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Une utilisation répétée de l'argument développé au corollaire 4 du théorème

1 montre qu'il existe pour tout polydisque D relativement compact
dans U et pour tout multi-indice a une constante ca D telle que

d\Af
dz«i < c„ I L\K

oil K est un voisinage compact de l'adhérence de D dans U. L'assertion en
résulte aussitôt.

§ 2. Variétés holomorphes

Toutes les cartes de variétés topologiques considérées désormais prennent
leurs valeurs dans des espaces numériques complexes.

Soit X une variété topologique.
On dit que deux cartes de X sont hoîomorphiquement compatibles si les

changements de cartes sont holomorphes.
On appelle atlas holomorphe de X tout ensemble de cartes deux à deux

hoîomorphiquement compatibles dont les domaines recouvrent X. On dit

que deux atlas holomorphes sont compatibles si leur réunion est un atlas

holomorphe. On vérifie aisément que cette relation est une relation
d'équivalence. Ses classes s'appellent les structures holomorphes de X.

On appelle variété holomorphe toute variété topologique munie d'une

structure holomorphe.
Soit X une variété holomorphe.
On appelle (abusivement) atlas de X tout atlas holomorphe appartenant

à la structure holomorphe de X et carte de X toute carte appartenant
à un atlas de X.

Soit x un point de X. Toutes les cartes de X dont le domaine contient x
prennent leurs valeurs dans le même espace numérique complexe. La dimension

de cet espace s'appelle la dimension de X au point x et se désigne par
dimx (X). La fonction dim (X) est localement constante. On dit que X
est de dimension pure si elle est constante.

On appelle courbe holomorphe (resp. surface holomorphe) toute variété

holomorphe de dimension pure 1 (resp. 2).

Les changements de cartes étant en particulier des difféomorphismes,
la variété topologique X se trouve naturellement munie d'une structure
différentielle que l'on dit sous-jacente à X. Pour éviter des confusions, on
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désigne quelquefois par XR la variété différentielle obtenue en munissant

X de la structure sous-jacente.

Le jacobien des changements de cartes étant toujours positif, la variété

différentielle XR est orientable et munie d'une orientation naturelle.

On dit qu'une application de X dans un espace vectoriel complexe E
de dimension finie est holomorphe s'il en est ainsi de son expression dans

toute carte de X (ou ce qui revient au même dans toute carte d'un atlas de

X). On désigne par (9 (X, E) l'ensemble de ces applications. Si E est égal à

C, on utilise aussi la notation 0 (X).
Notons que (9 (X) est une sous-algèbre de ^°° (X, C) et (9 (X, E) un

sous-$ (X)-moduïe de #°° (X, E). De plus, les topologies induites par
(X, E) et L{oc (X, E) sur (9 (X, E) coïncident (§ 1, proposition 1, corollaire

3). Pour cette topologie, l'espace (9 (X, E) est complet. C'est un espace
de Fréchet si X est dénombrable à l'infini.

On dit qu'une application continue u de X dans une variété holomorphe
Y est holomorphe s'il en est ainsi de son expression dans tout couple de

cartes. On désigne par (9 (X, Y) l'ensemble de ces applications.
On dit que l'application u est un isomorphisme si elle est bijective et si

u et u~1 sont holomorphes.
Les variétés holomorphes, les applications holomorphes et leur composition

forment une catégorie. Le lemme suivant est une conséquence immédiate

des définitions.

Lemme 1. Pour qu 'une application continue u de X dans Y soit
holomorphe, ilfaut et il suffit que l'application u* envoie (9 (V) dans (9 (u~1 (V))
pour tout ensemble ouvert V de Y.

Les exemples donnés au paragraphe 1 du chapitre 0 fournissent mutatis
mutandis des exemples de variétés holomorphes. En particulier, pour tout
entier naturel n, on construit comme dans l'exemple 5 Yespace projectif
complexe Pn de dimension n.

Soit X une variété holomorphe et soit n une application de but X.
On dit que deux cartes complexes de n sont holomorphiquement compatibles

si la transition est holomorphe.
On appelle atlas holomorphe de n tout ensemble de cartes complexes

deux à deux holomorphiquement compatibles dont les domaines recouvrent
X. On dit que deux atlas holomorphes sont compatibles si leur réunion
est un atlas holomorphe. On vérifie aisément que cette relation est une relation

d'équivalence. Ses classes s'appellent les structures vectorielles
holomorphes de n.



