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Une utilisation répétée de I’argument développé au corollaire 4 du théo-
réeme 1 montre qu’il existe pour tout polydisque D relativement compact
dans U et pour tout multi-indice « une constante c, , telle que

Ex

a a
0z{1 ... Oz |

< Cyp ”f” L1 K

D

ou K est un voisinage compact de ’adhérence de D dans U. L’assertion en
résulte aussitot.

§ 2. VARIETES HOLOMORPHES

Toutes les cartes de variétés topologiques considérées désormais prennent
leurs valeurs dans des espaces numériques complexes.

Soit X une variété topologique.

On dit que deux cartes de X sont holomorphiquement compatibles si les
changements de cartes sont holomorphes.

On appelle atlas holomorphe de X tout ensemble de cartes deux a deux
holomorphiquement compatibles dont les domaines recouvrent X. On dit
que deux atlas holomorphes sont compatibles st leur réunion est un atlas
holomorphe. On vérifie aisément que cette relation est une relation d’équi-
valence. Ses classes s’appellent les structures holomorphes de X.

On appelle variété holomorphe toute variété topologique munie d’une
structure holomorphe.

Soit X une variété holomorphe.

On appelle (abusivement) atlas de X tout atlas holomorphe appar-
tenant a la structure holomorphe de X et carte de X toute carte appartenant
a un atlas de X. .

Soit x un point de X. Toutes les cartes de X dont le domaine contient x
prennent leurs valeurs dans le méme espace numérique complexe. La dimen-
sion de cet espace s’appelle la dimension de X au point x et se désigne par
dim, (X). La fonction dim (X) est localement constante. On dit que X
est de dimension pure si elle est constante.

On appelle courbe holomorphe (resp. surface holomorphe) toute variété
holomorphe de dimension pure 1 (resp. 2).

Les changements de cartes étant en particulier des difféomorphismes,
la variété topologique X se trouve naturellement munie d’une structure
différentielle que I’on dit sous-jacente @ X. Pour éviter des confusions, on
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désigne quelquefois par X® la variété différentielle obtenue en munissant
X de la structure sous-jacente.

Le jacobien des changements de cartes étant toujours positif, la variété
différentielle X® est orientable et munie d’une orientation naturelle.

On dit qu’une application de X dans un espace vectoriel complexe E
de dimension finie est holomorphe s’il en est ainsi de son expression dans
toute carte de X (ou ce qui revient au méme dans toute carte d’un atlas de
X). On désigne par O (X, E) I’ensemble de ces applications. Si E est égal a
C, on utilise aussi la notation O (X).

Notons que @ (X) est une sous-algébre de ¥* (X, C) et 0 (X, E) un
sous-0 (X)-module de #* (X, E). De plus, les topologies induites par
% (X,E) et L. (X, E) sur 0 (X, E) coincident (§ 1, proposition 1, corol-
laire 3). Pour cette topologie, ’espace O (X, E) est complet. C’est un espace
de Fréchet si X est dénombrable & I'infini.

On dit qu’une application continue # de X dans une variété holomorphe
Y est holomorphe s’1l en est ainsi de son expression dans tout couple de
cartes. On désigne par 0 (X, Y) ’ensemble de ces applications.

On dit que 'application u est un isomorphisme si elle est bijective et si
u et 4~ ! sont holomorphes.

Les variétés holomorphes, les applications holomorphes et leur compo-
sition forment une catégorie. Le lemme suivant est une conséquence immé-
diate des définitions.

LemMME 1. Pour qu’une application continue u de X dans Y soit holo-
morphe, il faut et il suffit que [’application u* envoie O (V) dans O (u™! (V))
pour tout ensemble ouvert V de Y.

Les exemples donnés au paragraphe 1 du chapitre 0 fournissent mutatis
mutandis des exemples de variétés holomorphes. En particulier, pour tout
entier naturel n, on construit comme dans I’exemple 5 espace projectif
complexe P" de dimension n.

Soit X une variété holomorphe et soit = une application de but X,

On dit que deux cartes complexes de 7 sont holomorphiquement compa-
tibles si la transition est holomorphe.

