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Chapitre premier

VARIÉTÉS HOLOMORPHES

§ 1. Fonctions holomorphes

Soient E zt F deux espaces vectoriels complexes de dimension finie.
Pour toute application R-linéaire u de E dans F, on définit deux applications
u' et u" en posant

u' (t) — (u (t) — lu (it)) et u' (t) — (11 (0 + lu (it))

On vérifie aisément que la première est C-linéaire et la seconde C-anti-
linéaire. On obtient ainsi une décomposition canonique

Horn R (E, F) Horn c (E, F) © Horn q (.E, F).

Soit U un ensemble ouvert de E. On dit qu'une application/ de U dans

F est holomorphe si elle est continûment dérivable et si sa dérivée en tout
point est C-linéaire. Il revient au même de dire que (Df )" est nulle ou
encore que (D/)' est égale à fi/. On désigne par (9 (U, F) l'ensemble des

applications holomorphes de U dans F. Si F est égal à C, on utilise aussi la
notation (9 (U).

Notons que (9 (U) est une sous-algèbre de (U, C) et (9 (U, F) un
sous-$ (£/)-module fermé de ^ (U, F).

Le lemme suivant est une conséquence immédiate de cette définition

(voir aussi [2], chap. VIII).

Lemme 1. (1 La composée de deux applications holomorphes est

holomorphe.

(2) L'application réciproque d'un difféomorphisme holomorphe est

holomorphe.

(3) Si une fonction holomorphe possède un logarithme, ce logarithme est

holomorphe.
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On identifie désormais R2n à C" au moyen de l'isomorphisme R-linéaire

défini par
2(xlf *..,xn9yl9 jO (x± +iyl9 ...,xn + iyn)

et

X~1 (zx,..., z„) (zl+ zx),...,~(z„ + z„),7 (z1-, — - •

Les formules suivantes définissent des opérateurs différentiels sur Cn

5 1 f d d \ ô 1

"j ~ \~"VJ "SjJ "f/

d d
— 1 — et - I h i ——

dz; 2 V dx ; ôyj) dzj 2 \dxj ôyj

Soit U un ensemble ouvert de Cn et soit / une application continûment
dérivable de U dans E. On vérifie aisément que l'on a

(£>/(z))' (0 £ ~ (z) tj et (D/(z))" (0 X *7 (z)

pour tout point z de Î7 et tout vecteur t de C". En particulier, pour que/soit
3f

holomorphe, il faut et il suffit que les fonctions soient nulles (conditions
dzj

de Cauchy-Riemann). Supposons que E soit l'espace numérique Cm et que
l'application (/1?...,fm) soit holomorphe. La matrice jacobienne de / est

donnée par la formule

d/i _
dfi

_
3/T

_ _ _ôxxdxndxn

Jac (/)

dJk
_ ôJk.. 5fm

dxx ÔX„

3/r dJ±.. ÔJ±
dxx dxt dxn

<y:
_

dJk ^_frn Ôfm

ÛXi 8xn ôxl ÔXn
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oùf'j et f 'j désignent les parties réelle et imaginaire de fj. En particulier,
si m est égal à n,le jacobien de/ est donné par la formule

df[

jac (/)
ôx1 dx„

ÔXy ôxn

+

dfl
dx1

dJÏ
dx„

dl1 dA
ôx1 ôxn

Nous allons maintenant rappeler quelques propriétés des fonctions
holomorphes d'une variable.

Théorème 1 (Cauchy). Désignons par Y une pièce compacte de C,

par U un voisinage ouvert de Y et par f une fonction de Yß1 (U, C). On
o

a pour tout point £ de Y,

f(o
2in

sr \ dz 1

/ (z) } + TT.
df dz a dz

_ (z)
Y dz z — £

1
La fonction appartient à L\oc (C, C). On en déduit que

z — Ç

df dz a dz,
--- (z) lim

Y ÔZ Z — £ £->0

df dz a dz
•Xn(z)

Y\De VZ Z —L,

où Ds désigne le disque de centre £ et de rayon s. De plus, la fonction
1

z-Ç
étant holomorphe sur C\{£}, la formule de Stokes (chap. 0, § 4, théorème 2)

montre que l'on a

d f dz a dz
(z) lim

Y dz Z-C
dz

/(z) p
an, z~£

dz
/(z) -—p

ÔY Z — £

On conclut en remarquant que

limm J
J

dz
/(z) lim i

SDP Z—Ç, £->0

2n

f(C + sei9)de 2îtc/(0.

Corollaire 1. Soit f une fonction holomorphe sur un ensemble ouvert U
de C. Pour tout point £ de U\ il existe une suite (ak)keN de nombres

complexes telle que la série

E a*(z-0
fceN
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converge uniformément vers f sur tout disque D de centre £ relativement

compact dans U. En particulier, la fonction f appartient à ^°° (U, C) et

l'on a
dz

mdkf k

dz 2in (z-Ok
et

dzk
0

pour tout entier naturel k.

Pour tout point w de D, la série

I (w-0*
*sN (z-cr1

converge uniformément sur 3D vers la fonction -

montre alors que l'on a

-. La formule de Cauchy

/O) 2in
/O)

dz

z — w I (w-0*
keN 2in

/O)
dz

(z-Ok

ce qui démontre l'assertion.

Corollaire 2 (Principe du prolongement analytique). Soit f une fonction

holomorphe sur un ensemble ouvert connexe U de C. Les conditions

suivantes sont équivalentes :

(1) La fonction f est identiquement nulle.

(2) Il existe un point de U où le germe de f est nul.

(3) Il existe un point de U où toutes les dérivées de f sont nulles.

En particulier, pour tout point z de C, / 'anneau (9Z des germes au

point z de fonctions holomorphes est intègre.

Corollaire 3. Soit f une fonction holomorphe sur un ensemble ouvert

connexe U de C. On suppose que f n 'est pas identiquement nulle. Pour

tout point C de U, il existe un entier naturel k et une fonction holomorphe g
sur U tels que

/(z) (z-Cfg(z)etg(Q¥>0

De plus, / 'entier k et la fonction g sont uniquement déterminés par ces

conditions. En particulier, pour tout point z de C, l'anneau (9Z est un

anneau de valuation discrète 1).

x) Ceci signifie que ßz est principal et qu'il possède un unique idéal premier non nul.

L'Enseignement mathém., t. XXI. fasc. 2-3-4. 13
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Corollaire 4 (Weierstrass). Soit U un ensemble ouvert de C. Les

topologies induites sur (9 (U) par L{oc (U, C) et (U, C) coïncident.

Soit K un ensemble compact de U et soit a une fonction de ^ (£/, R)
égale à 1 au voisinage de K. Pour toute fonction holomorphe / sur U,

o

tout entier naturel k et tout point £ de K, la formule de Cauchy appliquée
à la fonction af montre que l'on a

m i

et

dz1
k(0

2in

(-1fk\
2in

dadz a dz
/(z) -rr (z)

ÔZ

dz a dzdoc

5a
Comme — est nulle au voisinage de K> on en déduit qu'il existe une cons-

dz

tante ca k telle que
dkf
dzk

L'assertion en découle aussitôt.

< c. I Ll, supp (a) •

Corollaire 5 (Liouville). Toute fonction holomorphe bornée sur C est

constante.

Soit/une fonction holomorphe sur C. Pour tout entier naturel k et tout
nombre réel r, on a

dkf k
3?<°> 2in

dz
/(*) jTFI

On en déduit que

dz',(0) <

5Dr

fc! II
l|J>r

Ôk/y
Si / est bornée et k strictement positif, ceci implique que (0) est nul,

d'où l'assertion.

Corollaire 6 (Laurent). Soient r, r1 et r2 des nombres réels vérifiant
les conditions

0 < rt < r < r2

On désigne par C la couronne définie par

C {z eC\r1 < \ z \ < r2]
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et par D le disque de centre 0 et de rayon r. Pour toute fonction
holomorphe f sur C, il existe une suite (ak)kez de nombres complexes telle que

la série

Z akzk
keZ

converge uniformément vers f sur toute partie compacte de C. On a pour
tout entier relatif k,

1

ak —
2in

^ \ „ \ ^ 11^11 ÔD

f{f) k+1 et I a/c I < Jlç
dD Z r

dz
Pour tout entier k, la forme différentielle /(z) est fermée. On en

déduit que son intégrale sur 3D est indépendante de r.
Introduisons deux nombres réels p1 et p2 vérifiant les relations

r± < Pi < Pi < r2

et désignons par K la couronne définie par

£ {zeC|Pl<|z|<p2}.
o

Il résulte de la formule de Cauchy que l'on a pour tout point £ de K,

dz
/(o J_ f uzzh.— f — f

2râJaK z-C 2in JeD2 m
JdDi Z — Ç

où Dx et D2 désignent les disques de centre 0 et de rayons pl et p2
respectivement. Les séries

zk
Z k+i ~~ Z jk+ï

keN z iceN ±

convergent uniformément vers la fonction sur dD2 et dDl respecti-
z-Ç

vement. On a par conséquent

m - Z f /w-£r + z r«"»2- f
keN ZM JdÜ2 Z fcelS" 2lTl Jqj)^ Z

ce qui démontre l'assertion.

Corollaire 7 (Weierstrass). Soit D un disque de centre 0 et de rayon r
dans C et soit f une fonction holomorphe sur D\{0}. On désigne par
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(ak)kez les coefficients du développement de Laurent de f à l'origine et par
N l'ensemble

N — {keZ\ k <0 et ak ^ 0 }

(1) Pour que N soit vide, il faut et il suffit que f soit bornée au
voisinage de l'origine. Lafonction f se prolonge alors en une fonction holomorphe
sur D.

(2) Pour que N soit fini et non vide, il faut et il suffit que la fonction
1
— soit bornée au voisinage de l'origine.

(3) Pour que N soit infini, il faut et il suffit que l'image de D soit
dense dans C.

Pour tout nombre réel p strictement compris entre 0 et r, on a

| ak\<p~k sup |/(z) |

\z\ p

La première assertion en résulte aussitôt.

Supposons N fini et non vide et désignons par k0 sa borne inférieure.
La fonction g définie par

g0) z~k°f(z)

se prolonge en une fonction holomorphe sur D ne s'annulant pas à l'origine,
ce qui démontre la deuxième assertion.

Supposons N infini et montrons par l'absurde que l'image de/ est dense.

En effet, s'il existe un disque fermé de centre £ dans C ne rencontrant pas

f(D), la fonction g définie sur D\{0} par

1

g (z)
/(z) - C

demeure bornée au voisinage de l'origine ce qui est absurde en vertu de ce

qui précède.

Soit r (rl5..., rn) un élément de (RÎ)M et soit £ (Ci? •••> O an point
de Cn. On appelle polydisque de centre C et de rayon r l'ensemble défini

par
D (C, r) { (zuz„)e C" | | z} Ç; | < pour 1 < < }

On appelle bord distingué du polydisque D (C, r) l'ensemble

d0D (C, r) {(z1;z„) e C" | \ ZI 0 pour 1 < }
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Proposition 1 (Cauchy). Soit f une fonction holomorphe au voisinage de

l'adhérence d'un polydisque D de Cn. Pour tout point £ de D, on a

/(o ;

*

2in

dzi a a dzn
f(z) ~

ôqd (zi "Ci) ...(X-Q
C'est une conséquence immédiate du théorème 1 et du théorème de

Fubini.

