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CHAPITRE PREMIER

VARIETES HOLOMORPHES

§ 1. FONCTIONS HOLOMORPHES

Soient E et F deux espaces vectoriels complexes de dimension finie.
Pour toute application R-linéaire # de E dans F, on définit deux applications
u' et u” en posant

(u(®) —iu(n) et u () = —;—(u () + iu(it)).

NSRS

u' () =

On vérifie aisément que la premiére est C-linéaire et la seconde C-anti-
linéaire. On obtient ainsi une décomposition canonique

Hom y (E, F) = Hom (E,F) @ Hom¢(E, F).

Soit U un ensemble ouvert de E. On dit qu’une application f de U dans
F est holomorphe si elle est contin{iment dérivable et si sa dérivée en tout
point est C-linéaire. Il revient au méme de dire que (D f)” est nulle ou
encore que (D f) est égale & D f. On désigne par O (U, F) 'ensemble des
applications holomorphes de U dans F. Si F est égal a C, on utilise aussi la
notation O (U).

" Notons que O (U) est une sous-algébre de ¢* (U, C) et 0. (U, F) un

sous-0 (U)-module fermé de %' (U, F).

Le lemme suivant est une conséquence immeédiate de cette définition
(voir aussi [2], chap. VIII).

LeMME 1. (1) La composée de deux applications holomorphes est holo-
morphe.

(2) L’application réciproque d’un difféomorphisme holomorphe est holo-
morphe.

(3) Siune fonction holomorphe posséde un logarithme, ce logarithme est
holomorphe. |
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On identifie désormais R?*" & C" au moyen de 'isomorphisme R-lin€aire
défini par
/1()(?1, ooy Xy Vi oo yn) = (X1 FiYises Xy +iYn)
et

1 1 _ 1 _ 1 _
ANz, 000 2,) = (E(z1 +Zy), ""E(Z"_[—Z")’Ei(zl -z, ...,E(z,,—z,,)>.

Les formules suivantes définissent des opérateurs différentiels sur C"

0 1/ 0 Y, . 0 1 /0 i 0 >
— B e | s e e C —— = < \ L—— -
0z;  2\0x; 0y; 0z; 2 (6» 0y;
Soit U un ensemble ouvert de C” et soit f une application continiment
dérivable de U dans E. On vérifie aisément que ’on a

0 . 0
o= % Loy o weyo- 3 Lo

1=j=n l=j=n aZj
pour tout point z de U et tout vecteur ¢ de C". En particulier, pour que f soit

0
holomorphe, il faut et il suffit que les fonctions é{i soient nulles (conditions
2j
de Cauchy-Riemann). Supposons que E soit ’espace numérique C™ et que

Papplication ( fi, ..., f,,) soit holomorphe. La matrice jacobienne de f est
donnée par la formule

(ofi off afi  ofi

0x,  0x, dx, ox,

Ofm  Ofw  Ofn 0 fom

0x 0x, x4 0x,
Jac(f) = i ; ) ,
ofi o ofi as
00X 0x, 0x, 0x,

ofy afn of,  of
[ axl axn 5x1 ax
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ou f ; et f '3 désignent les parties réelle et imaginaire de f;. En particulier,
si m est égal a n, le jacobien de f est donné par la formule

off afil2  |afi  as ]2

0%, 0x,, 0x, 0x,
e =| - | o+

0fr  Of. 0fn  Ofs

0% 0x,, 0%, 0x,,

Nous allons maintenant rappeler quelques propriétés des fonctions
holomorphes d’une variable.

THEOREME 1 (Cauchy). Désignons par Y une piece compacte de C,
par U un voisinage ouvert de Y et par f une fonction de %* (U, C). On

a pour tout point [ de Y,

1 d 1 0 d dz
f@=7ff@ Z+.ffuiii.

—(z
z—{ y 0Z z—_

La fonction

appartient 3 L (C, C). On en déduit que

z—{

Jaf()dZ/\dZ J af()dZ/\dZ

= lim
Y\D, 0z z—_

&0

z—{

ou D, désigne le disque de centre { et de rayon ¢. De plus, la fonction :
Z —

étant holomorphe sur C\{{ }, la formule de Stokes (chap. 0, § 4, théoréme 2)
montre que ’on a

aof dz A dZ dz
J = (2) = lim f (Z) - | f(&—.
zZ— g0 oY z—{
On conclut en remarquant que
: dz S 0 .
lim f(2) = lim i fl+ee”)dO = 2inf(0).
e—>0 J 0D, Z— &0 0

COROLLAIRE 1. Soit f une fonction holomofphe sur un ensemble ouvert U
de C. Pour tout point { de U, il existe une suite (a),. de nombres
complexes telle que la série

Z a (z _C)k

keN
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converge uniformément vers f sur tout disque D de centre { relativement
compact dans U. En particulier, la fonction f appartient a € (U, C) et

['on a
o f k! dz o~ f
f\k(C)—_;J‘ f()( )k+l et 6§k=0
pour tout entier naturel k.
Pour tout point w de D, la série
v (w0
ren (2 =07
converge uniformément sur 0D vers la fonction . La formule de Cauchy

Z—W
montre alors que 'on a

1 d
F(w) = ff(z) = ¥ =D j S g i

keN C)k i

ce qui démontre I’assertion.