On appelle atlas holomorphe de m tout ensemble de cartes complexes
deux a deux holomorphiquement compatibles dont les domaines recouvrent
X. On dit que deux atlas holomorphes sont compatibles si leur réunion
est un atlas holomorphe. On vérifie aisément que cette relation est une rela-
tion d’équivalence. Ses classes s’appellent les structures vectorielles holo-
morphes de .
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On appelle fibré vectoriel holomorphe sur X toute application de but X
munie d’une structure vectorielle holomorphe.

Soit © un fibré vectoriel holomorphe sur X.

On appelle (abusivement) atlas de © tout atlas holomorphe appartenant
a la structure vectorielle holomorphe de 7 et carte de = toute carte appar-
tenant a un atlas de 7.

On notera que la source 7 () de « est naturellement munie d’une struc-
ture holomorphe (chap. 0, § 2).

Les transitions €tant en particulier indéfiniment dérivables, I’application
n est de maniére naturelle un fibré vectoriel complexe sur X®. Pour éviter
des confusions, nous dirons qu’un fibré vectoriel complexe sur X® est un
fibré vectoriel différentiel sur X.

On dit qu’une section de 7 est holomorphe s’1l en est ainsi de son expres-
sion dans toute carte de 7 (ou ce qui revient au méme dans toute carte d’un
atlas de w ou encore si c’est une application holomorphe de X dans 7 (n)).
On désigne par O (X, n) I’ensemble de ces sections.

Remarquons que 0 (X, ) est un sous-0 (X)-module de ¥* (X, n). De
plus, les topologies induites par €% (X, n) et L. (X, n) sur O (X, n)
coincident. Pour cette topologie, I'espace O (X, n) est complet. Cest un
espace de Fréchet si X est dénombrable a 'infini.

Si p est un second fibré vectoriel holomorphe sur X, on désigne par
0 (w, p) 'ensemble des morphismes holomorphes de © dans p (i.e. les appli-
cations holomorphes u de 7 () dans 7 (p) telles que

pru=m,

qui induisent des applications C-linéaires sur les fibres).

Les exemples et les constructions donnés au paragraphe 2 du chapitre 0
fournissent mutatis mutandis des exemples et des constructions de fibrés
vectoriels holomorphes. En particulier, si 7 et p sont des fibrés vectoriels holo-
morphes sur X, il en est de méme des fibrés vectoriels 7 @ p, 7 @ p, n* et An.

Soit % un recouvrement ouvert de X. On dit qu'un cocycle de rang p
subordonné a % est holomorphe si les applications qui le composent sont
holomorphes. On définit de la méme maniére la relation de cobordance
entre cocycles holomorphes, d’ott un ensemble Pic (X, G (p; C)) dont les
éléments s’appellent les fibrés principaux holomorphes de groupe structural
G(p; C) sur X.

Les classes d’isomorphie de fibrés vectoriels holomorphes de rang p
sont en correspondance biunivoque avec les fibrés principaux holomorphes
de groupe structural G (p; C). |
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On prendra garde de distinguer Pic (X, G (p; C)) et Pic (X R G(p; C)):
un fibré vectoriel holomorphe différentiablement trivial n’est pas néces-
sairement holomorphiquement trivial (chap. IV, § 7).

Soit X une variété holomorphe de dimension pure 7.

Le fibré cotangent complexe Q¢ a X® est un fibré vectoriel différentiel
de rang 2n sur X. Pour toute carte ¢ de domaine U dans X et pour tout
point x de U, on a un isomorphisme C-linéaire

£v.p: Qex — Homg (C", C).

(chap. 0, § 3, lemme 1). Il résulte de la définition méme des applications
holomorphes que les sous-espaces Q5% et Q%! de Qé’ximages réciproques par
¢4 des sous-espaces Homg (C", C) et Homg (C", C) de Homgy (C*, C)
sont indépendants de ¢.

Pour toute fonction f de ¥* (X, C), avec k au moins égal a 1, on définit

0 0 0 %
des fonctions of : ;o : 9 de €*~! (U, C) en posant

op, " o¢, 08, 7 04,
of 1<6f .6f> of 1<6f _c’if)
e = o e et —— T = 41—
0p; 2\0¢; 0¢; op; 2\09; 0
ol ¢ et 45'} désignent les parties réelle et imaginaire de ¢ ;. Le lemme suivant
est une conséquence immédiate de ces définitions (chap. 0, § 3, lemme 5).