Corollaire 1. Soit f une fonction holomorphe sur un ensemble ouvert U
de Cn. Pour tout point £ de U, il existe une famille (aa)aeNn de nombres

complexes telle que la série

£ aa(z-**)
aeN

converge uniformément versf sur tout pD de centre relativement

compact dans U. En particulier,la fonction f appartient à (ê'y' (U, C) et

l'on a

5M/ 1L (Q
ôza

K J dz.a a dzn f
a„D/(Z) 6t "Sr" ~

pour tout multi-indice a.

La démonstration est analogue à celle du corollaire 1 du théorème 1.

Corollaire 2 (Principe du prolongement analytique). Soit f une fonction

holomorphe sur un ensemble ouvert connexe U de Cn. Les conditions
suivantes sont équivalentes :

(1 La fonction f est identiquement nulle.

(2) Il existe un point de U où le germe de f est nul.

(2) Il existe un point de U où toutes les dérivées de f sont nulles.

En particulier, pour tout point z de Cn, l'anneau (9Z des germes au
point z de fonctions holomorphes est intègre.

Corollaire 3 (Weierstrass). Soit U un ensemble ouvert de Cn. Les
topologies induites sur (9 (U) par L{oz (U, C) et ^°° (U, C) coïncident.

x) Pour tout multi-indice a (al5 a„) et tout point z (zl5 zn) de C", on pose
| a| =a1+..,-f an aî a1!...a„! za z*i...z*n
5lal ôlal ôlal ôlal
àza àzfi... dz an àza dzfi... dz anln ln
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Une utilisation répétée de l'argument développé au corollaire 4 du théorème

1 montre qu'il existe pour tout polydisque D relativement compact
dans U et pour tout multi-indice a une constante ca D telle que

d\Af
dz«i < c„ I L\K

oil K est un voisinage compact de l'adhérence de D dans U. L'assertion en
résulte aussitôt.

§ 2. Variétés holomorphes

Toutes les cartes de variétés topologiques considérées désormais prennent
leurs valeurs dans des espaces numériques complexes.

Soit X une variété topologique.
On dit que deux cartes de X sont hoîomorphiquement compatibles si les

changements de cartes sont holomorphes.
On appelle atlas holomorphe de X tout ensemble de cartes deux à deux

hoîomorphiquement compatibles dont les domaines recouvrent X. On dit

que deux atlas holomorphes sont compatibles si leur réunion est un atlas

holomorphe. On vérifie aisément que cette relation est une relation
d'équivalence. Ses classes s'appellent les structures holomorphes de X.

On appelle variété holomorphe toute variété topologique munie d'une

structure holomorphe.
Soit X une variété holomorphe.
On appelle (abusivement) atlas de X tout atlas holomorphe appartenant

à la structure holomorphe de X et carte de X toute carte appartenant
à un atlas de X.

Soit x un point de X. Toutes les cartes de X dont le domaine contient x
prennent leurs valeurs dans le même espace numérique complexe. La dimension

de cet espace s'appelle la dimension de X au point x et se désigne par
dimx (X). La fonction dim (X) est localement constante. On dit que X
est de dimension pure si elle est constante.

On appelle courbe holomorphe (resp. surface holomorphe) toute variété

holomorphe de dimension pure 1 (resp. 2).

Les changements de cartes étant en particulier des difféomorphismes,
la variété topologique X se trouve naturellement munie d'une structure
différentielle que l'on dit sous-jacente à X. Pour éviter des confusions, on
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désigne quelquefois par XR la variété différentielle obtenue en munissant

X de la structure sous-jacente.

Le jacobien des changements de cartes étant toujours positif, la variété

différentielle XR est orientable et munie d'une orientation naturelle.

On dit qu'une application de X dans un espace vectoriel complexe E
de dimension finie est holomorphe s'il en est ainsi de son expression dans

toute carte de X (ou ce qui revient au même dans toute carte d'un atlas de

X). On désigne par (9 (X, E) l'ensemble de ces applications. Si E est égal à

C, on utilise aussi la notation 0 (X).
Notons que (9 (X) est une sous-algèbre de ^°° (X, C) et (9 (X, E) un

sous-$ (X)-moduïe de #°° (X, E). De plus, les topologies induites par
(X, E) et L{oc (X, E) sur (9 (X, E) coïncident (§ 1, proposition 1, corollaire

3). Pour cette topologie, l'espace (9 (X, E) est complet. C'est un espace
de Fréchet si X est dénombrable à l'infini.

On dit qu'une application continue u de X dans une variété holomorphe
Y est holomorphe s'il en est ainsi de son expression dans tout couple de

cartes. On désigne par (9 (X, Y) l'ensemble de ces applications.
On dit que l'application u est un isomorphisme si elle est bijective et si

u et u~1 sont holomorphes.
Les variétés holomorphes, les applications holomorphes et leur composition

forment une catégorie. Le lemme suivant est une conséquence immédiate

des définitions.

Lemme 1. Pour qu 'une application continue u de X dans Y soit
holomorphe, ilfaut et il suffit que l'application u* envoie (9 (V) dans (9 (u~1 (V))
pour tout ensemble ouvert V de Y.

Les exemples donnés au paragraphe 1 du chapitre 0 fournissent mutatis
mutandis des exemples de variétés holomorphes. En particulier, pour tout
entier naturel n, on construit comme dans l'exemple 5 Yespace projectif
complexe Pn de dimension n.

Soit X une variété holomorphe et soit n une application de but X.
On dit que deux cartes complexes de n sont holomorphiquement compatibles

si la transition est holomorphe.
On appelle atlas holomorphe de n tout ensemble de cartes complexes

deux à deux holomorphiquement compatibles dont les domaines recouvrent
X. On dit que deux atlas holomorphes sont compatibles si leur réunion
est un atlas holomorphe. On vérifie aisément que cette relation est une relation

d'équivalence. Ses classes s'appellent les structures vectorielles
holomorphes de n.



— 196 —

On appelle fibré vectoriel holomorphe sur X toute application de but X
munie d'une structure vectorielle holomorphe.

Soit il un fibré vectoriel holomorphe sur X.
On appelle (abusivement) atlas de n tout atlas holomorphe appartenant

à la structure vectorielle holomorphe de n et carte de tz toute carte appartenant

à un atlas de tz.

On notera que la source % (n) de n est naturellement munie d'une structure

holomorphe (chap. 0, § 2).
Les transitions étant en particulier indéfiniment dérivables, l'application

n est de manière naturelle un fibré vectoriel complexe sur XR. Pour éviter
des confusions, nous dirons qu'un fibré vectoriel complexe sur XR est un
fibré vectoriel différentiel sur X.

On dit qu'une section de tz est holomorphe s'il en est ainsi de son expression

dans toute carte de tz (ou ce qui revient au même dans toute carte d'un
atlas de n ou encore si c'est une application holomorphe de X dans t (n)).
On désigne par G (X, tz) l'ensemble de ces sections.

Remarquons que G (X, tz) est un sous-0 (X)-module de ^?°° (X, tz). De

plus, les topologies induites par ^°° (X, tz) et Lfoc (X, tz) sur G (X, tz)

coïncident. Pour cette topologie, l'espace G (X, tz) est complet. C'est un

espace de Fréchet si X est dénombrable à l'infini.
Si p est un second fibré vectoriel holomorphe sur X, on désigne par

G (:tz, p) l'ensemble des morphismes holomorphes de tz dans p (i.e. les

applications holomorphes w de t (tz) dans t (p) telles que

p - u — tz

qui induisent des applications C-linéaires sur les fibres).
Les exemples et les constructions donnés au paragraphe 2 du chapitre 0

fournissent mutatis mutandis des exemples et des constructions de fibrés
vectoriels holomorphes. En particulier, si tz et p sont des fibrés vectoriels
holomorphes sur X, il en est de même des fibrés vectoriels tz ® p, tz 0 p, n* et An.

Soit °U un recouvrement ouvert de X. On dit qu'un cocycle de rang p
subordonné à est holomorphe si les applications qui le composent sont

holomorphes. On définit de la même manière la relation de cobordance

entre cocycles holomorphes, d'où un ensemble Pic(2f, G(p; C)) dont les

éléments s'appellent les fibrés principaux holomorphes de groupe structural
G (p;C) sur X.

Les classes d'isomorphie de fibrés vectoriels holomorphes de rang p
sont en correspondance biunivoque avec les fibrés principaux holomorphes
de groupe structural G(p; C).
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On prendra garde de distinguer Pic (X, G (p ; C)) et Pic (XR, G (p ; C)) :

un fibré vectoriel holomorphe différentiablement trivial n'est pas
nécessairement holomorphiquement trivial (chap. IV, § 7).

Soit X une variété holomorphe de dimension pure n.

Le fibré cotangent complexe Qq à XR est un fibré vectoriel différentiel

de rang 2n sur X. Pour toute carte (j) de domaine U dans X et pour tout
point x de U, on a un isomorphisme C-linéaire

: ®c,x HomR(C", C).

(chap. 0, § 3, lemme 1). Il résulte de la définition même des applications
holomorphes que les sous-espaces £2*'° et £2°'* de Qq x images réciproques par
&x,4> des sous-espaces Homc (Cn, C) et Hom^ (Cn, C) de HomR (Cn, C)

sont indépendants de <j).

Pour toute fonction/de #k (X, C), avec k au moins égal à 1, on définit

df df df df
des fonctions —— —— de (U, C) en posant

dfa d<t>n d<j>x d(j)n

df_ 1/3/ _ df\ ^ _3/ l (dL + ilf\
d$j 2 \d(j)j

1

d<t>])
C

d$j 2\d4>'j
1

dfi)
où <j)j et <f>"j désignent les parties réelle et imaginaire de 4>j. Le lemme suivant
est une conséquence immédiate de ces définitions (chap. 0, § 3, lemme 5).

Lemme 2. Pour toute carte (j) de X et tout point x du domaine de

les différentielles des germes 0lj3C9 (j)n}X (resp. <filx, (ßn x) forment
une base de £2*'° (resp. £2°'1y). Pour tout germe f de Alx, on a

dfI fjr (*) + £ 22. (x) d$j,x.
l^j^n é<pj l^j^n VÇj

Soit n la projection canonique de JJ £2*'° sur X et soient (j) et \/j des
xeX

cartes de domaines respectifs U et V dans X. Le lemme 2 montre que les

applications

]>':n-l(U)-+UxH.omc(C,,Q et : (F) -+ x Homc(C", C)

définies par

(x, y)(x, sxj (y)')et i}' (x, y) (x, f (y)')

(on utilise les notations du paragraphe 1) sont des cartes complexes de n.



— 198 —

Ces cartes sont holomorphiquement compatibles, la transition est donnée

par la formule

g(x) (0(x))"1

où y désigne le changement de cartes de 0 dans \j/.