COROLLAIRE 2 (Principe du prolongement analytique). Soit f une fonc-
tion holomorphe sur un ensemble ouvert connexe U de C. Les conditions
suivantes sont équivalentes :

(1) La fonction f est identiquement nulle.
(2) 1l existe un point de U o le germe de f est nul.

(3) 1l existe un point de U ou toutes les dérivées de f sont nulles.

En particulier, pour tout point z de C, ['anneau 0, des germes au
point z de fonctions holomorphes est intégre.

COROLLAIRE 3. Soit [ wune fonction holomorphe sur un ensemble ouvert
connexe U de C. On suppose que [ n’est pas identiquement nulle. Pour
tout point { de U, il existe un entier naturel k et une fonction holomorphe g
sur U tels que

f(2) =(z—-0Fg(z) et g #0.

De plus, I’entier k et la fonction g sont uniquement déterminés par ces
conditions. En particulier, pour tout point z de C, [’anneau 0, est un
anneau de valuation discréte 1).

1) Ceci signifie que (0, est principal et qu’il posséde un unique idéal premier non nul.

I’Enseignement mathém., t. XXI, fasc. 2-3-4. 13
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COROLLAIRE 4 (Weierstrass). Soit U un ensemble ouvert de C. Les
topologies induites sur O (U) par L. (U, C) et € (U,C) coincident.

Soit K un ensemble compact de U et soit « une fonction de €% (U, R)
¢gale a 1 au voisinage de K. Pour toute fonction holomorphe f sur U,

tout entier naturel £ et tout point { de K, la formule de Cauchy appliquée
a la fonction o f montre que 'on a

1 d dz
O = — f(Z)—(Z) i ACZ
et
akf (—l)kk' dz A dZ

o ; . " : .
Comme T est nulle au voisinage de K, on en déduit qu’il existe une cons-
z

tante ¢, , telle que

< Cok Hf“ L1, supp («)
K

ks
i

L’assertion en découle aussitot.

CoroLLAIRE 5 (Liouville). Toute fonction holomorphe bornée sur C est
constante.
Soit f une fonction holomorphe sur C. Pour tout entier naturel k et tout

nombre réel r, on a
akf
( ) = __Jv f( ) k+1 .

o*f

On en déduit que

rk

o) <

Si f est bornée et k strictement positif, ceci implique que o (0) est nul,
z

d’ou ’assertion.

CoROLLAIRE 6 (Laurent). Soient r, r, et r, des nombres réels vérifiant

les conditions
0<r,<r<r,.

On désigne par C la couronne définie par

={zeClry<|z|<ry}
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et par D le disque de centre 0 et de rayon r. Pour toute fonction holo-
morphe f sur C, il existe une suite (a,)iz de nombres complexes telle que

la serie
Y ooa
keZ.

converge uniformément vers | sur toute partie compacte de C. On a pour
tout entier relatif k,

1 iz 1£] oo
a, = 57; J‘an(Z) Zk+1 et l ay l < I"k .

Pour tout entier &, la forme différentielle f(z) est fermée. On en

Zk+1

déduit que son intégrale sur 0D est indépendante de r.
Introduisons deux nombres réels p, et p, vérifiant les relations

rp <p1 <pz2<nr
et désignons par K la couronne définie par
K={zeClp; <|z|<p,}.
Il résulte de la formule de Cauchy que I'on a pour tout point { de 12,

1 dz 1 dz 1 dz
Q=5 LKf(z) = Lbzf(@ " ﬁﬁmm —

ou D, et D, désignent les disques de centre O et de rayons p; et p, respec-
tivement. Les séries

Ck Zk
+1

ot - Y
k+1 k
Z keNC

)

keN

convergent uniformément vers la fonction

sur 0D, et 0D, respecti-

Z —
vement. On a par conséquent
1 dz 1 dz
J@Q = C"a—f f(2) =5 + ), @D —
kEZN 2im ) op, gl kEZN 2im ale(Z) z K

ce qui démontre 1’assertion.

CoOROLLAIRE 7 (Weierstrass). Soit D un disque de centre 0 et de rayon r
dans C et soit [ une fonction holomorphe sur D\{0}. On désigne par
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(a)iez les coefficients du développement de Laurent de f a [’origine et par
N [D’ensemble

N ={keZ|lk<0 e a #0}.

(1) Pour que N soit vide, il faut et il suffit que f soit bornée au voi-
sinage de [’origine. La fonction f se prolonge alors en une fonction holomorphe
sur D.

(2) Pour que N soit fini et non vide, il faut et il suffit que la fonction

— soit bornée au voisinage de [’origine.

(3) Pour que N soit infini, il faut et il suffit que l'image de D soit
dense dans C.

