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et si X est ouverte, ’espace vectoriel HY (X, n) est nul (principe du prolon-
gement analytique).

On prendra garde de ne pas confondre le groupe de cohomologie de
de Rham H" (X, C) de la variété¢ différentielle X R (chap. 0, §4) et le
groupe de cohomologie de Dolbeault H" (X, C,) du fibré produit C,.

§ 3. FONCTIONS MEROMORPHES

Dans tout ce paragraphe, on désigne par X une variété holomorphe et
par n un fibré vectoriel holomorphe sur X.

LEMME 1. On suppose X connexe et [’on désigne par f une fonction
holomorphe non identiquement nulle sur X. L’ensemble V défini par

V={xeX|f(x) #0)

est alors connexe et dense dans X.

11 suffit de montrer que tout point x, de X posséde un voisinage U tel que
V n U soit connexe et dense dans U.

On peut donc supposer que X est un ensemble ouvert de C" et, par un
changement linéaire affine de coordonnées, on peut également supposer
que x, est I’origine et que la fonction partielle £ (0, ..., 0, z,) n’est pas iden-
tiquement nulle au voisinage de 0. Désignons par D” un disque fermé de
centre 0 dans C tel que f(0, ..., 0, z,) soit holomorphe au voisinage de D"
et ne s’annule pas sur dD” (§ 1, théoréme 1, corollaire 3). Par continuité,
il existe un nombre réel ¢ strictement positif tel que f soit holomorphe au
voisinage de D’ X D” et ne s’annule pas sur D’ X 9D”, en désignant par
D' le polydisque de C"~! défini par

D' = {(z4,...,2,-9)€C"™ | max |z;]|<e}.
l=j=n—-1
L’ensemble V' n (D' % D") est connexe et dense dans D’ X D" comme il
résulte aussitdt de la formule

V(D' xD")
= (D'x 0D U U {(z4,..0r2,) €C"|f(zy,...,2,) # 0}.

(215+.-s2pn~1)eD’

Pour tout point x de X, ’anneau @, des germes en x de fonctions holo-
morphes est intégre (§ 1, proposition 1, corollaire 2) et I’ensemble 0 (n),
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des germes en x de sections holomorphes de 7 est un ¢,-module. On désigne
par X, le corps des fractions de @, et ’on pose

‘%/‘(n)x = '%‘x ®@x@(n)x

Tout €lément de A (n), s’écrit comme quotient d’un élément de O (7).
par un élément non nul de 0,.

Soit u une section de la projection canonique de [ o (n), sur X.
xeX

Pour éviter des confusions, on désigne par u, I'image du point x de X. On
dit que u est une section méromorphe de 7 si elle vérifie 1a condition suivante :

(M) Pour tout point x, de X, il existe un voisinage ouvert connexe U de
X, une section holomorphe s de = sur U et une fonction holomorphe f
non nulle sur U tels que

Sx
U, = —

fx

pour tout point x de U.

On désigne par " (X, n) ’ensemble des sections méromorphes de =
et par A4 (X) I’ensemble des fonctions méromorphes sur X (i.e. les sections
méromorphes du fibré produit Cy). On vérifie aisément que ’addition et la
multiplication point par point définissent sur " (X) une structure d’anneau
commutatif avec élément unité et sur ¢ (X, n) une structure de 4 (X)-
module.

La restriction a un ensemble ouvert d’une section méromorphe est une
section méromorphe. En particulier, on a pour tout point x de X une
application canonique

0,: lim A (U,n) - A (n),

ou U parcourt I’ensemble des voisinages ouverts de x. Il résulte immédia-
tement des définitions que cette application est un isomorphisme qui permet
d’identifier le germe en x d’une section méromorphe a sa valeur au point x.

On dit qu’une section méromorphe u de © est réguliére au point x si
u, appartient a 0 (n),. On appelle domaine de régularité de u 1’ensemble
R (u) des points ou u est régulicre. Les points n’appartenant pas au domaine
de régularité s’appellent les poles de u.

LEMME 2. Supposons X connexe. Le domaine de régularité d’une section
méromorphe u de m est un ensemble ouvert, connexe et dense dans X.

Soit x, un point de X. On désigne par U un voisinage ouvert connexe de
X9, par s une section holomorphe de 7 sur U et par f une fonction holo-
morphe non nulle sur U tels que

B e e



pour tout point x de U. Si u est réguliére au point x,, on peut supposer que f
ne s’annule pas sur U ce qui montre déja que R (u) est ouvert. Si u n’est pas
réguliére au point x,, ’ensemble

V={xeU|f(x) #0)}

est connexe et dense dans U (lemme 1), d’ou I’assertion puisqu’il est contenu
dans R (u).