Le fibré vectoriel holomorphe ainsi défini se désigne par Q1,0. On

l'appelle parfois le fibré cotangent holomorphe à X.
Soit p la projection canonique de ]J ß®'1 sur X. Le lemme 2 montre

que les applications xeX

f : tT 1 (U) -* U x Homc(Cn, C) et fy* : tT 1 (F) -> V x Homc(CB, C)

définies par

<t>" (x, y)(x, £Xj0 (y)") et (x, y) (x, 00")

sont des cartes complexes de p. Ces cartes sont (différentiablement) compatibles,

la transition est donnée par la formule

g (x)'Dy(0(x))_1
Le fibré vectoriel différentiel ainsi défini se désigne par Q0'1. Notons que
l'on a un isomorphisme canonique

Qlc ß1'0 © ß0'1

Pour tout couple (p, q) d'entiers, on pose

Q APQU° © AqQ°'x

On dit qu'une forme différentielle est homogène de bidegré (p, q) si elle

prend ses valeurs dans Qp,q. La restriction à C de toute forme différentielle

homogène de bidegré (/?, q) s'écrit d'une manière et d'une seule

11 I u — X uj,k A dtpK
JeSp(n) KçSq^n)

où l'on a posé

d(f>j d(f)jl a a d(j)jp et d(f>K d(/)kl a a d(j)kq.

Lemme 3. La différentielle de toute forme de (X, Qp,q) appartient à

V°(X, Qp+1>q) © V0(X9 Qp'q+i).

On peut supposer que X est un ensemble ouvert de C". L'assertion résulte

alors des définitions.
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Pour toute forme différentielle u de {X, Qp,q), on désigne par d'u

(resp. d"u) la composante homogène de bidegré {p +1, q) (resp. (p, q+ 1)) de

du. Le lemme suivant est laissé en exercice au lecteur (chap. 0, § 3, théorème

1).

Lemme 4. Pour qu 'une forme différentielle u de ^ {X, Qp,°) soit

holomorphe, il faut et il suffit que d"u soit nul.

Pour toute forme différentielle u de 2 (X, Qc), on a

à' {d'u) 0 d'{d 'u) + d
"

{d'u) =0 d {d u) 0

Pour tout couple {u, v) de formes différentielles dans Y?1 {X, Qc), arec u

homogène de degré r, on a

d' {u av) — d'u a v + — I)'' u a d'v

et
d" {u av) d'u av + — If u a d'v

En particulier, l'application d" de Y}1 {X, Qc) dans Y0 {X, Qc) est (9 (X)-
linéaire.

Soit h une application holomorphe de X dans une variété holomorphe Y
de dimension pure m. Désignons par <f> une carte de domaine U dans X
et par i// une carte de domaine Vcontenant h {U) dans Y. On a par définition

h* (#,.) d OA j -h)£
l^k^n VVk

et ~ ~
v-, diéi'h) -h* (#y) d Wj h)x -XX

1 OÇk

pour tout entier j compris entre 1 et m. On en déduit aisément que l'image
réciproque par h d'une forme homogène de bidegré (p, q) est une forme
homogène de bidegré {p, q) et que l'on a

d'h*{u) h* {d'u) et d 'h*{u) — h* {d 'u)

pour toute forme différentielle u de Y1 {Y, Qc).
Soit n un fibré vectoriel holomorphe de rang pur m sur X et soient <P

et W des cartes de n de domaines respectifs U et V. Pour toute section s de
Y1 {X, tzQQ), on a

s0 {uu ...,um) et (vu ...vm)

où les Uj et les v j sont des formes différentielles homogènes de bidegré
{p, q). Pour tout entier j compris entre 1 et m, on a
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VJ Z djkUk
l^k^m

°ù (Ojk)i^j,k^m désigne la transition de # dans W. On en déduit que

d"vj X
l^k^m

Autrement dit, les m-uples (d"uu ...9d"um) et (d"vu ...,d"vm) se recollent en

une section de (.X, n®Qp'q+1) que l'on désigne encore par d"s.
Le lemme suivant est une conséquence immédiate de cette définition

et du lemme 4.

Lemme 5. Pour qu 'une section s de ^ (X, n) soit holomorphe, ilfaut et

il suffit que d"s soit nul.

Pour toute section s de 2 (X, n®Qc), on a

d" (d"s) — 0

Pour toute forme différentielle u de <^1 (X, Qf) et toute section v de

^ (X, 7z®Qc), on a

d" (u av) d 'u a v + — 1Y u a d 'v

Pour toute section u de ^ (X, n (x) Qf) et toute section v de

^ (X, n* (x) £2C), on a
d"(u9v) (id"u,v) -f — l)r(m, d'v).

On appelle complexe de Dolbeault de n la suite d'espaces vectoriels et

d'applications linéaires

où d"r désigne la restriction de d" à #°° (X, n®Q0,r). On appelle groupes de

cohomologie de n les espaces vectoriels

Hr (X, 7t) Ker d,,r/lm d'"-'1

La différentielle d" diminuant les supports, on a une deuxième suite

0 <"% (X,Jt) -&-+ (X, n 0 Q0'1) ^ (x, ?r 0 O0-") 0

et des groupes de cohomologie

Hrc(X,n) Ker d'cr~1

Le noyau de d"° s'identifie aux sections holomorphes de n. On a donc

H°CX» G(X,n)



— 201 —

et si X est ouverte, l'espace vectoriel H° (X, n) est nul (principe du prolongement

analytique).

On prendra garde de ne pas confondre le groupe de cohomologie de

de Rham W (X, C) de la variété différentielle XR (chap. 0, § 4) et le

groupe de cohomologie de Dolbeault Hr (X, C^) du fibré produit C^.

§ 3. Fonctions méromorphes

Dans tout ce paragraphe, on désigne par X une variété holomorphe et

par n un fibré vectoriel holomorphe sur X.

Lemme 1. On suppose X connexe et l'on désigne par f une fonction
holomorphe non identiquement nulle sur X. L'ensemble V défini par

V= {xeXlf(x) #0}
est alors connexe et dense dans X.

Il suffit de montrer que tout point x0 de X possède un voisinage U tel que
V n U soit connexe et dense dans U.

On peut donc supposer que X est un ensemble ouvert de C" et, par un
changement linéaire affine de coordonnées, on peut également supposer
que x0 est l'origine et que la fonction partielle/(0, 0, z„) n'est pas
identiquement nulle au voisinage de 0. Désignons par D" un disque fermé de

centre 0 dans C tel que /(0, 0, zn) soit holomorphe au voisinage de D"
et ne s'annule pas sur 3D" (§ 1, théorème 1, corollaire 3). Par continuité,
il existe un nombre réel s strictement positif tel que / soit holomorphe au
voisinage de D' x D" et ne s'annule pas sur D' x 3D", en désignant par
D' le polydisque de C"-1 défini par

D'{(zl5z„-i) e C"-1 | max |z; |<e}.
L'ensemble V n (D' x Z>") est connexe et dense dans D' x D" comme il
résulte aussitôt de la formule

Fn(D' xD
(D'x<3D")u U {(zj,zz„) # 0}

Pour tout point x de X, l'anneau &x des germes en x de fonctions
holomorphes est intègre (§ 1, proposition 1, corollaire 2) et l'ensemble 6 (n)x
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des germes en x de sections holomorphes de n est un (P^-module. On désigne

par Xx le corps des fractions de 0X et l'on pose

X (:7l)x Xx ®&x(9{n)x

Tout élément de X (n)x s'écrit comme quotient d'un élément de (9 (:k)x

par un élément non nul de (9X.

Soit u une section de la projection canonique de X (n)x sur X.
xeX

Pour éviter des confusions, on désigne par ux l'image du point x de X. On
dit que u est une section méromorphe de n si elle vérifie la condition suivante :

(M) Pour tout point x0 de X, il existe un voisinage ouvert connexe U de

x0, une section holomorphe s de n sur U et une fonction holomorphe/
non nulle sur U tels que

pour tout point x de U.

On désigne par X (X, n) l'ensemble des sections méromorphes de n
et par X (X) l'ensemble des fonctions méromorphes sur X (i.e. les sections

méromorphes du fibré produit Cx). On vérifie aisément que l'addition et la
multiplication point par point définissent sur X (X) une structure d'anneau
commutatif avec élément unité et sur X (X, n) une structure de X (X)-
module.

La restriction à un ensemble ouvert d'une section méromorphe est une
section méromorphe. En particulier, on a pour tout point x de X une
application canonique

0X : lim X(U,n) -> X(n)x
où U parcourt l'ensemble des voisinages ouverts de x. Il résulte immédiatement

des définitions que cette application est un isomorphisme qui permet
d'identifier le germe en x d'une section méromorphe à sa valeur au point x.

On dit qu'une section méromorphe u de n est régulière au point x si

ux appartient à 0 {n)x. On appelle domaine de régularité de u l'ensemble
R {u) des points où u est régulière. Les points n'appartenant pas au domaine
de régularité s'appellent les pôles de u.

Lemme 2. Supposons X connexe. Le domaine de régidarité d'une section

méromorphe u de n est un ensemble ouvert, connexe et dense dans X.
Soit x0 un point de X. On désigne par U un voisinage ouvert connexe de

x0, par s une section holomorphe de % sur U et par / une fonction
holomorphe non nulle sur U tels que
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pour tout point x de U. Si u est régulière au point x0, on peut supposer que/
ne s'annule pas sur U ce qui montre déjà que R (u) est ouvert. Si u n'est pas

régulière au point x0, l'ensemble

V {xeU\f(x) ^0}
est connexe et dense dans U (lemme 1), d'où l'assertion puisqu'il est contenu

dans R (u).

Pour toute section méromorphe u de n et pour tout point x de R (u),

on pose
u (x) ux(x)

Ceci a bien un sens puisque ux appartient à (9 (n)x. Il est clair que u est une

section holomorphe de n sur R (u). On dit qu'elle est associée à u.

Proposition 1 (Principe du prolongement analytique). Supposons X
connexe et soient u et v deux sections méromorphes de n. Les conditions

suivantes sont équivalentes :

(1 Les sections u et v *coïncident partout.

(2) Les sections u et v coïncident sur R(u)nR(v).
(2) Les germes de u et v coïncident en un point.

Il suffit de montrer que (3) implique (1). Désignons par V l'ensemble des

points de X où les germes de u et v coïncident. Puisqu'il est ouvert, il suffit
de montrer qu'il est fermé. Tout point x0 de V possède un voisinage ouvert
connexe U tel que

s t
u \ u ~ v \ u ~/ 9

et puisque les germes ux et vx coïncident en un point x de U, le principe du
prolongement analytique (§ 1, proposition 1, corollaire 2) montre que l'on a

gs =ft
ce qui démontre l'assertion.

Corollaire. Si X est connexe, / 'anneau XL (Z) des fonctions
méromorphes sur X est un corps.

Désignons par u une fonction méromorphe non nulle sur X. Il résulte
de la proposition 1 que ux n'est jamais nul. On vérifie aisément que les
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germes uxx définissent une fonction méromorphe sur X ce qui démontre
l'assertion.

Remarque 1.

Supposons X connexe et désignons par s une section holomorphe de tz

sur un ensemble ouvert non vide U de X. La proposition 1 montre qu'il
existe au plus une section méromorphe de tz dont le domaine de régularité
contient U et dont la restriction coïncide avec S'il en existe une, on dit
(abusivement) que s est une section méromorphe de tz.

Supposons n de rang pur p. On désigne par (Ut)ieI un recouvrement de X
par des domaines de cartes de tz et par (gKl) un cocycle holomorphe de

rang p subordonné à ce recouvrement et associé à tz. Les sections méro-

morphes de tz sont en correspondance biunivoque avec les familles (uXei
où ux est un /?-uple de fonctions méromorphes sur Ux, vérifiant les conditions

de recollement

uK gKlux.

