qui montre déjà que w |

yVb est holomorphe. De plus, la fonction w
reste bornée au voisinage de tout point de B, ce qui démontre l'assertion
(§ 1, théorème 1, corollaire 7).

Supposons maintenant hu hn méromorphes et a homogène de degré
q. Le raisonnement précédent montre que w | y\b est holomorphe. Soit xj/

une carte de Y centrée en un point y de B. La fonction \j/ • u s'annule en
tout point de u-1 (y). Il existe par conséquent un entier naturel m tel que les
fonctions (xj/'u)mhj soient holomorphes au voisinage de u_1 (y). On a alors
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u0((\j/( \l/-u)m)hn)O •

et l'assertion résulte de la première partie de la démonstration.

Désignons par s une forme différentielle méromorphe sur X et par B
l'image des points de ramification de u et des pôles de s. Pour tout ensemble

ouvert simplement connexe V de Y\B, l'ensemble u-1 (V) est formé de p
composantes connexes Uu Up et la restriction de u à chacun des Uk est

un isomorphisme sur V. On désigne par vk l'isomorphisme réciproque et
l'on pose

w V* (s) + +v*(s).
La forme différentielle w est holomorphe sur V et l'on obtient par recollement

une forme différentielle holomorphe u* (s) sur Y\B.

Proposition 3. La forme différentielle (V) est holomorphe (resp.

méromorphe) sur Y si s est holomorphe (resp. méromorphe) sur X.
La démonstration est laissée en exercice au lecteur. Elle est tout à fait

analogue à celle de la proposition 2.

§ 5. Exemples

(1 Quelques remarques sur la droite projective.

On fait opérer le groupe G (2 ; C) des matrices carrées inversibles
d'ordre 2 dans P1 par la formule

fd b\
Oo • Wi) (z0 :zf)[ (dz0+cz1 : bz0 +azf).

\c aj

Cette opération est continue. Dans C, identifié à l'ensemble

U0 {Oo : | z0 0}

cette formule prend l'aspect suivant

az + b
w

cz + d

Une transformation de ce type est un automorphisme de P1 appelé
homographie. Le noyau de l'opération contenant les homothéties, on peut se

restreindre au groupe SI (2; C) des matrices de déterminant 1. Le noyau
est alors réduit au centre de SI (2; C), i.e. le sous-groupe d'ordre 2 formé
de l'identité et de son opposé. Ainsi le groupe des homographies apparaît
comme le quotient de SI (2; C) par son centre.
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