Pour toute section méromorphe u de 7 et pour tout point x de R (u),
on pose

u(x) = u,(x).

Ceci a bien un sens puisque u, appartient 2 O (n),. Il est clair que u est une
section holomorphe de = sur R (x). On dit qu’elle est associée a u.

ProrosITION 1 (Principe du prolongement analytique). Supposons X
connexe et soient u et v deux sections méromorphes de . Les conditions
suivantes sont équivalentes :

(1) Les sections u et v .coincident partout.
(2) Les sections u et v coincident sur R (u) 0 R (v).

(3) Les germes de u et v coincident en un point.

11 suffit de montrer que (3) implique (1). Désignons par V ’ensemble des
points de X ou les germes de u et v coincident. Puisqu’il est ouvert, il suffit
de montrer qu’il est fermé. Tout point x, de ¥V posséde un voisinage ouvert
connexe U tel que

S t
o et UIU"——-—,

uly =
et puisque les germes u, et v, coincident en un point x de U, le principe du
prolongement analytique (§ 1, proposition 1, corollaire 2) montre que I’on a

gs = ft
ce qui démontre I’assertion.

COROLLAIRE. Si X est connexe, [’anneau K (X) des fonctions méro-
morphes sur X est un corps.

Désignons par u une fonction méromorphe non nulle sur X. Il résulte
de la proposition 1 que u, n’est jamais nul. On vérifie aisément que les
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germes u " définissent une fonction méromorphe sur X ce qui démontre
I’assertion.

Remarque 1.

Supposons X connexe et désignons par s une section holomorphe de =
sur un ensemble ouvert non vide U de X. La proposition 1 montre qu’il
existe au plus une section méromorphe de 7 dont le domaine de régularité
contient U et dont la restriction coincide avec s. S’il en existe une, on dit
(abusivement) que s est une section méromorphe de .

Supposons 7 de rang pur p. On désigne par (U,),.; un recouvrement de X
par des domaines de cartes de = et par (g,,) un cocycle holomorphe de
rang p subordonné a ce recouvrement et associé a m. Les sections méro-
morphes de © sont en correspondance biunivoque avec les familles (¢,),oy
ol u, est un p-uple de fonctions méromorphes sur U, , vérifiant les condi-
tions de recollement

ulc = gKlul'

On appelle forme différentielle méromorphe de degré r toute section
méromorphe de Q™°. On définit de maniére évidente I’image réciproque
d’une forme différentielle méromorphe par une application holomorphe.

Pour tout point x de X, on désigne par 2 (n), le 0 .-module quotient de
A (n), par O (n),.

Soit u une section de la projection canonique de [] 2 (n), sur X.
xeX

Pour éviter des confusions, I'image d’un point x de X se désigne par u,.
On dit que u est une partie principale de w si elle vérifie la condition sui-
vante:

(PP) Pour tout point x, de X, il existe un voisinage ouvert U de x, et une
section méromorphe de w sur U dont le germe représente u, en tout
point x de U.

On désigne par 2 (X, n) Pensemble des parties principales de 7. L’addi-
tion et la multiplication point par point en font un O (X)-module.

La restriction a un ensemble ouvert d’une partie principale est une partie
principale. En particulier, on a pour tout point x de X une application

canonique
0,: lim 2(U,n) - 2(n),

ou U parcourt ’ensemble des voisinages ouverts de x. Il résulte immédia-
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tement des définitions que cette application est un isomorphisme qui permet
d’identifier le germe en x d’une partie principale & sa valeur au point x.

PREMIER PROBLEME DE COUSIN. Donner des conditions nécessaires et suffi-
santes pour qu’une partie principale appartienne a l’image de l’application

canonique
oA (X,n) > 2(X,7n).

Pour tout élément u de 2 (X, n), il existe un recouvrement ouvert
(U ,er de X et pour chaque indice 1 une section méromorphe s, de  sur U,
représentant u [U,. Par définition, la section

Se = 8§, — S
est holomorphe sur U, n U,. 1l existe donc pour chaque indice 1 une sec-

tion ¢, de €% (U,, n) telle que

Se, = 1, — 1,

K1l

(chap. 0, §2, lemme 1). En particulier, les formes différentielles d”t, se
recollent en une section v de €® (X, n ® Q%'). La forme différentielle d"v
est nulle et 'on vérifie aisément que la classe 6 (#) de v dans H' (X, n) ne
dépend que de wu.

PROPOSITION 2. La suite de O (X)-modules et d’applications linéaires

AKX a0 H(X. )

est exacte.

On conserve les notations précédentes. Si u provient d’une section
meéromorphe de n, on peut prendre comme recouvrement ouvert ’ensemble
X lui-méme et 'on voit que § (u) est nul.

Réciproquement, supposons ¢ (u) nul. Ceci signifie qu’il existe une
section ¢ de ¥ (X, n) telle que

dt =v.