On appelle forme différentielle méromorphe de degré r toute section

méromorphe de Qr,°. On définit de manière évidente l'image réciproque
d'une forme différentielle méromorphe par une application holomorphe.

Pour tout point x de X, on désigne par J (ft),, le é^-module quotient de

Jf (n)x par (9 (n)x.
Soit u une section de la projection canonique de [] i (n)x sur X.

xeX

Pour éviter des confusions, l'image d'un point x de X se désigne par ux.

On dit que u est une partie principale de tz si elle vérifie la condition
suivante :

(.PP) Pour tout point x0 de X, il existe un voisinage ouvert U de x0 et une
section méromorphe de tz sur U dont le germe représente ux en tout
point x de U.

On désigne par â (X, n) l'ensemble des parties principales de tz. L'addition

et la multiplication point par point en font un (9 (X)-module.
La restriction à un ensemble ouvert d'une partie principale est une partie

principale. En particulier, on a pour tout point x de X une application
canonique

0X : lim J(C/,tz) -> l(rz)x

où U parcourt l'ensemble des voisinages ouverts de x. Il résulte immédia-
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tement des définitions que cette application est un isomorphisme qui permet
d'identifier le germe en x d'une partie principale à sa valeur au point x.

Premier problème de Cousin. Donner des conditions nécessaires et
suffisantes pour qu'une partie principale appartienne à l'image de l'application
canonique

yf:Jf(X, n) ->£(X,n).
Pour tout élément u de «S (X, n), il existe un recouvrement ouvert

(UXei de X et pour chaque indice i une section méromorphe sT de n sur Ul
représentant u\ut. Par définition, la section

$Kl $1 $K

est holomorphe sur Ut n UK. Il existe donc pour chaque indice i une
section de #°° {Uv n) telle que

$Kl L ifc

(chap. 0, § 2, lemme 1). En particulier, les formes différentielles d"tl se

recollent en une section v de #°° (X, 7La forme différentielle d"v
est nulle et l'on vérifie aisément que la classe ö (u) de v dans H1 (X, n) ne
dépend que de u.

Proposition 2. La suite de (9 (X)-modules et d'applications linéaires

X(X, ri)—J(X, n) H1 (X, 7

est exacte.
On conserve les notations précédentes. Si u provient d'une section

méromorphe de n, on peut prendre comme recouvrement ouvert l'ensemble
X lui-même et l'on voit que ô (u) est nul.

Réciproquement, supposons S (u) nul. Ceci signifie qu'il existe une
section t de #°° (X, 71) telle que

d't — v

Pour tout indice z, la section tx — t\ut est holomorphe et les sections
si~Lt + t\Ul se recollent en une section méromorphe de n représentant
u, d'où l'assertion.

Pour tout point x de X, on désigne par Q)x le groupe abélien quotient de
C/f x par x 9 où @x (resp. Jf désigne le groupe des éléments inversibles de
(9X (resp. Jfx). Ce groupe est noté additivement.

^'Enseignement mathém., t. XXI, fasc. 2-3-4. 14
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Soit u une section de la projection canonique de JJ Q)x sur X. Pour
xeX

éviter des confusions, l'image d'un point x de X se désigne par ux. On dit
que u est un diviseur de X si la condition suivante est vérifiée :

(D) Pour tout point x0 de X, il existe un voisinage ouvert U de x0 et une
fonction méromorphe inversible sur U dont le germe en tout point
représente ux.

On désigne par 3) (X) l'ensemble des diviseurs de X. L'addition point par
point en fait un groupe abélien.

La restriction d'un diviseur à un ensemble ouvert est un diviseur. En

particulier, on a pour tout point x de X une application canonique

0X : lim &(U) Sfx

où U parcourt l'ensemble des voisinages ouverts de x. Il résulte immédiatement

des définitions que cette application est un isomorphisme qui permet
d'identifier le germe en x d'un diviseur à sa valeur au point x.

Soit 7t un fibré en droites holomorphe sur X. On désigne par * (X, n)
l'ensemble des sections méromorphes de n qui ne s'annulent identiquement
sur aucune composante connexe de X. Soit s une telle section. L'expression
de ^ dans toute carte 0 de n est une fonction méromorphe inversible sur le

domaine U de 0. La classe de cette fonction dans S) {U) est indépendante
de 0. Par recollement, on obtient ainsi un diviseur sur X que l'on dit
associé à s et que l'on désigne par (s). On définit ainsi une application
canonique

yn(n): jT*(X,n) 2 (X).

Deuxième problème de Cousin. Donner des conditions nécessaires et

suffisantes pour qu 'un diviseur appartienne à l'image de l'application canonique

yn:jT*(X)-+&(X).
Pour tout diviseur u de X, il existe un recouvrement ouvert (Ut)iei de X

et, pour chaque indice i une fonction méromorphe inversible st sur Ut

représentant u\ux- Par définition, la fonction

SKt SKS~1

est holomorphe inversible sur Ut n UK et la famille (sKl) est un cocycle
holomorphe de rang 1 subordonné à (Ut). On vérifie aisément que sa classe

v (m) dans Pic (X, C*) ne dépend que de u.
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Lemme 3. Pour tout diviseur u de X, il existe un fibré en droites

holomorphe 7i sur X et une section méromorphe s de XL* (X, n) dont le

diviseur est u.

La section s est déterminée modulo la multiplication par une fonction
holomorphe inversible. Le fibré n est déterminé à isomorphisme près.

Conservons les notations précédentes et désignons par n un fibré en
droites holomorphe associé au cocycle (^Kl). Les fonctions méromorphes st
se recollent en une section méromorphe s de n ayant les propriétés requises.
Si s' est une deuxième section méromorphe dont le diviseur est u, le diviseur

s
de la fonction méromorphe — est identiquement nul et cette fonction est.

s'

holomorphe inversible.

Enfin, si p est un deuxième fibré en droites holomorphe et t une section

s
méromorphe de p dont le diviseur est u, la section - de n ® p* est

holomorphe et partout non nulle ce qui achève la démonstration du lemme.

Proposition 3. La suite de groupes abéliens et d'homomorphismes

Jf*(X)2)(X)Pic C*)
est exacte.

La démonstration est analogue à celle de la proposition 2. Elle est laissée
en exercice au lecteur.

On dit qu'un diviseur de 3f (X) est positifs'il est localement représentable
par une fonction holomorphe. Les diviseurs positifs de X forment un sous-
ensemble 3)+ (X) de 3} (X) stable par addition. La relation

«u — v appartient à 3+ (X) »

est une relation d'ordre partiel sur 2f (X) que l'on désigne par v < u.
Supposons X connexe. Pour tout diviseur u de X, l'ensemble

XTU(X) {heiï{X)\h =0ou {h)> -u}
est un sous-0 (X)-module de JC (X). Désignons par n un fibré en droites
holomorphe sur X et par s une section méromorphe non nulle de n ayant u
pour diviseur (lemme 3). On vérifie aisément que la division par s induit un
isomorphisme de 6 (X, n) sur Xu (X).
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§ 4. Courbes holomorphes

Nous allons maintenant nous limiter à l'étude des courbes holomorphes
(appelées aussi surfaces de Riemann). Nous avons toujours supposé les

variétés (topologiques, différentielles ou holomorphes) paracompactes.
Un célèbre théorème de Radô affirme que cette hypothèse est superflue
dans le cas des courbes holomorphes (voir par exemple [6]). Nous n'utiliserons

pas ce résultat qui, au demeurant est très particulier à la dimension
complexe 1.

Théorème 1. Soient X et Y deux courbes holomorphes et soit u une

application holomorphe de X dans Y. On suppose X connexe. Alors u

est ouverte ou constante.

Supposons u non constante. L'assertion étant locale, on se ramène
aisément au cas où I et 7 sont des ensembles ouverts de C. Soit x0 un
point de X. Il suffit de montrer que u (X) est un voisinage de u (x0) (toutes
les composantes connexes d'un ensemble ouvert de X sont ouvertes). Pour
ce faire, on peut supposer que u (x0) est nul. Il existe alors un disque D
de centre x0 relativement compact dans X tel que u ne s'annule pas sur
3D (§ 1, théorème 1, corollaire 3). Posons

p inf | u (z) |

zedD

Il suffit de montrer que tout point w de Y n'appartenant pas à u (X) est de

p
module strictement supérieur à -. On peut évidemment supposer qu'il est

de module strictement inférieur à p et l'on définit une fonction holomorphe/
sur X en posant

I/o) I -A— •

u(z) — w

Pour tout point z de 3D, on a
1 1

/ 0) 7—TT ; < : •

| u(z)-w | | w |

On en déduit que (§ 1, théorème 1, corollaire 1),

A i/oo)i <i/iu—A
I w | p — I W I

ce qui démontre l'assertion.
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Corollaire 1 (Principe du maximum). Soit X une courbe holomorphe

connexe et soit f une fonction holomorphe sur X. Si la fonction f possède

un maximum relatif elle est constante.

Soit x0 un point de X et soit K un voisinage compact de x0 tel que

l/(Xo)l Il/Il*.
L'ensemble f (K) est contenu dans le disque fermé de centre 0 et de rayon

|/(x0) |, ce n'est donc pas un voisinage de f(x0) et par conséquent / est

constante.

Corollaire 2. Soit X une courbe holomorphe connexe et soit K une

partie compacte de X distincte de X. Pour toute fonction holomorphe f
sur X, on a

Il / \\ 8K H f I K •

o

En effet, si / atteint son maximum en un point de K, elle est constante.

Corollaire 3. Toute fonction holomorphe sur une courbe holomorphe

compacte et connexe est constante.

Corollaire 4. Soient X et Y deux courbes holomorphes connexes et

soit u une application holomorphe de X dans Y. On suppose X compacte.
Si Y est ouverte, / 'application u est constante. Si Y est compacte, / 'application

u est constante ou surjective.

Remarque 1.

Le théorème 1 et ses corollaires demeurent valables si X est de dimension
supérieure à 1. C'est une conséquence facile du cas traité ici.

Proposition 1. Soient X et Y deux courbes holomorphes et soit u une
application holomorphe de X dans Y. On suppose que u n \est constante
sur aucune composante connexe de X. Pour tout point x0 de X, il existe
une carte (j) de X centrée en x09 une carte \jj de Y centrée en u (x0)
et un entier m strictement positif tels que

Uu (z) zm

Soit <p (resp. i//) une carte de domaine U (resp. centrée en x0 (resp.
u (x0)). L'expression de u dans ((j>, i//) est une fonction holomorphe / sur
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4> (U), nulle à l'origine mais non identiquement nulle. Si (j) (U) est un disque
suffisamment petit, il existe un entier m et une fonction g holomorphe
inversible sur (j) (U) tels que

/(z) zmg(z)

(§ 1, théorème 1, corollaire 3). Il existe alors une fonction holomorphe h

sur (j) (U) dont la puissance nf est égale kg. En diminuant au besoin (j) (U),
on peut supposer que l'application 9 définie par

9 (z) z h (z)

est un isomorphisme de (j) (U) sur un ensemble ouvert de C. Il suffit alors de

remplacer </> par 9 • (p.

Corollaire. Soient X et Y deux courbes holomorphes et soit u une

application holomorphe de X dans Y. Si u est injective au voisinage d'un
point, elle est de rang 1 en ce point.