LEMME 2. Pour toute carte ¢ de X et tout point x du domaine de ¢,
les différentielles des germes ¢y yy ..., Gp. (resp. ¢y .o, o) forment
une base de Q.° (resp. Q>'). Pour tout germe f de AL, ona

of of _
df= "——(X)dgbx—i‘ —_X)d Px .
14_:%9 09; " 1é>;én 00; (940
Soit 7 la projection canonique de || QL% sur X et soient ¢ et Y des
xeX
cartes de domaines respectifs U et V" dans X. Le lemme 2 montre que les
applications

¢’ :n ' (U) » U x Hom(C",C) et ' :n ' (V) = ¥V x Hom(C", C)
définies par |
(%) =X e () et Y (x,9) = (x, 80, (1))

(on utilise les notations du paragraphe 1) sont des cartes complexes de =.

1 s
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Ces cartes sont holomorphiquement compatibles, la transition est donnée
par la formule

g(x) ="Dy(p(x))" ="Dy(p(x)"

ou 7y désigne le changement de cartes de ¢ dans .
Le fibré vectoriel holomorphe ainsi défini se désigne par Q'°. On
I’appelle parfois le fibré cotangent holomorphe a X.

Soit p la projection canonique de [[ Q7' sur X. Le lemme 2 montre
que les applications xeX

¢ :n 1 (U) - U x Homg(C",C) et y :n~ ' (V) - V x Homg(C", C)
définies par
(Nﬁ”(xa y) = (x: gx,qb(y)”) et JI" (x7 y) = (-xa 3x,![/ (y)”)

sont des cartes complexes de p. Ces cartes sont (différentiablement) compa-
tibles, la transition est donnée par la formule

g(x) ="Dy(p(x)""

Le fibré vectoriel différentiel ainsi défini se désigne par Q°'. Notons que
I’on a un isomorphisme canonique

Qé — QI,O ('B QO,l
Pour tout couple (p, g) d’entiers, on pose
QP11 = APQLO @ A1Q%1 .

On dit qu’une forme différentielle est homogene de bidegré (p, q) si elle
prend ses valeurs dans Q% La restriction a U de toute forme différentielle
homogéne de bidegré (p, g) s’écrit d’'une maniére et d’une seule

uly = 2 Usk dpy A ddy

JeSP(n) KeSq(n)

ou I’on a posé
d(b.] = d(/).]l N .. A d¢"P et d(_ﬁK =— dakl VAPV AN d(ﬁkq-
LEMME 3. La différentielle de toute forme de €* (X, Q"% appartient d
@° (X, Q1) @ %O (X, QPatYy.

On peut supposer que X est un ensemble ouvert de C". L’assertion résulte

- alors des définitions.
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Pour toute forme différentielle u de %' (X, Q7%), on désigne par d'u
(resp. d"u) la composante homogéne de bidegré (p+1, g) (resp. (p,q+1))de
du. Le lemme suivant est laissé en exercice au lecteur (chap. 0, § 3, theo-
réme 1).

LEMME 4. Pour qu’une forme différentielle u de %' (X, Q"°) soit holo-
morphe, il faut et il suffit que d"u soit nul.
Pour toute forme différentielle u de €* (X, Q¢), on a

d (d'u) =0 d(du) +d (du) =0 d (du) =0.
Pour tout couple (u, v) de formes différentielles dans €' (X, Q¢), avec u
homogeéne de degré r, on a
dwav)y =dunv+(—1)"undv
et

d"wav) =duno+(=1)'undo.

En particulier, I’application d" de €* (X, Qc) dans €° (X, Q) est O (X)-
linéaire.

Soit / une application holomorphe de X dans une variété holomorphe Y
de dimension pure m. Désignons par ¢ une carte de domaine U dans X
et par y une carte de domaine ¥ contenant 4 (U) dans Y. On a par définition

oW h
vy = o = 3 S ag,
ot 1=k=n k
_ _ o(Wr.-h)y _
@) =d@ = % P,
1=k=n d)k

pour tout entier j compris entre 1 et m. On en déduit aisément que I'image
réciproque par 4 d’une forme homogeéne de bidegré (p, g) est une forme
homogeéne de bidegré (p, q) et que 'on a

d'h* () = h*(d'u) et  d'h* () = h*(d"u)

pour toute forme différentielle u de €' (Y, Q).
Soit 7 un fibré vectoriel holomorphe de rang pur m sur X et soient ¢

et ¥ des cartes de © de domaines respectifs U et V. Pour toute section s de
¢! (X, n®QP7), on a