Pour tout indice 1, la section tl—t|Ul est holomorphe et les sections
Sz“fﬁLflU; se recollent en une section méromorphe de 7 représentant
u, d’out I’assertion.

Pour tout point x de X, on désigne par 2, le groupe abélien quotient de
A % par 0%, 00 OF (resp. #° %) désigne le groupe des éléments inversibles de
0, (resp. A ). Ce groupe est noté additivement.

L’Enseignement mathém., t. XXI, fasc. 2-3-4. 14
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Soit u une section de la projection canonique de J| &2, sur X. Pour
xeX

¢éviter des confusions, I’image d’un point x de X se désigne par u,. On dit
que u est un diviseur de X si la condition suivante est vérifiée:

(D) Pour tout point x, de X, il existe un voisinage ouvert U de x, et une
fonction méromorphe inversible sur U dont le germe en tout point
représente u,.

On désigne par & (X) 'ensemble des diviseurs de X. L’addition point par
point en fait un groupe abélien.

La restriction d’un diviseur & un ensemble ouvert est un diviseur. En
particulier, on a pour tout point x de X une application canonique

0, : l{l_l} 2(U) > 9D,

ou U parcourt I’ensemble des voisinages ouverts de x. Il résulte immédia-
tement des définitions que cette application est un isomorphisme qui permet
d’identifier le germe en x d’un diviseur a sa valeur au point x.

Soit 7 un fibré en droites holomorphe sur X. On désigne par J7* (X, n)
I’ensemble des sections méromorphes de n qui ne s’annulent identiquement
sur aucune composante connexe de X. Soit s une telle section. L’expression
de s dans toute carte @ de n est une fonction méromorphe inversible sur le
domaine U de @. La classe de cette fonction dans & (U) est indépendante
de ¢&. Par recollement, on obtient ainsi un diviseur sur X que ’on dit
associé a s et que I’on désigne par (s). On définit ainsi une application cano-
nique

V() 2 A (X, m) > D(X) .

DEUXIEME PROBLEME DE COUSIN. Donner des conditions nécessaires et
suffisantes pour qu ‘un diviseur appartienne a [ ’image de ’application canonique

Vit A F(X) = D(X) .

Pour tout diviseur u# de X, il existe un recouvrement ouvert (U,),.; de X
et, pour chaque indice ¢ une fonction méromorphe inversible s, sur U,
représentant u | v,. Par définition, la fonction

SKL = SK S;_l
est holomorphe inversible sur U, n U, et la famille (s,,) est un cocycle holo-
morphe de rang 1 subordonné a (U,). On vérifie aisément que sa classe
v (1) dans Pic (X, C*) ne dépend que de w.
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LEMME 3. Pour tout diviseur u de X, il existe un fibré en droites holo-
morphe m sur X et une section méromorphe s de A* (X,n) dont le
diviseur est u.

La section s est déterminée modulo la multiplication par une fonction
holomorphe inversible. Le fibré mn est déterminé a isomorphisme pres.

Conservons les notations précédentes et désignons par m un fibré en
droites holomorphe associé au cocycle (s,,). Les fonctions méromorphes s,
se recollent en une section méromorphe s de 7 ayant les propriétés requises.
Si s’ est une deuxiéme section méromorphe dont le diviseur est u, le diviseur

S ; ; !
de la fonction méromorphe — est identiquement nul et cette fonction est
S

holomorphe inversible.
Enfin, si p est un deuxi¢me fibré en droites holomorphe et ¢ une section

. . . S 1o
méromorphe de p dont le diviseur est u, la section p de 7 ® p* est holo-

morphe et partout non nulle ce qui achéve la démonstration du lemme.

PROPOSITION 3. La suite de groupes abéliens et d’homomorphismes

y

A (X)L g (X) Pic (X, C¥)

est exacte.
La démonstration est analogue a celle de la proposition 2. Elle est laissée
en exercice au lecteur.

On dit qu’un diviseur de & (X)) est positif s’il est localement représentable
par une fonction holomorphe. Les diviseurs positifs de X forment un sous-
ensemble &, (X) de 2 (X) stable par addition. La relation

«u—v appartient 3 @, (X) »

est une relation d’ordre partiel sur 2 (X) que ’on désigne par v < u.
Supposons X connexe. Pour tout diviseur # de X, I’ensemble

H,(X) ={hextX (X)|h =0 ou (h) > —u}

est un sous-0 (X)-module de " (X). Désignons par 7 un fibré en droites
holomorphe sur X et par s une section méromorphe non nulle de 7 ayant u
pour diviseur (lemme 3). On vérifie aisément que la division par s induit un
isomorphisme de 0 (X, n) sur ", (X).
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