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CHAPITRE PREMIER

VARIETES HOLOMORPHES

§ 1. FONCTIONS HOLOMORPHES

Soient E et F deux espaces vectoriels complexes de dimension finie.
Pour toute application R-linéaire # de E dans F, on définit deux applications
u' et u” en posant

(u(®) —iu(n) et u () = —;—(u () + iu(it)).

NSRS

u' () =

On vérifie aisément que la premiére est C-linéaire et la seconde C-anti-
linéaire. On obtient ainsi une décomposition canonique

Hom y (E, F) = Hom (E,F) @ Hom¢(E, F).

Soit U un ensemble ouvert de E. On dit qu’une application f de U dans
F est holomorphe si elle est contin{iment dérivable et si sa dérivée en tout
point est C-linéaire. Il revient au méme de dire que (D f)” est nulle ou
encore que (D f) est égale & D f. On désigne par O (U, F) 'ensemble des
applications holomorphes de U dans F. Si F est égal a C, on utilise aussi la
notation O (U).

" Notons que O (U) est une sous-algébre de ¢* (U, C) et 0. (U, F) un

sous-0 (U)-module fermé de %' (U, F).

Le lemme suivant est une conséquence immeédiate de cette définition
(voir aussi [2], chap. VIII).

LeMME 1. (1) La composée de deux applications holomorphes est holo-
morphe.

(2) L’application réciproque d’un difféomorphisme holomorphe est holo-
morphe.

(3) Siune fonction holomorphe posséde un logarithme, ce logarithme est
holomorphe. |
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On identifie désormais R?*" & C" au moyen de 'isomorphisme R-lin€aire
défini par
/1()(?1, ooy Xy Vi oo yn) = (X1 FiYises Xy +iYn)
et

1 1 _ 1 _ 1 _
ANz, 000 2,) = (E(z1 +Zy), ""E(Z"_[—Z")’Ei(zl -z, ...,E(z,,—z,,)>.

Les formules suivantes définissent des opérateurs différentiels sur C"

0 1/ 0 Y, . 0 1 /0 i 0 >
— B e | s e e C —— = < \ L—— -
0z;  2\0x; 0y; 0z; 2 (6» 0y;
Soit U un ensemble ouvert de C” et soit f une application continiment
dérivable de U dans E. On vérifie aisément que ’on a

0 . 0
o= % Loy o weyo- 3 Lo

1=j=n l=j=n aZj
pour tout point z de U et tout vecteur ¢ de C". En particulier, pour que f soit

0
holomorphe, il faut et il suffit que les fonctions é{i soient nulles (conditions
2j
de Cauchy-Riemann). Supposons que E soit ’espace numérique C™ et que

Papplication ( fi, ..., f,,) soit holomorphe. La matrice jacobienne de f est
donnée par la formule

(ofi off afi  ofi

0x,  0x, dx, ox,

Ofm  Ofw  Ofn 0 fom

0x 0x, x4 0x,
Jac(f) = i ; ) ,
ofi o ofi as
00X 0x, 0x, 0x,

ofy afn of,  of
[ axl axn 5x1 ax
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ou f ; et f '3 désignent les parties réelle et imaginaire de f;. En particulier,
si m est égal a n, le jacobien de f est donné par la formule

off afil2  |afi  as ]2

0%, 0x,, 0x, 0x,
e =| - | o+

0fr  Of. 0fn  Ofs

0% 0x,, 0%, 0x,,

Nous allons maintenant rappeler quelques propriétés des fonctions
holomorphes d’une variable.

THEOREME 1 (Cauchy). Désignons par Y une piece compacte de C,
par U un voisinage ouvert de Y et par f une fonction de %* (U, C). On

a pour tout point [ de Y,

1 d 1 0 d dz
f@=7ff@ Z+.ffuiii.