— 196 —

On appelle fibré vectoriel holomorphe sur X toute application de but X
munie d'une structure vectorielle holomorphe.

Soit il un fibré vectoriel holomorphe sur X.
On appelle (abusivement) atlas de n tout atlas holomorphe appartenant

à la structure vectorielle holomorphe de n et carte de tz toute carte appartenant

à un atlas de tz.

On notera que la source % (n) de n est naturellement munie d'une structure

holomorphe (chap. 0, § 2).
Les transitions étant en particulier indéfiniment dérivables, l'application

n est de manière naturelle un fibré vectoriel complexe sur XR. Pour éviter
des confusions, nous dirons qu'un fibré vectoriel complexe sur XR est un
fibré vectoriel différentiel sur X.

On dit qu'une section de tz est holomorphe s'il en est ainsi de son expression

dans toute carte de tz (ou ce qui revient au même dans toute carte d'un
atlas de n ou encore si c'est une application holomorphe de X dans t (n)).
On désigne par G (X, tz) l'ensemble de ces sections.

Remarquons que G (X, tz) est un sous-0 (X)-module de ^?°° (X, tz). De

plus, les topologies induites par ^°° (X, tz) et Lfoc (X, tz) sur G (X, tz)

coïncident. Pour cette topologie, l'espace G (X, tz) est complet. C'est un

espace de Fréchet si X est dénombrable à l'infini.
Si p est un second fibré vectoriel holomorphe sur X, on désigne par

G (:tz, p) l'ensemble des morphismes holomorphes de tz dans p (i.e. les

applications holomorphes w de t (tz) dans t (p) telles que

p - u — tz

qui induisent des applications C-linéaires sur les fibres).
Les exemples et les constructions donnés au paragraphe 2 du chapitre 0

fournissent mutatis mutandis des exemples et des constructions de fibrés
vectoriels holomorphes. En particulier, si tz et p sont des fibrés vectoriels
holomorphes sur X, il en est de même des fibrés vectoriels tz ® p, tz 0 p, n* et An.

Soit °U un recouvrement ouvert de X. On dit qu'un cocycle de rang p
subordonné à est holomorphe si les applications qui le composent sont

holomorphes. On définit de la même manière la relation de cobordance

entre cocycles holomorphes, d'où un ensemble Pic(2f, G(p; C)) dont les

éléments s'appellent les fibrés principaux holomorphes de groupe structural
G (p;C) sur X.

Les classes d'isomorphie de fibrés vectoriels holomorphes de rang p
sont en correspondance biunivoque avec les fibrés principaux holomorphes
de groupe structural G(p; C).
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On prendra garde de distinguer Pic (X, G (p ; C)) et Pic (XR, G (p ; C)) :

un fibré vectoriel holomorphe différentiablement trivial n'est pas
nécessairement holomorphiquement trivial (chap. IV, § 7).

Soit X une variété holomorphe de dimension pure n.

Le fibré cotangent complexe Qq à XR est un fibré vectoriel différentiel

de rang 2n sur X. Pour toute carte (j) de domaine U dans X et pour tout
point x de U, on a un isomorphisme C-linéaire

: ®c,x HomR(C", C).

(chap. 0, § 3, lemme 1). Il résulte de la définition même des applications
holomorphes que les sous-espaces £2*'° et £2°'* de Qq x images réciproques par
&x,4> des sous-espaces Homc (Cn, C) et Hom^ (Cn, C) de HomR (Cn, C)

sont indépendants de <j).

Pour toute fonction/de #k (X, C), avec k au moins égal à 1, on définit

df df df df
des fonctions —— —— de (U, C) en posant

dfa d<t>n d<j>x d(j)n

df_ 1/3/ _ df\ ^ _3/ l (dL + ilf\
d$j 2 \d(j)j

1

d<t>])
C

d$j 2\d4>'j
1

dfi)
où <j)j et <f>"j désignent les parties réelle et imaginaire de 4>j. Le lemme suivant
est une conséquence immédiate de ces définitions (chap. 0, § 3, lemme 5).

