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et si X est ouverte, l'espace vectoriel H° (X, n) est nul (principe du prolongement

analytique).

On prendra garde de ne pas confondre le groupe de cohomologie de

de Rham W (X, C) de la variété différentielle XR (chap. 0, § 4) et le

groupe de cohomologie de Dolbeault Hr (X, C^) du fibré produit C^.

§ 3. Fonctions méromorphes

Dans tout ce paragraphe, on désigne par X une variété holomorphe et

par n un fibré vectoriel holomorphe sur X.

Lemme 1. On suppose X connexe et l'on désigne par f une fonction
holomorphe non identiquement nulle sur X. L'ensemble V défini par

V= {xeXlf(x) #0}
est alors connexe et dense dans X.

Il suffit de montrer que tout point x0 de X possède un voisinage U tel que
V n U soit connexe et dense dans U.

On peut donc supposer que X est un ensemble ouvert de C" et, par un
changement linéaire affine de coordonnées, on peut également supposer
que x0 est l'origine et que la fonction partielle/(0, 0, z„) n'est pas
identiquement nulle au voisinage de 0. Désignons par D" un disque fermé de

centre 0 dans C tel que /(0, 0, zn) soit holomorphe au voisinage de D"
et ne s'annule pas sur 3D" (§ 1, théorème 1, corollaire 3). Par continuité,
il existe un nombre réel s strictement positif tel que / soit holomorphe au
voisinage de D' x D" et ne s'annule pas sur D' x 3D", en désignant par
D' le polydisque de C"-1 défini par

D'{(zl5z„-i) e C"-1 | max |z; |<e}.
L'ensemble V n (D' x Z>") est connexe et dense dans D' x D" comme il
résulte aussitôt de la formule

Fn(D' xD
(D'x<3D")u U {(zj,zz„) # 0}

Pour tout point x de X, l'anneau &x des germes en x de fonctions
holomorphes est intègre (§ 1, proposition 1, corollaire 2) et l'ensemble 6 (n)x
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des germes en x de sections holomorphes de n est un (P^-module. On désigne

par Xx le corps des fractions de 0X et l'on pose

X (:7l)x Xx ®&x(9{n)x

Tout élément de X (n)x s'écrit comme quotient d'un élément de (9 (:k)x

par un élément non nul de (9X.

Soit u une section de la projection canonique de X (n)x sur X.
xeX

Pour éviter des confusions, on désigne par ux l'image du point x de X. On
dit que u est une section méromorphe de n si elle vérifie la condition suivante :

(M) Pour tout point x0 de X, il existe un voisinage ouvert connexe U de

x0, une section holomorphe s de n sur U et une fonction holomorphe/
non nulle sur U tels que

pour tout point x de U.

On désigne par X (X, n) l'ensemble des sections méromorphes de n
et par X (X) l'ensemble des fonctions méromorphes sur X (i.e. les sections

méromorphes du fibré produit Cx). On vérifie aisément que l'addition et la
multiplication point par point définissent sur X (X) une structure d'anneau
commutatif avec élément unité et sur X (X, n) une structure de X (X)-
module.

La restriction à un ensemble ouvert d'une section méromorphe est une
section méromorphe. En particulier, on a pour tout point x de X une
application canonique

0X : lim X(U,n) -> X(n)x
où U parcourt l'ensemble des voisinages ouverts de x. Il résulte immédiatement

des définitions que cette application est un isomorphisme qui permet
d'identifier le germe en x d'une section méromorphe à sa valeur au point x.

On dit qu'une section méromorphe u de n est régulière au point x si

ux appartient à 0 {n)x. On appelle domaine de régularité de u l'ensemble
R {u) des points où u est régulière. Les points n'appartenant pas au domaine
de régularité s'appellent les pôles de u.

Lemme 2. Supposons X connexe. Le domaine de régidarité d'une section

méromorphe u de n est un ensemble ouvert, connexe et dense dans X.
Soit x0 un point de X. On désigne par U un voisinage ouvert connexe de

x0, par s une section holomorphe de % sur U et par / une fonction
holomorphe non nulle sur U tels que



!/l V fx

pour tout point x de U. Si u est régulière au point x0, on peut supposer que/
ne s'annule pas sur U ce qui montre déjà que R (u) est ouvert. Si u n'est pas

régulière au point x0, l'ensemble

V {xeU\f(x) ^0}
est connexe et dense dans U (lemme 1), d'où l'assertion puisqu'il est contenu

dans R (u).

Pour toute section méromorphe u de n et pour tout point x de R (u),

on pose
u (x) ux(x)

Ceci a bien un sens puisque ux appartient à (9 (n)x. Il est clair que u est une

section holomorphe de n sur R (u). On dit qu'elle est associée à u.