Sp = (ula s Uy et Sg = (7)1: vm)

ou les u; et les v; sont des formes différentielles homogénes de bidegré
(p, q). Pour tout entier j compris entre 1 et m, on a




— 200 —
v; = Z 9k Uy
1l=k<=m
Ol (9 ji) 1 —j x—=m désigne la transition de ¢ dans ¥. On en déduit que
d”’t’)j _ Z gjkd”uk.
1<=k=m

Autrement dit, les m-uples (d"uq,...,d"u,,) et (d"v,,...,d"v,,) se recollent en
une section de €° (X, 7 ® Q”?*1) que ’on désigne encore par d”s.

Le lemme suivant est une conséquence immédiate de cette définition
et du lemme 4.

LEMME 5. Pour qu’une section s de €' (X, n) soit holozhorphe, il faut et
il suffit que d"s soit nul.
Pour toute section s de €*(X,n®Qc), on a

d"(d"s) = 0.

Pour toute forme différentielle u de €' (X, QL) et toute section v de
' (X, m®Qc), ona

A wuAv) =dunv+(=D'undv.

Pour toute section u de €' (X, = ® Qf) et toute section v de
€' (X, n*®Qc), ona
d (u,v) = (du,v) +(=1"(u,dv).

On appelle complexe de Dolbeault de n la suite d’espaces vectoriels et
d’applications linéaires

0 - % (X, 1)L 6° (X, 7®Q%) L5 . L1 47 (X, n®Q%") > 0

ol d"" désigne la restriction de d” & € (X, n ® 2°"). On appelle groupes de
cohomologie de 7 les espaces vectoriels

H' (X,n) = Kerd”"/[Imd"~*.
La différentielle d” diminuant les supports, on a une deuxi¢me suite

0> @2 (X,n) 2 g2 (X, n®@Q%) e, | 41, g2 (X, 1®Q%") - 0

et des groupes de cohomologie
H.(X,n) = Kerd."/Imd,""*.
Le noyau de d"° s’identifie aux sections holomorphes de #. On a donc

H° (X, 7) = 0(X, )

[ —————




—
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et si X est ouverte, ’espace vectoriel HY (X, n) est nul (principe du prolon-
gement analytique).

On prendra garde de ne pas confondre le groupe de cohomologie de
de Rham H" (X, C) de la variété¢ différentielle X R (chap. 0, §4) et le
groupe de cohomologie de Dolbeault H" (X, C,) du fibré produit C,.

§ 3. FONCTIONS MEROMORPHES

Dans tout ce paragraphe, on désigne par X une variété holomorphe et
par n un fibré vectoriel holomorphe sur X.

LEMME 1. On suppose X connexe et [’on désigne par f une fonction
holomorphe non identiquement nulle sur X. L’ensemble V défini par

V={xeX|f(x) #0)

est alors connexe et dense dans X.

11 suffit de montrer que tout point x, de X posséde un voisinage U tel que
V n U soit connexe et dense dans U.

On peut donc supposer que X est un ensemble ouvert de C" et, par un
changement linéaire affine de coordonnées, on peut également supposer
que x, est I’origine et que la fonction partielle £ (0, ..., 0, z,) n’est pas iden-
tiquement nulle au voisinage de 0. Désignons par D” un disque fermé de
centre 0 dans C tel que f(0, ..., 0, z,) soit holomorphe au voisinage de D"
et ne s’annule pas sur dD” (§ 1, théoréme 1, corollaire 3). Par continuité,
il existe un nombre réel ¢ strictement positif tel que f soit holomorphe au
voisinage de D’ X D” et ne s’annule pas sur D’ X 9D”, en désignant par
D' le polydisque de C"~! défini par

D' = {(z4,...,2,-9)€C"™ | max |z;]|<e}.
l=j=n—-1
L’ensemble V' n (D' % D") est connexe et dense dans D’ X D" comme il
résulte aussitdt de la formule

V(D' xD")
= (D'x 0D U U {(z4,..0r2,) €C"|f(zy,...,2,) # 0}.

(215+.-s2pn~1)eD’

Pour tout point x de X, ’anneau @, des germes en x de fonctions holo-
morphes est intégre (§ 1, proposition 1, corollaire 2) et I’ensemble 0 (n),
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