Lemme 2. Pour toute carte (j) de X et tout point x du domaine de

les différentielles des germes 0lj3C9 (j)n}X (resp. <filx, (ßn x) forment
une base de £2*'° (resp. £2°'1y). Pour tout germe f de Alx, on a

dfI fjr (*) + £ 22. (x) d$j,x.
l^j^n é<pj l^j^n VÇj

Soit n la projection canonique de JJ £2*'° sur X et soient (j) et \/j des
xeX

cartes de domaines respectifs U et V dans X. Le lemme 2 montre que les

applications

]>':n-l(U)-+UxH.omc(C,,Q et : (F) -+ x Homc(C", C)

définies par

(x, y)(x, sxj (y)')et i}' (x, y) (x, f (y)')

(on utilise les notations du paragraphe 1) sont des cartes complexes de n.
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Ces cartes sont holomorphiquement compatibles, la transition est donnée

par la formule

g(x) (0(x))"1

où y désigne le changement de cartes de 0 dans \j/.

Le fibré vectoriel holomorphe ainsi défini se désigne par Q1,0. On

l'appelle parfois le fibré cotangent holomorphe à X.
Soit p la projection canonique de ]J ß®'1 sur X. Le lemme 2 montre

que les applications xeX

f : tT 1 (U) -* U x Homc(Cn, C) et fy* : tT 1 (F) -> V x Homc(CB, C)

définies par

<t>" (x, y)(x, £Xj0 (y)") et (x, y) (x, 00")

sont des cartes complexes de p. Ces cartes sont (différentiablement) compatibles,

la transition est donnée par la formule

g (x)'Dy(0(x))_1
Le fibré vectoriel différentiel ainsi défini se désigne par Q0'1. Notons que
l'on a un isomorphisme canonique

Qlc ß1'0 © ß0'1

Pour tout couple (p, q) d'entiers, on pose

Q APQU° © AqQ°'x

On dit qu'une forme différentielle est homogène de bidegré (p, q) si elle

prend ses valeurs dans Qp,q. La restriction à C de toute forme différentielle

homogène de bidegré (/?, q) s'écrit d'une manière et d'une seule

11 I u — X uj,k A dtpK
JeSp(n) KçSq^n)

où l'on a posé

d(f>j d(f)jl a a d(j)jp et d(f>K d(/)kl a a d(j)kq.

Lemme 3. La différentielle de toute forme de (X, Qp,q) appartient à

V°(X, Qp+1>q) © V0(X9 Qp'q+i).

On peut supposer que X est un ensemble ouvert de C". L'assertion résulte

alors des définitions.
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Pour toute forme différentielle u de {X, Qp,q), on désigne par d'u

(resp. d"u) la composante homogène de bidegré {p +1, q) (resp. (p, q+ 1)) de

du. Le lemme suivant est laissé en exercice au lecteur (chap. 0, § 3, théorème

1).

Lemme 4. Pour qu 'une forme différentielle u de ^ {X, Qp,°) soit

holomorphe, il faut et il suffit que d"u soit nul.

Pour toute forme différentielle u de 2 (X, Qc), on a

à' {d'u) 0 d'{d 'u) + d
"

{d'u) =0 d {d u) 0

Pour tout couple {u, v) de formes différentielles dans Y?1 {X, Qc), arec u

homogène de degré r, on a

d' {u av) — d'u a v + — I)'' u a d'v

et
d" {u av) d'u av + — If u a d'v

En particulier, l'application d" de Y}1 {X, Qc) dans Y0 {X, Qc) est (9 (X)-
linéaire.