On conserve les notations et les hypothèses de la proposition 1. L'entier
m — 1 est indépendant des cartes (j) et \j/. On l'appelle Yindice de ramification
de u au point x0 et on le désigne par vXQ (u). On dit que x0 est un point de

ramification de u si vXQ (u) est strictement positif. Pour que x0 soit un point
de ramification de u, il faut et il suffit que le rang de u au point x0 soit
nul (autrement dit, les points de ramification sont exactement les points
critiques). L'ensemble des points de ramification est fermé et discret.

Supposons de plus X et Y connexes et u propre (ce qui implique que u est

surjective en vertu du théorème 1). L'image B des points de ramification de u

(i.e. l'ensemble des valeurs critiques) est fermé discret, de même que son

image réciproque A. La restriction de u k X\A est un revêtement de Y\B
dont le nombre de feuillets est le degré de u (chap. 0, § 4, théorème 4). Il
résulte immédiatement des définitions que l'on a

deg(w) X v*(")
xeu-l(y)

pour tout point y de Y.

Dans toute la suite, on désigne par X une courbe holomorphe que l'on

suppose connexe pour fixer les idées.

Soit 7t un fibré en droites holomorphe sur X et soit (j) une carte de X
centrée en un point x. Tout germe non nul s de (n)x s'écrit d'une manière

et d'une seule

s fâv



— 211 —

où m est un entier relatif appelé Vordre de s et v un germe de G (n)x ne

s'annulant pas en x. En particulier, les zéros et les pôles d'une section méro-

morphe s non identiquement nulle sont isolés. On vérifie aisément que l'ordre
du germe sx coïncide avec l'ordre de s au point x. Le lemme suivant en

découle aussitôt (chap. 0, § 5, proposition 2).

Lemme 1. Supposons X compacte. Toutes les sections méromorphes de n

ont pour ordre la classe de Chern de n.
En particulier, toutes les fonctions méromorphes sur X sont d'ordre 0.

La deuxième assertion s'exprime aussi en disant que le nombre de

pôles d'une fonction méromorphe est égal au nombre de ses zéros.

Lemme 2. Soit u une application holomorphe non constante de X dans

une courbe holomorphe Y.

(1 Pour toute fonction méromorphe h sur Y etpour toutpoint x de X,
on a

ox(u*(h)) (vx(u) + 1)0uM(h).

(2) Pour toute forme différentielle méromorphe s sur Y et pour tout
point x de X, on a

ox(m*(s)) (yx{u)+ 1) 0ll(x) (s) +

C'est une conséquence immédiate des définitions.

Soit u une fonction méromorphe sur X et soit u la fonction holomorphe
sur R (u) qui lui est associée. On identifie C à l'ensemble ouvert U0 de P1

défini par
U0{(z0 : Zi) eP1 | z0 # 0}

et l'on prolonge u en posant
u (x) =(0:1)

pour tout pôle x de u. On vérifie aisément que l'application u de X dans
P1 ainsi définie est holomorphe. On identifie de cette manière les fonctions
méromorphes sur X aux applications holomorphes de X dans P1 non
identiquement égales à (0: 1) 1).

Si X est compacte, on peut en particulier parler du degré d'une fonction
méromorphe non constante: c'est le degré de l'application holomorphe

b On prendra garde que cette identification n'est plus possible si X&st de dimension
strictement supérieure à 1.
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correspondante. Il résulte de ces définitions que c'est aussi le nombre de

pôles (avec multiplicité) ou le nombre de zéros (avec multiplicité) de cette
fonction.

Soit x un point de X et soit s une forme différentielle holomorphe sur

X\{x}. Pour toute carte </> de domaine U centrée en x, telle que (j) (U) soit
un disque de C, on a

SI V/# et / £
keZ

où/est une fonction holomorphe sur U\{x} et (ak)k&z une famille de nombres

complexes (§ 1, théorème 1, corollaire 6). La formule suivante permet de

calculer le résidu de .y au point x (chap. 0, § 5)

1 f 1

Rés (s, x)— 5 £ ak—2M JÔD fc6z 2m

où D désigne un disque de centre x relativement compact dans (j).

Soit n un fibré vectoriel holomorphe de rang pur p sur X et soit u une

partie principale de n. Pour tout point x de X, il existe un voisinage ouvert U
de x et une section méromorphe s de n sur U représentant u | v. On peut
toujours supposer que U est le domaine commun à une carte de n et à

une carte (j) de Xcentrée en x et que de plus (f) (U) est un disque. L'expression
de s dans $ est alors un/?-uple (^ sp) de fonctions méromorphes sur U
et l'on a

SJ IkeZ

pour tout entier j compris entre 1 et p. Notons que les aj k d'indice strictement

négatif sont presque tous nuls (§ 1, théorème 1, corollaire 7). La
restriction de u à U est représentée par le ^-uple

£ aUk(j)k,£\k< 0 k< 0 /
En particulier, l'ensemble des points de X où u est non nul est fermé discret.

Soit u un diviseur de X et soit x un point de X. Il existe un fibré en

droites holomorphe n sur X et une section méromorphe s non nulle de %

dont le diviseur est u (§ 3, lemme 3). L'ordre de s au point x (ou l'ordre de s

si X est compacte) ne dépend que de u (loc. cit.). On l'appelle Vordre de u

au point x (ou Vordre de u) et on le désigne par 0^ (w) (resp. 0 (:u)).

L'application x (u) de X dans Z définie par

4>k d# —

X(u)(x) 0x(u)
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est nulle en dehors d'un ensemble fermé discret. Le lemme suivant est une

conséquence immédiate de ces définitions.

Lemme 3. L'application % induit un isomorphisme de 2) (X) sur
l'ensemble des applications de X dans Z dont le support est fermé discret. Les

diviseurs positifs correspondent aux applications à valeurs dans N.

Soient X et Y deux courbes holomorphes connexes et soit u une
application holomorphe propre, non constante de degré p de X dans Y.

On désigne par hu ...,hn des fonctions méromorphes sur X et par o

un polynôme de

symétrique en TjU Tjp pour j fixé. Désignons par B l'image des points
de ramification de u et des pôles de hu hn. Pour tout point y de Y\B,
la fibre u~x (y) contient exactement p points xu xp et l'on pose

ua(hu ...,h„)(y) a(hj(xk)).

L'hypothèse faite sur a montre que cette définition est indépendante de la
numérotation des points xu xp.

Proposition 2. La fonction ua(hu hn) est holomorphe (resp. méro-

morphe) sur Y si hu hn sont holomorphes (resp. méromorphes) sur X.
Supposons tout d'abord hu hn holomorphes et montrons qu'il en est

de même de

w ua(hx,Pour tout ensemble ouvert simplement connexe V de Y\B, l'ensemble
w-1 (V) est formé de p composantes connexes U1, Up et la restriction de u
à chacun des Uk est un isomorphisme sur V. On désigne par vk l'isomor-
phisme réciproque. On a alors

W I V G (hj • vk)

ce qui montre déjà que w |

yVb est holomorphe. De plus, la fonction w
reste bornée au voisinage de tout point de B, ce qui démontre l'assertion
(§ 1, théorème 1, corollaire 7).

Supposons maintenant hu hn méromorphes et a homogène de degré
q. Le raisonnement précédent montre que w | y\b est holomorphe. Soit xj/

une carte de Y centrée en un point y de B. La fonction \j/ • u s'annule en
tout point de u-1 (y). Il existe par conséquent un entier naturel m tel que les
fonctions (xj/'u)mhj soient holomorphes au voisinage de u_1 (y). On a alors
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u0((\j/( \l/-u)m)hn)O •

et l'assertion résulte de la première partie de la démonstration.

Désignons par s une forme différentielle méromorphe sur X et par B
l'image des points de ramification de u et des pôles de s. Pour tout ensemble

ouvert simplement connexe V de Y\B, l'ensemble u-1 (V) est formé de p
composantes connexes Uu Up et la restriction de u à chacun des Uk est

un isomorphisme sur V. On désigne par vk l'isomorphisme réciproque et
l'on pose

w V* (s) + +v*(s).
La forme différentielle w est holomorphe sur V et l'on obtient par recollement

une forme différentielle holomorphe u* (s) sur Y\B.

Proposition 3. La forme différentielle (V) est holomorphe (resp.

méromorphe) sur Y si s est holomorphe (resp. méromorphe) sur X.
La démonstration est laissée en exercice au lecteur. Elle est tout à fait

analogue à celle de la proposition 2.

§ 5. Exemples

(1 Quelques remarques sur la droite projective.

On fait opérer le groupe G (2 ; C) des matrices carrées inversibles
d'ordre 2 dans P1 par la formule

fd b\
Oo • Wi) (z0 :zf)[ (dz0+cz1 : bz0 +azf).

\c aj

Cette opération est continue. Dans C, identifié à l'ensemble

U0 {Oo : | z0 0}

cette formule prend l'aspect suivant

az + b
w

cz + d

Une transformation de ce type est un automorphisme de P1 appelé
homographie. Le noyau de l'opération contenant les homothéties, on peut se

restreindre au groupe SI (2; C) des matrices de déterminant 1. Le noyau
est alors réduit au centre de SI (2; C), i.e. le sous-groupe d'ordre 2 formé
de l'identité et de son opposé. Ainsi le groupe des homographies apparaît
comme le quotient de SI (2; C) par son centre.
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Le groupe d'isotropie du point (0: 1) s'identifie au sous-groupe de

G (2; C) formé des matrices de la forme

Ce sont aussi les homographies qui opèrent sur C.

Proposition 1. (1) Les automorphismes de C sont exactement les

homographies laissant fixe le point (0: 1).

(2) Les automorphismes de P1 sont exactement les homographies.
Soit u un automorphisme de C. On peut écrire

où les ak sont des nombres complexes et où la série converge uniformément
sur tout ensemble compact de C. Puisque u est un homéomorphisme, il
résulte du théorème de Weierstrass (§ 1, théorème 1, corollaire 7) que les

ak sont presque tous nuls. Le théorème fondamental de l'algèbre montre

que le polynôme u est de degré au plus 1, ce qui démontre la première
assertion.

Démontrons la seconde. Puisque le groupe des homographies contient
le groupe d'isotropie de (0: 1), il suffit de vérifier qu'il opère transitivement
sur P1, ce qui est trivial.

Tout ensemble ouvert d'une courbe holomorphe est une courbe
holomorphe. En particulier, les ensembles

D { z e C | | z 1 < 1} et H { z e C | Im (z) > 0 }

sont des courbes holomorphes. Remarquons que l'homographie œ définie par

induit un isomorphisme de H sur D. Avant de décrire les automorphismes
de ces deux courbes, nous allons établir un lemme qui nous sera utile par
la suite.

Désignons par X un voisinage ouvert connexe de l'origine dans C et
par G le groupe des automorphismes de X. Pour tout élément g du groupe
d'isotropie G0 de l'origine, on pose

u(z) £ akzk

Z
co(z)

z 4- i

dg
us) /(°).

oz



— 216 —

On définit ainsi un homomorphisme j de G0 dans C*.

Lemme 1. On suppose X borné.

(1) Le nombre complexe j (g) est de module 1.

(2) Si j (g) est égal à 1, alors g est l'identité.