—(z
z—{ y 0Z z—_

La fonction

appartient 3 L (C, C). On en déduit que

z—{

Jaf()dZ/\dZ J af()dZ/\dZ

= lim
Y\D, 0z z—_

&0

z—{

ou D, désigne le disque de centre { et de rayon ¢. De plus, la fonction :
Z —

étant holomorphe sur C\{{ }, la formule de Stokes (chap. 0, § 4, théoréme 2)
montre que ’on a

aof dz A dZ dz
J = (2) = lim f (Z) - | f(&—.
zZ— g0 oY z—{
On conclut en remarquant que
: dz S 0 .
lim f(2) = lim i fl+ee”)dO = 2inf(0).
e—>0 J 0D, Z— &0 0

COROLLAIRE 1. Soit f une fonction holomofphe sur un ensemble ouvert U
de C. Pour tout point { de U, il existe une suite (a),. de nombres
complexes telle que la série

Z a (z _C)k

keN
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converge uniformément vers f sur tout disque D de centre { relativement
compact dans U. En particulier, la fonction f appartient a € (U, C) et

['on a
o f k! dz o~ f
f\k(C)—_;J‘ f()( )k+l et 6§k=0
pour tout entier naturel k.
Pour tout point w de D, la série
v (w0
ren (2 =07
converge uniformément sur 0D vers la fonction . La formule de Cauchy

Z—W
montre alors que 'on a

1 d
F(w) = ff(z) = ¥ =D j S g i

keN C)k i

ce qui démontre I’assertion.

COROLLAIRE 2 (Principe du prolongement analytique). Soit f une fonc-
tion holomorphe sur un ensemble ouvert connexe U de C. Les conditions
suivantes sont équivalentes :

(1) La fonction f est identiquement nulle.
(2) 1l existe un point de U o le germe de f est nul.

(3) 1l existe un point de U ou toutes les dérivées de f sont nulles.

En particulier, pour tout point z de C, ['anneau 0, des germes au
point z de fonctions holomorphes est intégre.

COROLLAIRE 3. Soit [ wune fonction holomorphe sur un ensemble ouvert
connexe U de C. On suppose que [ n’est pas identiquement nulle. Pour
tout point { de U, il existe un entier naturel k et une fonction holomorphe g
sur U tels que

f(2) =(z—-0Fg(z) et g #0.

De plus, I’entier k et la fonction g sont uniquement déterminés par ces
conditions. En particulier, pour tout point z de C, [’anneau 0, est un
anneau de valuation discréte 1).

1) Ceci signifie que (0, est principal et qu’il posséde un unique idéal premier non nul.

I’Enseignement mathém., t. XXI, fasc. 2-3-4. 13
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COROLLAIRE 4 (Weierstrass). Soit U un ensemble ouvert de C. Les
topologies induites sur O (U) par L. (U, C) et € (U,C) coincident.

Soit K un ensemble compact de U et soit « une fonction de €% (U, R)
¢gale a 1 au voisinage de K. Pour toute fonction holomorphe f sur U,

tout entier naturel £ et tout point { de K, la formule de Cauchy appliquée
a la fonction o f montre que 'on a

1 d dz
O = — f(Z)—(Z) i ACZ
et
akf (—l)kk' dz A dZ

o ; . " : .
Comme T est nulle au voisinage de K, on en déduit qu’il existe une cons-
z

tante ¢, , telle que

< Cok Hf“ L1, supp («)
K

ks
i

L’assertion en découle aussitot.

CoroLLAIRE 5 (Liouville). Toute fonction holomorphe bornée sur C est
constante.
Soit f une fonction holomorphe sur C. Pour tout entier naturel k et tout

nombre réel r, on a
akf
( ) = __Jv f( ) k+1 .

o*f

On en déduit que

rk

o) <

Si f est bornée et k strictement positif, ceci implique que o (0) est nul,
z

d’ou ’assertion.

CoROLLAIRE 6 (Laurent). Soient r, r, et r, des nombres réels vérifiant

les conditions
0<r,<r<r,.

On désigne par C la couronne définie par

={zeClry<|z|<ry}
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et par D le disque de centre 0 et de rayon r. Pour toute fonction holo-
morphe f sur C, il existe une suite (a,)iz de nombres complexes telle que

la serie
Y ooa
keZ.

converge uniformément vers | sur toute partie compacte de C. On a pour
tout entier relatif k,

1 iz 1£] oo
a, = 57; J‘an(Z) Zk+1 et l ay l < I"k .