Soit h une application holomorphe de X dans une variété holomorphe Y
de dimension pure m. Désignons par <f> une carte de domaine U dans X
et par i// une carte de domaine Vcontenant h {U) dans Y. On a par définition

h* (#,.) d OA j -h)£
l^k^n VVk

et ~ ~
v-, diéi'h) -h* (#y) d Wj h)x -XX

1 OÇk

pour tout entier j compris entre 1 et m. On en déduit aisément que l'image
réciproque par h d'une forme homogène de bidegré (p, q) est une forme
homogène de bidegré {p, q) et que l'on a

d'h*{u) h* {d'u) et d 'h*{u) — h* {d 'u)

pour toute forme différentielle u de Y1 {Y, Qc).
Soit n un fibré vectoriel holomorphe de rang pur m sur X et soient <P

et W des cartes de n de domaines respectifs U et V. Pour toute section s de
Y1 {X, tzQQ), on a

s0 {uu ...,um) et (vu ...vm)

où les Uj et les v j sont des formes différentielles homogènes de bidegré
{p, q). Pour tout entier j compris entre 1 et m, on a
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VJ Z djkUk
l^k^m

°ù (Ojk)i^j,k^m désigne la transition de # dans W. On en déduit que

d"vj X
l^k^m

Autrement dit, les m-uples (d"uu ...9d"um) et (d"vu ...,d"vm) se recollent en

une section de (.X, n®Qp'q+1) que l'on désigne encore par d"s.
Le lemme suivant est une conséquence immédiate de cette définition

et du lemme 4.

Lemme 5. Pour qu 'une section s de ^ (X, n) soit holomorphe, ilfaut et

il suffit que d"s soit nul.

Pour toute section s de 2 (X, n®Qc), on a

d" (d"s) — 0

Pour toute forme différentielle u de <^1 (X, Qf) et toute section v de

^ (X, 7z®Qc), on a

d" (u av) d 'u a v + — 1Y u a d 'v

Pour toute section u de ^ (X, n (x) Qf) et toute section v de

^ (X, n* (x) £2C), on a
d"(u9v) (id"u,v) -f — l)r(m, d'v).

On appelle complexe de Dolbeault de n la suite d'espaces vectoriels et

d'applications linéaires

où d"r désigne la restriction de d" à #°° (X, n®Q0,r). On appelle groupes de

cohomologie de n les espaces vectoriels

Hr (X, 7t) Ker d,,r/lm d'"-'1

La différentielle d" diminuant les supports, on a une deuxième suite

0 <"% (X,Jt) -&-+ (X, n 0 Q0'1) ^ (x, ?r 0 O0-") 0

et des groupes de cohomologie

Hrc(X,n) Ker d'cr~1

Le noyau de d"° s'identifie aux sections holomorphes de n. On a donc

H°CX» G(X,n)
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et si X est ouverte, l'espace vectoriel H° (X, n) est nul (principe du prolongement

analytique).

On prendra garde de ne pas confondre le groupe de cohomologie de

de Rham W (X, C) de la variété différentielle XR (chap. 0, § 4) et le

groupe de cohomologie de Dolbeault Hr (X, C^) du fibré produit C^.

§ 3. Fonctions méromorphes

Dans tout ce paragraphe, on désigne par X une variété holomorphe et

par n un fibré vectoriel holomorphe sur X.

Lemme 1. On suppose X connexe et l'on désigne par f une fonction
holomorphe non identiquement nulle sur X. L'ensemble V défini par

V= {xeXlf(x) #0}
est alors connexe et dense dans X.

Il suffit de montrer que tout point x0 de X possède un voisinage U tel que
V n U soit connexe et dense dans U.

On peut donc supposer que X est un ensemble ouvert de C" et, par un
changement linéaire affine de coordonnées, on peut également supposer
que x0 est l'origine et que la fonction partielle/(0, 0, z„) n'est pas
identiquement nulle au voisinage de 0. Désignons par D" un disque fermé de

centre 0 dans C tel que /(0, 0, zn) soit holomorphe au voisinage de D"
et ne s'annule pas sur 3D" (§ 1, théorème 1, corollaire 3). Par continuité,
il existe un nombre réel s strictement positif tel que / soit holomorphe au
voisinage de D' x D" et ne s'annule pas sur D' x 3D", en désignant par
D' le polydisque de C"-1 défini par

D'{(zl5z„-i) e C"-1 | max |z; |<e}.
L'ensemble V n (D' x Z>") est connexe et dense dans D' x D" comme il
résulte aussitôt de la formule

Fn(D' xD
(D'x<3D")u U {(zj,zz„) # 0}

Pour tout point x de X, l'anneau &x des germes en x de fonctions
holomorphes est intègre (§ 1, proposition 1, corollaire 2) et l'ensemble 6 (n)x
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