Pour tout nombre réel p strictement compris entre O et 7, on a

lax]l <p™" sup [f(2)].

lz]=p

La premiére assertion en résulte aussitot.
Supposons N fini et non vide et désignons par k, sa borne inférieure.
La fonction g définie par

g(z) = z7"0f(2)

se prolonge en une fonction holomorphe sur D ne s’annulant pas a [’origine,
ce qui démontre la deuxieme assertion.

Supposons N infini et montrons par ’absurde que I’'image de f est dense.
En effet, s’il existe un disque fermé de centre { dans C ne rencontrant pas
f (D), la fonction g définie sur D\{0} par

demeure bornée au voisinage de I’origine ce qui est absurde en vertu de ce
qui précede.

Soit 7 = (ry, ..., r,) un élément de (R3)" et soit { = ({4, ..., {,) un point
de C". On appelle polydisque de centre ( et de rayon r 1’ensemble défini

par
D, 1) ={(2¢,.0r29)€C"| |z; = ;| <rjpour 1 <j<n}.

On appelle bord distingué du polydisque D ({,r) 1’ensemble
aOD(C>r) = {(le -“:Zn)ecnl IZj - CJ' = Fr; pour 1 <] <n} .
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PROPOSITION 1 (Cauchy). Soit f une fonction holomorphe au voisinage de
I’adhérence d’un polydisque D de C". Pour tout point { de D, ona

10 = (57) f fz) AR A
- (21 =0 o (za =)
C’est une conséquence immédiate du théoréme 1 et du théoréme de
Fubini.

COROLLAIRE 1. Soit f une fonction holomorphe sur un ensemble ouvert U
de C". Pour tout point { de U, il existe une famille (a,)qenn de nombres
complexes telle que la série

Z Ay (Z - C)a 1)

asNm

converge uniformément vers f sur tout polydisque D de centre { relativement
compact dans U. En particulier, la fonctzon f appartient a € (U, C) et
['on a

LN S VY S
0z* (217'5)"5 (

Zl—gl)al-*—l “'(Zn_Cn)a’1+l _—62

pour tout multi-indice o.
La démonstration est analogue & celle du corollaire 1 du théoréme 1.

CoroOLLAIRE 2 (Principe du prolongement analytique). Soit f une fonc-
tion holomorphe sur un ensemble ouvert connexe U de C". Les conditions
suivantes sont équivalentes :

(1) La fonction f est identiquement nulle.
(2) 1l existe un point de U ou le germe de f est nul.
(3) Il existe un point de U ou toutes les dérivées de f sont nulles.

En particulier, pour tout point z de C", ['anneau 0, des germes au
point z de fonctions holomorphes est integre.

COROLLAIRE 3 (Weierstrass). Soit U un ensemble ouvert de C". Les
topologies induites sur O (U) par L. (U, C) et €* (U, C) coincident.

1) Pour tout multi-indice « = («y, ..., a,) et tout point z = (z, ..., z,) de C", on pose
lal =a1+...+an a!:ocl!...cxn! Za:-_-Z%l...Zin
ol*l ol| ole| ole|
dz%  9z%1..0z%n 0z*  09z%1...0z%
1 n 1 n
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Une utilisation répétée de I’argument développé au corollaire 4 du théo-
réeme 1 montre qu’il existe pour tout polydisque D relativement compact
dans U et pour tout multi-indice « une constante c, , telle que

Ex

a a
0z{1 ... Oz |

< Cyp ”f” L1 K

D

ou K est un voisinage compact de ’adhérence de D dans U. L’assertion en
résulte aussitot.

§ 2. VARIETES HOLOMORPHES

Toutes les cartes de variétés topologiques considérées désormais prennent
leurs valeurs dans des espaces numériques complexes.

Soit X une variété topologique.

On dit que deux cartes de X sont holomorphiquement compatibles si les
changements de cartes sont holomorphes.

On appelle atlas holomorphe de X tout ensemble de cartes deux a deux
holomorphiquement compatibles dont les domaines recouvrent X. On dit
que deux atlas holomorphes sont compatibles st leur réunion est un atlas
holomorphe. On vérifie aisément que cette relation est une relation d’équi-
valence. Ses classes s’appellent les structures holomorphes de X.

On appelle variété holomorphe toute variété topologique munie d’une
structure holomorphe.

Soit X une variété holomorphe.

On appelle (abusivement) atlas de X tout atlas holomorphe appar-
tenant a la structure holomorphe de X et carte de X toute carte appartenant
a un atlas de X. .

Soit x un point de X. Toutes les cartes de X dont le domaine contient x
prennent leurs valeurs dans le méme espace numérique complexe. La dimen-
sion de cet espace s’appelle la dimension de X au point x et se désigne par
dim, (X). La fonction dim (X) est localement constante. On dit que X
est de dimension pure si elle est constante.

On appelle courbe holomorphe (resp. surface holomorphe) toute variété
holomorphe de dimension pure 1 (resp. 2).

Les changements de cartes étant en particulier des difféomorphismes,
la variété topologique X se trouve naturellement munie d’une structure
différentielle que I’on dit sous-jacente @ X. Pour éviter des confusions, on
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