Proposition 1 (Principe du prolongement analytique). Supposons X
connexe et soient u et v deux sections méromorphes de n. Les conditions

suivantes sont équivalentes :

(1 Les sections u et v *coïncident partout.

(2) Les sections u et v coïncident sur R(u)nR(v).
(2) Les germes de u et v coïncident en un point.

Il suffit de montrer que (3) implique (1). Désignons par V l'ensemble des

points de X où les germes de u et v coïncident. Puisqu'il est ouvert, il suffit
de montrer qu'il est fermé. Tout point x0 de V possède un voisinage ouvert
connexe U tel que

s t
u \ u ~ v \ u ~/ 9

et puisque les germes ux et vx coïncident en un point x de U, le principe du
prolongement analytique (§ 1, proposition 1, corollaire 2) montre que l'on a

gs =ft
ce qui démontre l'assertion.

Corollaire. Si X est connexe, / 'anneau XL (Z) des fonctions
méromorphes sur X est un corps.

Désignons par u une fonction méromorphe non nulle sur X. Il résulte
de la proposition 1 que ux n'est jamais nul. On vérifie aisément que les
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germes uxx définissent une fonction méromorphe sur X ce qui démontre
l'assertion.

Remarque 1.

Supposons X connexe et désignons par s une section holomorphe de tz

sur un ensemble ouvert non vide U de X. La proposition 1 montre qu'il
existe au plus une section méromorphe de tz dont le domaine de régularité
contient U et dont la restriction coïncide avec S'il en existe une, on dit
(abusivement) que s est une section méromorphe de tz.

Supposons n de rang pur p. On désigne par (Ut)ieI un recouvrement de X
par des domaines de cartes de tz et par (gKl) un cocycle holomorphe de

rang p subordonné à ce recouvrement et associé à tz. Les sections méro-

morphes de tz sont en correspondance biunivoque avec les familles (uXei
où ux est un /?-uple de fonctions méromorphes sur Ux, vérifiant les conditions

de recollement

uK gKlux.

On appelle forme différentielle méromorphe de degré r toute section

méromorphe de Qr,°. On définit de manière évidente l'image réciproque
d'une forme différentielle méromorphe par une application holomorphe.

Pour tout point x de X, on désigne par J (ft),, le é^-module quotient de

Jf (n)x par (9 (n)x.
Soit u une section de la projection canonique de [] i (n)x sur X.

xeX

Pour éviter des confusions, l'image d'un point x de X se désigne par ux.

On dit que u est une partie principale de tz si elle vérifie la condition
suivante :

(.PP) Pour tout point x0 de X, il existe un voisinage ouvert U de x0 et une
section méromorphe de tz sur U dont le germe représente ux en tout
point x de U.

On désigne par â (X, n) l'ensemble des parties principales de tz. L'addition

et la multiplication point par point en font un (9 (X)-module.
La restriction à un ensemble ouvert d'une partie principale est une partie

principale. En particulier, on a pour tout point x de X une application
canonique

0X : lim J(C/,tz) -> l(rz)x

où U parcourt l'ensemble des voisinages ouverts de x. Il résulte immédia-
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tement des définitions que cette application est un isomorphisme qui permet
d'identifier le germe en x d'une partie principale à sa valeur au point x.

Premier problème de Cousin. Donner des conditions nécessaires et
suffisantes pour qu'une partie principale appartienne à l'image de l'application
canonique

yf:Jf(X, n) ->£(X,n).
Pour tout élément u de «S (X, n), il existe un recouvrement ouvert

(UXei de X et pour chaque indice i une section méromorphe sT de n sur Ul
représentant u\ut. Par définition, la section

$Kl $1 $K

est holomorphe sur Ut n UK. Il existe donc pour chaque indice i une
section de #°° {Uv n) telle que

$Kl L ifc

(chap. 0, § 2, lemme 1). En particulier, les formes différentielles d"tl se

recollent en une section v de #°° (X, 7La forme différentielle d"v
est nulle et l'on vérifie aisément que la classe ö (u) de v dans H1 (X, n) ne
dépend que de u.

Proposition 2. La suite de (9 (X)-modules et d'applications linéaires

X(X, ri)—J(X, n) H1 (X, 7

est exacte.
On conserve les notations précédentes. Si u provient d'une section

méromorphe de n, on peut prendre comme recouvrement ouvert l'ensemble
X lui-même et l'on voit que ô (u) est nul.