Les deux assertions sont évidentes si g est linéaire. Sinon, on peut écrire

g(z)axz + £ avz"

pour tout point z suffisamment voisin de l'origine, où les av sont des nombres

complexes tels que

«î j(g) et an ¥= 0

Pour tout entier naturel k, on a de même

gk(z) b^z + X K(k)zv
v^n

et un calcul élémentaire fournit les relations

&!<*>= flî et bn^^a\£(a'r1)'.
O^v <k

Puisque X est borné, il résulte de la formule de Cauchy (§ 1, théorème 1,

corollaire 1) qu'il existe une constante M telle que

\b.<»\ \aï~lan I (O'KM
O^v <fc

pour tout entier naturel k. Ceci n'est possible que si | a± | est au plus égal
à 1. Le même raisonnement appliqué à l'automorphisme g~l démontre la
première assertion.

Supposons a1 égal à 1. La formule ci-dessus montre que l'on a

bn(k) kan et | bn{k) | | kan | < M

ce qui est absurde, et par conséquent g est l'identité.

Revenons à nos homographies. Remarquons tout d'abord que les

homographies laissant fixe H sont exactement celles à coefficients réels

et de déterminant positif. Ceci résulte immédiatement des définitions. Notons

que dans ce cas on a l'égalité
Im(z)

Im(w)
|cz + d |
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En utilisant l'isomorphisme œ, on montre aisément que les

homographies laissant fixe D sont celles de la forme

w
+

- avec | p |
2 - | q \

2 1

qz + p

Proposition 2. (1) Les automorphismes de D sont exactement les

homographies laissant fixe D.

(2) Les automorphismes de H sont exactement les homographies laissant

fixe H.

Il faut vérifier que le groupe des homographies laissant fixe D opère

transitivement dans D ce qui est immédiat et qu'il contient le groupe
d'isotropie de l'origine. Or le lemme 1 montre que ce dernier groupe est

formé des rotations de centre 0, d'où l'assertion.

On appelle fonction rationnelle sur C toute fonction méromorphe
s'écrivant comme le quotient de deux polynômes. Les fonctions rationnelles

sur C forment un sous-corps de Jf (C) isomorphe au corps C (T) des

fractions rationnelles à une indéterminée.

Lemme 2. Les fonctions rationnelles sur C sont exactement les fonctions
méromorphes sur P1.

On vérifie aisément que toute fonction rationnelle sur C est une fonction
méromorphe sur P1 (il suffit d'exprimer cette fonction dans l'autre carte de

P1). Réciproquement, soit / une fonction méromorphe sur P1. On désigne

par u la restriction à C du diviseur de / et l'on pose

g(z)n (z-0""(î).
«(0*0

Ceci a bien un sens puisque le support de u est fini. Il est clair que g est

une fonction rationnelle sur C donc méromorphe sur P1 et que le diviseur

dtfg est nul en dehors du point (0: 1). Cette dernière fonction est donc
constante (§ 4, lemme 1), d'où l'assertion.

(2) Le faisceau des fonctions holomorphes sur C.

Pour tout point x de C, on désigne par 0X l'anneau des germes en x de
fonctions holomorphes. Soit 0 l'ensemble n ». et soit n la projection

xeX
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canonique de G dans C. Pour tout ensemble ouvert U de C et toute fonction
holomorphe / sur U, on pose

N(U,f { (x, u) e G | x e U et u fx}
Proposition 3. Les ensembles du type N(U,f) forment une base de

topologie sur G. Pour cette topologie, l'espace (9 est séparé et la projection n
est un homéomorphisme local.

Si l'ensemble N (U,f) n N (V, g) est non vide, il existe par définition
un point x de U n V où les germes fx et gx coïncident. Les fonctions/ et g
coïncident donc sur un voisinage ouvert W de x dans U n V. On en déduit

que l'ensemble

N(WJ) N(W,g)
est contenu dans N (U,f) n N (V, g), ce qui démontre la première assertion.

Munissons (9 de la topologie engendrée par les N (£/,/). Soient (x,fx) et

(y, gy) deux points distincts de (9. On désigne par U et V des voisinages
ouverts de x et y respectivement sur lesquels / et g sont holomorphes.
L'ensemble N(U,f) est un voisinage de (x,/*) et l'ensemble N (F, g) un
voisinage de (y, gy)- Si x et y sont distincts, on peut supposer U et V disjoints.
Il en est alors de même de N (U, f) et N (F, g). Si x et y sont confondus,

on peut supposer U et V connexes et égaux. Les germes de / et g sont
distincts au point x, donc en tout point de U (principe du prolongement
analytique). Ceci montre que (9 est séparé.

La dernière assertion est triviale.

Il résulte de la proposition 3 et du théorème de Poincaré-Yolterra
(appendice II, théorème 1) que toute composante connexe de (9 est une
surface topologique (de type dénombrable). On la munit de l'unique structure

holomorphe faisant de n un isomorphisms local.
Chacune des composantes connexes de G est donc une courbe

holomorphe ouverte.
Soit X la composante connexe d'un point (x,fx) de G. La fonction /

définie sur X par

/ (y, u) — u (y)

est holomorphe. En effet, pour tout voisinage ouvert U de y et toute fonction

holomorphe g sur U dont le germe au point y est égal à u, on a

f g-te.
On dit que / est le prolongement analytique de /.
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(3) Quotients de courbes holomorphes

Dans tout ce numéro, on désigne par X une courbe holomorphe connexe,

par G le groupe des automorphismes de X et par F un sous-groupe

proprement discontinu de G 1).

Lemme 3. (1) L'espace des orbites X\F est séparé.

(2) Pour tout point x0, le groupe d'isotropie rxQ est fini et il existe

un système fondamental de voisinages U de x0 vérifiant les conditions

suivantes :

y (U) n U 0 si y$rxQ

y (U) U si yerxo.

Désignons par n la projection canonique de X sur X/F. Pour démontrer

(1), il faut montrer que la diagonale de X\F x X/F est fermée ou ce qui
revient au même que son image réciproque A par n x n est fermée dans

X x X. Par définition, on a

A {(x,y) e X x x\il existe y e r tel que y y (x) }

Désignons par (xm yn)neN une suite de A qui converge vers un point (x, y)
de X x X et soient KetL des voisinages compacts de x et y respectivement.
Pour n suffisamment grand, le point xn appartient à K et le point yn appartient

à L. On désigne par yn un élément de F transformant xn en yn. Par

hypothèse, il existe une infinité d'entiers n pour lesquels yn coïncide avec un
élément fixe y de F. On en déduit que y transforme x en y, d'où l'assertion.

Démontrons (2). Soit K un voisinage compact de x0. On pose

5 {yer\y(K)nK ^0}
et l'on désigne par yu yn les éléments de S\FXQ. Pour tout entier j compris
entre 1 et «, il existe un voisinage Vj de x0 dans K tel que Vj n yj (Vf) soit
vide. Il suffit alors de poser

U= n y(Vj).
1

yerxQ

Lemme 4. Pour tout point x0 de X, le groupe d'isotropie rxQ est cyclique.
Désignons par U un voisinage connexe de x0 vérifiant les conditions

du lemme 3. On peut supposer que U est le domaine d'une carte (p centrée

') Ceci signifie que pour tout ensemble compact K de X, l'ensemble

\yer\y(K)nK^0^

est fini.
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en x0 et que (j) (U) est borné. L'expression d'un élément y de rx0 dans la
carte <fi est alors un automorphisme y^ de <fi (U) laissant fixe l'origine et
le lemme 2 montre que l'application rj de rxQ dans C* définie par

n(y) j (y*)

est un homomorphisme injectif de Fxo dans U, ce qui démontre le lemme.

Théorème 1. Désignons par n la projection canonique de X dans l'espace
des orbites XjF. Il existe une structure holomorphe et une seule sur XjF
vérifiant la condition suivante :

(Q) Pour tout ensemble ouvert U de X/T, l'application n* induit une

bijection de (9 (U) sur l'ensemble des fonctions holomorphes F-invariantes

de (9 (n~1 (U)).

L'unicité résulte immédiatement de la condition (Q) (§ 2, lemme 1).

Désignons par F l'espace des orbites X\F. Les points fixes d'un automorphisme

y distinct de l'identité sont isolés (§ 1, théorème 1, corollaire 3).

Il résulte alors du lemme 3 que l'ensemble A des points fixes de F (i.e.
l'ensemble de tous les points fixes des automorphismes de F distincts de l'identité)

est fermé discret, de même que son image B. Ce lemme montre aussi

que la restriction de n à X\A est un revêtement de Y\B. On munit Y\B
de l'unique structure holomorphe qui fait de n un isomorphisme local. Il
est clair que la condition Q) est vérifiée pour tout ensemble ouvert U de Y\B.

Il reste à prolonger la structure holomorphe de Y\B aux points de B.

La question étant locale, on peut supposer que X est un voisinage ouvert
borné de l'origine dans C et que tous les éléments de r laissent fixe l'origine.

En particulier, le groupe f est fini cyclique d'ordre p. On définit une
fonction holomorphe h sur X en posant

h(z) n y(z)
yer

L'ordre de h à l'origine étant p, on peut supposer en diminuant au besoin X
que h est de la forme

h up

où u est un isomorphisme de X sur un voisinage de l'origine (§ 4, proposition

1). La fonction h étant T-invariante, elle définit par passage au
quotient une application continue (j) de Y sur l'image Z de h. Quitte à diminuer

Z, on peut supposer que la restriction de h (resp. n) à X\{0} est un
revêtement à p feuillets de Z\{0} (resp. Y\{n(0)}). En particulier, l'application (j)

est un homéomorphisme de Y sur Z induisant un isomorphisme de 7\{ti;(0)}
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sur Z\{0}. Autrement dit, cette application est une carte de Y compatible
avec la structure holomorphe de T\{7i(0)}.

Il reste à voir que la structure holomorphe ainsi définie vérifie la condition

(0. Tout d'abord, l'application n est holomorphe par définition.
D'autre part, toute fonction T-invariante / sur X définit par passage au

quotient une fonction continue sur Y qui est holomorphe sur 7\{7c(0)}.
Le théorème de Weierstrass (§ 1, théorème 1, corollaire 7) montre qu'elle est

holomorphe sur Y ce qui achève la démonstration du théorème.

Avant de donner des exemples concrets, nous allons établir un critère

permettant de reconnaître aisément si un sous-groupe T du groupe des auto-
morphismes de D (ou de H) est proprement discontinu. Rappelons tout
d'abord que le groupe des automorphismes de D (ou de H) est naturellement
muni d'une topologie (et même d'une structure de groupe de Lie), à savoir
celle provenant de la topologie de G {2; C) (numéro 1).

Lemme 5. Pour qu 'un sous-groupe r du groupe des automorphismes de

D (ou de H) soit proprement discontinu, il faut et il suffit qu 'il soit discret.
La condition est évidemment nécessaire: si une suite (yn)„eN d'éléments

deux à deux distincts de f converge vers l'identité, la suite (yn (0))weN

converge vers 0 et T ne peut pas être proprement discontinu.
Montrons qu'elle est suffisante. Désignons par

?z + ^ ,2 ,2w avec \p\ - \ q\ 1

qz + p

une transformation de r (proposition 2). Un calcul élémentaire montre que
l'on a

A lib î <1.
P

Soit r un nombre réel strictement compris entre 0 et 1. Si z et w sont tous
deux de module au plus égal à r, on a

\l* + PI \PII - z + 1 I ^ \p1(1-r) et 1 fP IP (1

On en déduit qu'il n'existe qu'un nombre fini d'éléments de T transformant
un point z de module au plus égal à r en un point w de module au plus égal
à r, d'où l'assertion.