Pour tout entier &, la forme différentielle f(z) est fermée. On en

Zk+1

déduit que son intégrale sur 0D est indépendante de r.
Introduisons deux nombres réels p, et p, vérifiant les relations

rp <p1 <pz2<nr
et désignons par K la couronne définie par
K={zeClp; <|z|<p,}.
Il résulte de la formule de Cauchy que I'on a pour tout point { de 12,

1 dz 1 dz 1 dz
Q=5 LKf(z) = Lbzf(@ " ﬁﬁmm —

ou D, et D, désignent les disques de centre O et de rayons p; et p, respec-
tivement. Les séries

Ck Zk
+1

ot - Y
k+1 k
Z keNC

)

keN

convergent uniformément vers la fonction

sur 0D, et 0D, respecti-

Z —
vement. On a par conséquent
1 dz 1 dz
J@Q = C"a—f f(2) =5 + ), @D —
kEZN 2im ) op, gl kEZN 2im ale(Z) z K

ce qui démontre 1’assertion.

CoOROLLAIRE 7 (Weierstrass). Soit D un disque de centre 0 et de rayon r
dans C et soit [ une fonction holomorphe sur D\{0}. On désigne par
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(a)iez les coefficients du développement de Laurent de f a [’origine et par
N [D’ensemble

N ={keZ|lk<0 e a #0}.

(1) Pour que N soit vide, il faut et il suffit que f soit bornée au voi-
sinage de [’origine. La fonction f se prolonge alors en une fonction holomorphe
sur D.

(2) Pour que N soit fini et non vide, il faut et il suffit que la fonction

— soit bornée au voisinage de [’origine.

(3) Pour que N soit infini, il faut et il suffit que l'image de D soit
dense dans C.

Pour tout nombre réel p strictement compris entre O et 7, on a

lax]l <p™" sup [f(2)].

lz]=p

La premiére assertion en résulte aussitot.
Supposons N fini et non vide et désignons par k, sa borne inférieure.
La fonction g définie par

g(z) = z7"0f(2)

se prolonge en une fonction holomorphe sur D ne s’annulant pas a [’origine,
ce qui démontre la deuxieme assertion.

Supposons N infini et montrons par ’absurde que I’'image de f est dense.
En effet, s’il existe un disque fermé de centre { dans C ne rencontrant pas
f (D), la fonction g définie sur D\{0} par

demeure bornée au voisinage de I’origine ce qui est absurde en vertu de ce
qui précede.

Soit 7 = (ry, ..., r,) un élément de (R3)" et soit { = ({4, ..., {,) un point
de C". On appelle polydisque de centre ( et de rayon r 1’ensemble défini

par
D, 1) ={(2¢,.0r29)€C"| |z; = ;| <rjpour 1 <j<n}.

On appelle bord distingué du polydisque D ({,r) 1’ensemble
aOD(C>r) = {(le -“:Zn)ecnl IZj - CJ' = Fr; pour 1 <] <n} .
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PROPOSITION 1 (Cauchy). Soit f une fonction holomorphe au voisinage de
I’adhérence d’un polydisque D de C". Pour tout point { de D, ona

10 = (57) f fz) AR A
- (21 =0 o (za =)
C’est une conséquence immédiate du théoréme 1 et du théoréme de
Fubini.

COROLLAIRE 1. Soit f une fonction holomorphe sur un ensemble ouvert U
de C". Pour tout point { de U, il existe une famille (a,)qenn de nombres
complexes telle que la série

Z Ay (Z - C)a 1)

asNm

converge uniformément vers f sur tout polydisque D de centre { relativement
compact dans U. En particulier, la fonctzon f appartient a € (U, C) et
['on a

LN S VY S
0z* (217'5)"5 (

Zl—gl)al-*—l “'(Zn_Cn)a’1+l _—62

pour tout multi-indice o.
La démonstration est analogue & celle du corollaire 1 du théoréme 1.

CoroOLLAIRE 2 (Principe du prolongement analytique). Soit f une fonc-
tion holomorphe sur un ensemble ouvert connexe U de C". Les conditions
suivantes sont équivalentes :

(1) La fonction f est identiquement nulle.
(2) 1l existe un point de U ou le germe de f est nul.
(3) Il existe un point de U ou toutes les dérivées de f sont nulles.

En particulier, pour tout point z de C", ['anneau 0, des germes au
point z de fonctions holomorphes est integre.

COROLLAIRE 3 (Weierstrass). Soit U un ensemble ouvert de C". Les
topologies induites sur O (U) par L. (U, C) et €* (U, C) coincident.