Réciproquement, supposons S (u) nul. Ceci signifie qu'il existe une
section t de #°° (X, 71) telle que

d't — v

Pour tout indice z, la section tx — t\ut est holomorphe et les sections
si~Lt + t\Ul se recollent en une section méromorphe de n représentant
u, d'où l'assertion.

Pour tout point x de X, on désigne par Q)x le groupe abélien quotient de
C/f x par x 9 où @x (resp. Jf désigne le groupe des éléments inversibles de
(9X (resp. Jfx). Ce groupe est noté additivement.

^'Enseignement mathém., t. XXI, fasc. 2-3-4. 14
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Soit u une section de la projection canonique de JJ Q)x sur X. Pour
xeX

éviter des confusions, l'image d'un point x de X se désigne par ux. On dit
que u est un diviseur de X si la condition suivante est vérifiée :

(D) Pour tout point x0 de X, il existe un voisinage ouvert U de x0 et une
fonction méromorphe inversible sur U dont le germe en tout point
représente ux.

On désigne par 3) (X) l'ensemble des diviseurs de X. L'addition point par
point en fait un groupe abélien.

La restriction d'un diviseur à un ensemble ouvert est un diviseur. En

particulier, on a pour tout point x de X une application canonique

0X : lim &(U) Sfx

où U parcourt l'ensemble des voisinages ouverts de x. Il résulte immédiatement

des définitions que cette application est un isomorphisme qui permet
d'identifier le germe en x d'un diviseur à sa valeur au point x.

Soit 7t un fibré en droites holomorphe sur X. On désigne par * (X, n)
l'ensemble des sections méromorphes de n qui ne s'annulent identiquement
sur aucune composante connexe de X. Soit s une telle section. L'expression
de ^ dans toute carte 0 de n est une fonction méromorphe inversible sur le

domaine U de 0. La classe de cette fonction dans S) {U) est indépendante
de 0. Par recollement, on obtient ainsi un diviseur sur X que l'on dit
associé à s et que l'on désigne par (s). On définit ainsi une application
canonique

yn(n): jT*(X,n) 2 (X).

Deuxième problème de Cousin. Donner des conditions nécessaires et

suffisantes pour qu 'un diviseur appartienne à l'image de l'application canonique

yn:jT*(X)-+&(X).
Pour tout diviseur u de X, il existe un recouvrement ouvert (Ut)iei de X

et, pour chaque indice i une fonction méromorphe inversible st sur Ut

représentant u\ux- Par définition, la fonction

SKt SKS~1

est holomorphe inversible sur Ut n UK et la famille (sKl) est un cocycle
holomorphe de rang 1 subordonné à (Ut). On vérifie aisément que sa classe

v (m) dans Pic (X, C*) ne dépend que de u.
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Lemme 3. Pour tout diviseur u de X, il existe un fibré en droites

holomorphe 7i sur X et une section méromorphe s de XL* (X, n) dont le

diviseur est u.

La section s est déterminée modulo la multiplication par une fonction
holomorphe inversible. Le fibré n est déterminé à isomorphisme près.

Conservons les notations précédentes et désignons par n un fibré en
droites holomorphe associé au cocycle (^Kl). Les fonctions méromorphes st
se recollent en une section méromorphe s de n ayant les propriétés requises.
Si s' est une deuxième section méromorphe dont le diviseur est u, le diviseur

s
de la fonction méromorphe — est identiquement nul et cette fonction est.

s'

holomorphe inversible.

Enfin, si p est un deuxième fibré en droites holomorphe et t une section

s
méromorphe de p dont le diviseur est u, la section - de n ® p* est

holomorphe et partout non nulle ce qui achève la démonstration du lemme.

Proposition 3. La suite de groupes abéliens et d'homomorphismes

Jf*(X)2)(X)Pic C*)
est exacte.

La démonstration est analogue à celle de la proposition 2. Elle est laissée
en exercice au lecteur.

On dit qu'un diviseur de 3f (X) est positifs'il est localement représentable
par une fonction holomorphe. Les diviseurs positifs de X forment un sous-
ensemble 3)+ (X) de 3} (X) stable par addition. La relation

«u — v appartient à 3+ (X) »

est une relation d'ordre partiel sur 2f (X) que l'on désigne par v < u.
Supposons X connexe. Pour tout diviseur u de X, l'ensemble

XTU(X) {heiï{X)\h =0ou {h)> -u}
est un sous-0 (X)-module de JC (X). Désignons par n un fibré en droites
holomorphe sur X et par s une section méromorphe non nulle de n ayant u
pour diviseur (lemme 3). On vérifie aisément que la division par s induit un
isomorphisme de 6 (X, n) sur Xu (X).
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