Désignons par œL et œ2 deux nombres complexes linéairement
indépendants sur R et par r le groupe d'automorphismes de C engendré par les
translations

l«Z +P\
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y1 (z) z + cot et y2 (z) z + co2

Il est clair que r est proprement discontinu et n'a pas de points fixes. La
courbe holomorphe C/T se désigne par T(col9co2)> Elle est compacte et

connexe et l'application canonique de C dans T (col5 co2) est le revêtement
universel de T (co1, (o2).

On appelle courbe elliptique toute courbe holomorphe isomorphe à une
courbe de la forme T (co1, co2). Remarquons que le groupe des automor-
phismes d'une courbe elliptique opère de manière transitive.

Nous allons chercher à quelles conditions deux courbes elliptiques sont
isomorphes.

Tout d'abord, quitte à remplacer cot par — col5 on peut supposer que le

nombre complexe défini par

t co1 co 21

a une partie imaginaire strictement positive. Considérons ensuite l'auto-
morphisme 0 de C défini par

6 (z) co~2
1

z

Par passage aux quotients, il définit un isomorphisme de T (cou œ2) sur
T (t, 1). Pour étudier une courbe elliptique, on peut donc toujours supposer
qu'elle est de la forme T (t, 1) avec t dans H. Un tel nombre complexe

s'appelle un module de la courbe elliptique.
Soient X et Y deux courbes elliptiques et soit u un isomorphisme de X

sur Y. On désigne par n et p les revêtements universels de C dans X et Y

respectivement. Quitte à modifier u par un automorphisme de Y, on peut

supposer que l'on a

u (n (0)) (0).

Il existe alors un automorphisme v de C et un seul tel que

v (0) 0 et p - v u - n

Cet automorphisme est de la forme

v(z) az

où a est un nombre complexe non nul (proposition 1). De plus, puisqu'il
passe aux quotients, il existe des entiers relatifs a, ù, c et d tels que

az ao + b
et ad — be 1

a c<t + d
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en désignant par t et a des modules de X et Y respectivement. On en déduit

que X et Y sont isomorphes si et seulement si les modules t et a sont dans

la même orbite pour l'action de SI (2; Z).
Le quotient de 57(2; Z) par son centre est un sous-groupe discret T du

groupe des automorphismes de H. Il résulte alors du lemme 5 et du théorème

1 qu'il existe sur H/T une structure holomorphe canonique. On

notera que les classes d'isomorphie de courbes elliptiques sont en

correspondance biunivoque avec les points de HjT.

Remarque 1.

La courbe H/E est isomorphe à C. Ceci résulte par exemple de l'existence

et des propriétés de la fonction modulaire J ([3], Kap. IV, § 3, Satz 3).

(4) Courbes algébriques

On dit qu'une partie X de l'espace numérique C" est algébrique si elle est

le lieu des zéros d'une famille de polynômes. L'ensemble a des polynômes de

C [T1? Tn] qui s'annulent sur X est un idéal que l'on appelle Y idéal de X.

On notera que X est aussi le lieu des zéros de toute famille de générateurs
de a. En particulier, le théorème de la base de Hilbert ([4], chap. VI, § 2,

théorème 1) montre que X est le lieu des zéros d'une famille finie de

polynômes.

Soit X un ensemble algébrique de Cn et soit a son idéal.

On dit qu'une fonction définie sur X et à valeurs complexes est régulière
si elle est la restriction d'une fonction polynomiale sur C". L'ensemble des

fonctions régulières sur X est une sous-algèbre de ^° (X, C) qui s'identifie
canoniquement à C [Tu Tn]/a.

On dit qu'un point x de X est régulier s'il existe un voisinage ouvert U
de x dans Cn tel que U n X soit une sous-variété (holomorphe) de U. Un
point est dit singulier s'il n'est pas régulier.

Il résulte de cette définition que l'ensemble des points réguliers de X
est une partie ouverte de X et une sous-variété localement fermée de C1.

On dit que X est irréductible s'il satisfait l'une des conditions suivantes
dont on vérifie aisément qu'elles sont équivalentes:

(1) L'idéal a est premier.

(2) Si X est réunion de deux ensembles algébriques, l'un au moins est

égal à X.

Supposons X irréductible. On appelle dimension algébrique de X le
degré de transcendance du corps des fractions de l'anneau C [Tx, Tn]/a.
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On appelle courbe algébrique affine tout ensemble algébrique irréductible
de dimension algébrique 1 dans un certain espace numérique.

Lemme 5. Soient z, al9 ak des nombres complexes vérifiant la relation

z + a1z + + ak — 0
On a l'inégalité

z | < 2 max ifl/im

Désignons par r le maximum des | aj |1/j. On peut supposer r non nul et

l'on a

-) +-r r \r + + 0.

On en déduit que

2 k 2 2
< i + + +

r r r

ce qui démontre l'assertion.

Lemme 6. Soit U un voisinage ouvert connexe du point (0: 1) dans P1

et soient u0, uk des fonctions méromorphes sur U. On suppose que uQ

est non nulle. Il existe alors des nombres réels r et M strictement positifs
et un entier relatif m tels que

| z i z2 | < M

pour tout couple (zl9 z2) de nombres complexes vérifiant les relations

| zA | > r et u0(z1) z2 + + uk(zx) 0

Soit m un entier vérifiant la relation

0(0:1) (Wy) — 0(0:1) (uo)
m < inf

1 J

et soit r un nombre réel strictement positif tel que u0 soit holomorphe
inversible et les ul9..., uk holomorphes au voisinage de la couronne

C { z e C | |z|>r}.
Pour tout entier j compris entre 1 et n, on définit une fonction holomorphe
au voisinage de C en posant

Wj (z) Uj (z) (z)~ 1 ZmJ
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L'ordre au point (0: 1) de cette fonction étant positif, on pose

M 2 max || wy ]| 1/3.

Si (zl5 z2) est un couple de nombres complexes vérifiant les conditions de

l'énoncé, on a

(z?z2)k + w^zJizïz^-1 + + wk(Zl) 0.

On conclut en appliquant le lemme 5.

Lemme 7. Soit X un sous-ensemble algébrique strict de Cn et soit f une

fonction holomorphe sur C"\X Si f est bornée au voisinage de chaque point
de C", elle se prolonge en une unique fonction holomorphe g sur Cn. Si

de plus il existe une constante M et un entier naturel k tels que

|/(z) \<M\z\k
pour tout point z de Cn\X9 alors g est polynomiale.

Soit { un point de C. Quitte à effectuer un changement linéaire de

coordonnées, on peut supposer qu'il existe un polydisque D' x D" de

centre £ dans C"-1 x C tel que

(D'xdD')nX 0

(§ 3, démonstration lemme 1). Supposons /bornée sur D' x D". Pour tout
point (zl9 zn_1) de D', la fonction partielle/(z1? zn_ 1? se prolonge
en une fonction holomorphe g (z1?..., z„_ 1? sur D" (§1, théorème 1,

corollaire 1) et l'on a
1

g (zi,= 2in
f(zu •••,

az

pour tout point zn de D". On vérifie aisément que cette fonction g est

holomorphe sur D' x D'% ce qui démontre la première assertion.
Démontrons la seconde. Il existe une famille (aa)a6Nri de nombres

complexes telle que

g(z)E et I | < Me'"111
aeA

pour tout nombre réel strictement positif r (§ 1, théorème 1, corollaire 1).

L'assertion en découle aussitôt.

Pour la commodité du lecteur, les résultats d'algèbre nécessaires à la
démonstration du théorème suivant sont groupés dans l'appendice III.
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Théorème 2. Soit X un ensemble algébrique irréductible de dimension

algébrique k. Il existe des fonctions régulières uu ...,uk sur X et un
ensemble algébrique N de Ck vérifiant les conditions suivantes :

(1) L'application u («1? uk) de X dans Ck est propre à fibres
finies.

(2) Tous les points de X\u~1 (N) sont réguliers et la restriction de u
à cet ensemble est un isomorphisme local (donc en particulier un revêtement

fini de Ck\N d'après (1)).
(3) L'ensemble X\u~x (N) est connexe et dense dans X.

Supposons X plongé dans l'espace numérique Cn. On désigne par A
l'anneau C [Tl9 Tk], par K son corps des fractions, par B l'anneau des

fonctions régulières sur X et par L son corps des fractions. Quitte à effectuer

un changement linéaire de coordonnées dans C", on peut supposer que l'on
est dans la situation suivante:

(a) Les classes uu uk de Tx, Tk dans B sont algébriquement
indépendantes. Elles engendrent un sous-anneau sur lequel B est entier. Autrement

dit, l'application canonique de A dans C [Tu Tn] induit une injection

de A dans B et B est un yl-module de type fini.

(b) La classe a de Tk+1 dans B est un générateur de L sur K.

Désignons par p le polynôme minimal de a dans K[Tk+1]. C'est un
polynôme monique irréductible, et puisque a est entier sur A et A factoriel,
il appartient à A [Tk+1]. On a donc un isomorphisme

AlTk+1]l(p)

Désignons par m le degré de p et par A son discriminant. On a les inclusions

ÀB <=. A [a] c B

En particulier, il existe pour tout entier j compris entre k + 2 et n un
polynôme rj de degré strictement inférieur à m dans A [Tk+1] tel que le
polynôme

qj ATj -
appartienne à l'idéal b de X.

Lemme 8. Il existe un entier naturel v tel que Avb soit contenu dans l'idéal
engendré par p,qk+2,

Désignons par q un polynôme de degré v dans C [Tu Tn]. Modulo
l'idéal engendré par qk+2> •••> <ln,polynôme Avq est congru à un polynôme
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r de A [Tk+1\ (à savoir le polynôme Avq (Tu Tk+U A 1rk+2, A 1rn)).

La division euclidienne des polynômes montre que modulo l'idéal engendré

par p,qk+z, qn, on Peut choisir r de degré strictement inférieur à m.

Si q appartient à b9 il en est de même de r qui est donc nul (car p est le

polynôme minimal de a). Ceci montre que Avq appartient à l'idéal engendré par

p, qk+ 2, qn. On conclut en remarquant que b est de type fini.

Revenons à notre théorème. L'ensemble TV des zéros de A est un sous-

ensemble algébrique strict de Ck (car p est irréductible).
Démontrons (1). On voit comme précédemment que le polynôme

minimal pj de la classe de T} appartient à A [Tj[ pour tout entier ./ compris

entre k + 2 et n. Tout point (zl9 z„) de X vérifiant les équations

P (zl5 •••5 zk+l) Pk + 2 (Zl> • • -5 z/c> Zk + 2) ••• Pn (Z15 • • • z/c? Zn) ~~ ®
P

l'assertion découle du lemme 5.

Démontrons (2). On définit une application i// de C" dans Cn~k en posant

\l/(zl9 z„)

(p (Z15 * * * ' Zk + l)? Pk + 2 (Z1 ' * * * Zk ' Zk + 2)? • • • Pn (Z1 • • * ' Zfcs Zn)) *

L'ensemble Z des zéros de \j/ coïncide avec X sur (Ck\N) x Cn~k (lemme 8).

dp
Puisque (Ci? Ck+1) est non nu^ en tout point (Ci, C«) de

Z\w_1 (TV), l'application partielle \j/ (Ci, Ck, est de rang n~*k au point
(Cfc+i, Cn)- On conclut à l'aide du théorème des fonctions implicites
(appendice I, théorème 3).