1) Pour tout multi-indice « = («y, ..., a,) et tout point z = (z, ..., z,) de C", on pose
lal =a1+...+an a!:ocl!...cxn! Za:-_-Z%l...Zin
ol*l ol| ole| ole|
dz%  9z%1..0z%n 0z*  09z%1...0z%
1 n 1 n
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Une utilisation répétée de I’argument développé au corollaire 4 du théo-
réeme 1 montre qu’il existe pour tout polydisque D relativement compact
dans U et pour tout multi-indice « une constante c, , telle que

Ex

a a
0z{1 ... Oz |

< Cyp ”f” L1 K

D

ou K est un voisinage compact de ’adhérence de D dans U. L’assertion en
résulte aussitot.

§ 2. VARIETES HOLOMORPHES

Toutes les cartes de variétés topologiques considérées désormais prennent
leurs valeurs dans des espaces numériques complexes.

Soit X une variété topologique.

On dit que deux cartes de X sont holomorphiquement compatibles si les
changements de cartes sont holomorphes.

On appelle atlas holomorphe de X tout ensemble de cartes deux a deux
holomorphiquement compatibles dont les domaines recouvrent X. On dit
que deux atlas holomorphes sont compatibles st leur réunion est un atlas
holomorphe. On vérifie aisément que cette relation est une relation d’équi-
valence. Ses classes s’appellent les structures holomorphes de X.

On appelle variété holomorphe toute variété topologique munie d’une
structure holomorphe.

Soit X une variété holomorphe.

On appelle (abusivement) atlas de X tout atlas holomorphe appar-
tenant a la structure holomorphe de X et carte de X toute carte appartenant
a un atlas de X. .

Soit x un point de X. Toutes les cartes de X dont le domaine contient x
prennent leurs valeurs dans le méme espace numérique complexe. La dimen-
sion de cet espace s’appelle la dimension de X au point x et se désigne par
dim, (X). La fonction dim (X) est localement constante. On dit que X
est de dimension pure si elle est constante.

On appelle courbe holomorphe (resp. surface holomorphe) toute variété
holomorphe de dimension pure 1 (resp. 2).

Les changements de cartes étant en particulier des difféomorphismes,
la variété topologique X se trouve naturellement munie d’une structure
différentielle que I’on dit sous-jacente @ X. Pour éviter des confusions, on
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désigne quelquefois par X® la variété différentielle obtenue en munissant
X de la structure sous-jacente.

Le jacobien des changements de cartes étant toujours positif, la variété
différentielle X® est orientable et munie d’une orientation naturelle.

On dit qu’une application de X dans un espace vectoriel complexe E
de dimension finie est holomorphe s’il en est ainsi de son expression dans
toute carte de X (ou ce qui revient au méme dans toute carte d’un atlas de
X). On désigne par O (X, E) I’ensemble de ces applications. Si E est égal a
C, on utilise aussi la notation O (X).

Notons que @ (X) est une sous-algébre de ¥* (X, C) et 0 (X, E) un
sous-0 (X)-module de #* (X, E). De plus, les topologies induites par
% (X,E) et L. (X, E) sur 0 (X, E) coincident (§ 1, proposition 1, corol-
laire 3). Pour cette topologie, ’espace O (X, E) est complet. C’est un espace
de Fréchet si X est dénombrable & I'infini.

On dit qu’une application continue # de X dans une variété holomorphe
Y est holomorphe s’1l en est ainsi de son expression dans tout couple de
cartes. On désigne par 0 (X, Y) ’ensemble de ces applications.

On dit que 'application u est un isomorphisme si elle est bijective et si
u et 4~ ! sont holomorphes.

Les variétés holomorphes, les applications holomorphes et leur compo-
sition forment une catégorie. Le lemme suivant est une conséquence immé-
diate des définitions.

LemMME 1. Pour qu’une application continue u de X dans Y soit holo-
morphe, il faut et il suffit que [’application u* envoie O (V) dans O (u™! (V))
pour tout ensemble ouvert V de Y.

Les exemples donnés au paragraphe 1 du chapitre 0 fournissent mutatis
mutandis des exemples de variétés holomorphes. En particulier, pour tout
entier naturel n, on construit comme dans I’exemple 5 espace projectif
complexe P" de dimension n.

Soit X une variété holomorphe et soit = une application de but X,

On dit que deux cartes complexes de 7 sont holomorphiquement compa-
tibles si la transition est holomorphe.