Démontrons (3). On désigne par Y l'ensemble des zéros de p dans
Cfc+1, par v1 la restriction à Y de la première projection de Cfc x C dans
Ck et par v2 la restriction à Z de la première projection de Ck+1 x Qn~k~i
dans Ck+1. Il est clair que l'image de v2 est contenue dans Y et que l'on a

u v1 - v2

De plus, il résulte aisément de ce qui précède que v2 induit un isomorphisme
de X\u~x (N) sur (TV). Démontrons par l'absurde que ce dernier
ensemble est connexe. Supposons qu'il existe deux ensembles ouverts non
vides disjoints Y' et Y" recouvrant T\w-1 (TV). Pour tout point z de Cfc\TV,

on pose

P (z>Tk+i) Il (Tk+1— zk+1)
(z,zk+i)eY'

P (Z> Tk+l) — ]^[ (Tk+1 — Zk+l) '
(z»zfc+l )eY"
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On a par définition

P(z, Tk+1p'(z,Tk+1)p"(z,
et il suffit de montrer que les coefficients de p' et p" sont des fonctions
polynomials. Tout d'abord, ces coefficients sont des fonctions holomorphes sur
Ck\N (§ 4, proposition 2), et puisque vx est propre, ils demeurent bornés au

voisinage de tout point de N. On conclut à l'aide des lemmes 6 et 7.

Il reste à montrer que X\u~x (N) est dense dans X. C'est une
conséquence immédiate de l'irréductibilité de X et du lemme suivant.

Lemme 9. L'adhérence de X\u~x (N) est un ensemble algébrique.
Pour toute fonction polynomiale / sur Cn et pour tout point z de Ck\N,

on pose

ef(z,T) n z„)).
(z,zfr+1,...,zn)eX

On vérifie comme précédemment que les coefficients de 9f sont des fonctions

polynomiales. Nous allons montrer que l'adhérence V de X\w-1 (N) est

égale à l'ensemble algébrique W défini par

W{(zl5z„)eC" | 0/(z1,..,,zft,/(z1,...,z„)) 0

pour tout f e C [T1? T„] }

Tout d'abord, il résulte des définitions que W contient V. Réciproquement,
soit (Ci,O un point de W et montrons qu'il appartient à la fibre

E

Raisonnons par l'absurde. Puisque E est fini, il existe un polynôme f qui
s'annule au point (Ci,..., C») mais ne s'annule en aucun point de E. Ceci

implique en particulier que 0 est une racine du polynôme 0f (Ci,..., C&> T).
Il existe alors une suite(z(/},..., z(^)ieN de Ck\N qui converge vers (Ci, C/c)

et une suite (a7-)ieN de C qui converge vers 0, telles que a7- soit une racine du

polynôme 6j (z([\ ziJk\ T) pour tout entier j (continuité des racines d'un
polynôme).

On désigne par z0) un point de X\u~1 (N) se projetant sur (z((\ z{£)
tel que/(z(7)) soit égal à ocj. La restriction de u à V étant propre, on peut

supposer, quitte à passer à une sous-suite, que (zU))JeN converge vers un

point z de V. On en déduit que

/(z) lim f(z(J)) 0
co

ce qui est absurde.
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Corollaire. L'ensemble des points singuliers d'une courbe algébrique

affine X est fini. L'ensemble des points réguliers est une courbe holomorphe

connexe et dense dans X.

Théorème 3. Pour toute courbe algébrique X de Cn, il existe une courbe

holomorphe X et une application holomorphe non constante n de X dans

Cn vérifiant les conditions suivantes :

(1) L'image de n est contenue dans X.

(2) Pour toute courbe holomorphe Y et toute application holomorphe v

de Y dans Qn constante sur aucune composante connexe de Y, il existe une

application holomorphe et une seule v de Y dans X telle que

Le couple (X, n) est déterminé à isomorphisme près par ces conditions.

De plus, l 'application n est propre (à fibres finies). Elle induit un isomorphisme

de X\iz'1 (A) sur X\A, en désignant par A l'ensemble des points
singuliers de X.

Désignons par u une fonction régulière sur X et par N un ensemble fini
de C vérifiant les conditions du théorème 2. Pour tout point £ de N, il
existe un disque D de centre £ et de rayon r dans C tel que la restriction de

wàC1 (Z>\{£}) soit un revêtement à m feuillets de D\{Q. Désignons par
Uu..., Up les composantes connexes de w"1 (Z>\{£}). La restriction de u
à Uj est un revêtement à mj feuillets de D\{£} et l'on a

Désignons par Dj le disque centré à l'origine et de rayon r1/mi dans C et

par if/j l'application de Dj dans D définie par

La restriction de xj/j à Dj\{0} est un revêtement à feuillets de D\{£}.
Il existe donc un unique homéomorphisme hj de Dfi{0} sur Uj rendant le

diagramme suivant commutatif

71 ' V V

m m1 + + mp

ij/j (z) zmJ + C •

D.\{0}

\ S'

£\U}
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Cette application est en fait un isomorphisme. On désigne par X l'espace
obtenu en recollant X\u~x (N) et les Dj au moyen des homéomorphismes
hj (lorsque £ parcourt N), par n l'application réciproque de l'injection

canonique de X\u~1 (N) dans X et par l'application réciproque de

l'injection canonique de Dj dans X. On vérifie aisément que X est une
surface topologique et que les (j)j sont des cartes holomorphiquement compatibles

avec toute carte de X\u~x (N). On munit X de la structure
holomorphe correspondante.

L'application n est une application holomorphe à valeurs dans C",

définie sur le complémentaire d'un ensemble fini de X. Puisqu'elle demeure
bornée au voisinage de chaque point, elle se prolonge en une application

holomorphe de X dans Cn.

Il est clair que l'application tc est propre à fibres finies, que son image

est contenue dans X et qu'elle induit un isomorphisme de X\7i_1 (A) sur

X\A (§4, proposition 1, corollaire). Il reste à vérifier la condition (2).

L'image réciproque de A est un ensemble fini et l'on pose

v n'1 -v1x^-1(4,

On vérifie aisément que v se prolonge par continuité aux points de ~1

ce qui achève la démonstration du théorème.

Le couple (X, n) construit dans le théorème 3 s'appelle la normalisation

(ou la désingularisation) de X. Le lemme suivant est une conséquence immédiate

de ce qui précède.

Lemme 10. Soit X une courbe algébrique de C" et soit v une application

holomorphe d'une courbe holomorphe Y dans C". On suppose que l
'application v est propre (à fibre finies) et qu'elle induit un isomorphisme de

7\^-1 (A) sur X\A, en désignant par A l'ensemble des points singuliers
de X. Alors Y, v) est la normalisation de X.

Tout polynôme p de C [T0, Tn\ s'écrit d'une manière et d'une seule

p p0 + + pk

où pj est homogène de degré j. Pour tout point x de Cn+1 et tout nombre

complexe 2, on a

p(Xx) p0+ + Xkpk(x).
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En particulier, si p s'annule sur une partie de C+1\0 saturée pour la

projection canonique \j/ de C?z+1\0 dans P", il en est de même de chacun des p j.
Pour tout polynôme homogène p de C [T0, Tn], l'ensemble des zéros

de p dans C"+1\0 est saturé pour \J/. Son image dans Pn s'appelle (abusivement)

le lieu des zéros de p.
On dit qu'une partie X de P" est algébrique si elle est le lieu des zéros

d'une famille de polynômes homogènes. L'ensemble a des polynômes de

C [T0, Tn] qui s'annulent sur (X) est un idéal homogène (i.e.

engendré par des polynômes homogènes) que l'on appelle l'idéal de X.
On notera que X est aussi le lieu des zéros de toute famille de générateurs
de a. En particulier, le théorème de la base de Hilbert montre que X est le

lieu des zéros d'une famille finie de polynômes homogènes.
Soit X un ensemble algébrique de P" et soit a son idéal.
On dit qu'un point xdel est régulier s'il existe un voisinage ouvert U

de x dans P" tel que U n X soit une sous-variété (holomorphe) de U. Un
point est dit singulier s'il n'est pas régulier.

Il résulte de cette définition que l'ensemble des points réguliers de X est

une partie ouverte de X et une sous-variété localement fermée de P".
Pour tout entier j compris entre 0 et n, la trace de X sur l'ensemble

Uj {(z0:z„) eP" | zy- # 0}

est un sous-ensemble algébrique de C" dont l'idéal est donné par la formule
A

a_j {p e C [T0, Tj, Tn\ | il existe q e a tel que

p q(T0, 1, Tn)}

C'est une conséquence immédiate des définitions.
On dit que X est irréductible s'il vérifie l'une des conditions suivantes

dont on vérifie aisément qu'elles sont équivalentes :

(1) L'idéal a est premier.

(2) Si X est réunion de deux ensembles algébriques, l'un au moins est
égal à X.

Supposons X irréductible. On vérifie aisément que l'ensemble A défini
par

A | ^ e C (L0, Tn) | p et q homogènes de même degré et q $ a j
est un sous-anneau de C (T0) Tn) et que le quotient A/a A est un corps.
On l'appelle le corps des fonctions rationnelles sur X et on le désigne par
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K (2Q. On appelle dimension algébrique de X le degré de transcendance
de k (X).

Proposition 4. Soit X un ensemble algébrique de Pn et soit a son idéal.
Si X est irréductible et si Tj n 'appartient pas à a, la trace de X sur

Uj est irréductible et le corps k (X) des fonctions rationnelles sur X

s'identifie au corps des fractions de C [T0, Tp TJ jap
Désignons par p1 et p2 des polynômes de degré k1 et k2 respectivement

dans C [T0, Tp Tn] tels que le produit pxp2 appartienne à a_j. Ceci

signifie qu'il existe un polynôme q dans a tel que

Comme a est premier et que Tj n'appartient pas à a, on peut supposer que
q n'est pas divisible par Tp On a alors

d'où l'assertion. Le reste de la proposition est laissé en exercice au lecteur.

On appelle courbe algébrique projective tout ensemble algébrique
irréductible de dimension algébrique 1 dans un espace projectif.

Les deux théorèmes suivants sont des conséquences immédiates des

résultats correspondants du cas affine.

Théorème 4. L'ensemble des points singuliers d'une courbe algébrique

projective X est fini. L'ensemble des points réguliers est une courbe

holomorphe connexe et dense dans X.

Théorème 5. Pour toute courbe algébrique projective X de P", il existe

une courbe holomorphe X et une application holomorphe non constante

n de X dans P" vérifiant les conditions suivantes :

(1 L'image de n est contenue dans X.

(2) Pour toute courbe holomorphe connexe Y et toute application
holomorphe non constante v de Y dans Pn dont l 'image est contenue dans

A

A

PtPz 1(T0,1,
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Xil existe une application holomorphe v et une seule de Y dans X telle

que
71 ' V V

Le couple (X,tl) est déterminé à isomorphisme près par ces conditions.

De plus, la courbe X est compacte et connexe et l'application n induit un

isomorphisme de X\7r-1 (A) sur X\A, en désignant par A l'ensemble des

points singuliers de X.

Le couple (X,n) du théorème 5 s'appelle la normalisation (ou la désingu-
larisation) de X.
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