On appelle atlas holomorphe de m tout ensemble de cartes complexes
deux a deux holomorphiquement compatibles dont les domaines recouvrent
X. On dit que deux atlas holomorphes sont compatibles si leur réunion
est un atlas holomorphe. On vérifie aisément que cette relation est une rela-
tion d’équivalence. Ses classes s’appellent les structures vectorielles holo-
morphes de .
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On appelle fibré vectoriel holomorphe sur X toute application de but X
munie d’une structure vectorielle holomorphe.

Soit © un fibré vectoriel holomorphe sur X.

On appelle (abusivement) atlas de © tout atlas holomorphe appartenant
a la structure vectorielle holomorphe de 7 et carte de = toute carte appar-
tenant a un atlas de 7.

On notera que la source 7 () de « est naturellement munie d’une struc-
ture holomorphe (chap. 0, § 2).

Les transitions €tant en particulier indéfiniment dérivables, I’application
n est de maniére naturelle un fibré vectoriel complexe sur X®. Pour éviter
des confusions, nous dirons qu’un fibré vectoriel complexe sur X® est un
fibré vectoriel différentiel sur X.

On dit qu’une section de 7 est holomorphe s’1l en est ainsi de son expres-
sion dans toute carte de 7 (ou ce qui revient au méme dans toute carte d’un
atlas de w ou encore si c’est une application holomorphe de X dans 7 (n)).
On désigne par O (X, n) I’ensemble de ces sections.

Remarquons que 0 (X, ) est un sous-0 (X)-module de ¥* (X, n). De
plus, les topologies induites par €% (X, n) et L. (X, n) sur O (X, n)
coincident. Pour cette topologie, I'espace O (X, n) est complet. Cest un
espace de Fréchet si X est dénombrable a 'infini.

Si p est un second fibré vectoriel holomorphe sur X, on désigne par
0 (w, p) 'ensemble des morphismes holomorphes de © dans p (i.e. les appli-
cations holomorphes u de 7 () dans 7 (p) telles que

pru=m,

qui induisent des applications C-linéaires sur les fibres).

Les exemples et les constructions donnés au paragraphe 2 du chapitre 0
fournissent mutatis mutandis des exemples et des constructions de fibrés
vectoriels holomorphes. En particulier, si 7 et p sont des fibrés vectoriels holo-
morphes sur X, il en est de méme des fibrés vectoriels 7 @ p, 7 @ p, n* et An.

Soit % un recouvrement ouvert de X. On dit qu'un cocycle de rang p
subordonné a % est holomorphe si les applications qui le composent sont
holomorphes. On définit de la méme maniére la relation de cobordance
entre cocycles holomorphes, d’ott un ensemble Pic (X, G (p; C)) dont les
éléments s’appellent les fibrés principaux holomorphes de groupe structural
G(p; C) sur X.

Les classes d’isomorphie de fibrés vectoriels holomorphes de rang p
sont en correspondance biunivoque avec les fibrés principaux holomorphes
de groupe structural G (p; C). |
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On prendra garde de distinguer Pic (X, G (p; C)) et Pic (X R G(p; C)):
un fibré vectoriel holomorphe différentiablement trivial n’est pas néces-
sairement holomorphiquement trivial (chap. IV, § 7).

Soit X une variété holomorphe de dimension pure 7.

Le fibré cotangent complexe Q¢ a X® est un fibré vectoriel différentiel
de rang 2n sur X. Pour toute carte ¢ de domaine U dans X et pour tout
point x de U, on a un isomorphisme C-linéaire

£v.p: Qex — Homg (C", C).

(chap. 0, § 3, lemme 1). Il résulte de la définition méme des applications
holomorphes que les sous-espaces Q5% et Q%! de Qé’ximages réciproques par
¢4 des sous-espaces Homg (C", C) et Homg (C", C) de Homgy (C*, C)
sont indépendants de ¢.

Pour toute fonction f de ¥* (X, C), avec k au moins égal a 1, on définit

0 0 0 %
des fonctions of : ;o : 9 de €*~! (U, C) en posant

op, " o¢, 08, 7 04,
of 1<6f .6f> of 1<6f _c’if)
e = o e et —— T = 41—
0p; 2\0¢; 0¢; op; 2\09; 0
ol ¢ et 45'} désignent les parties réelle et imaginaire de ¢ ;. Le lemme suivant
est une conséquence immédiate de ces définitions (chap. 0, § 3, lemme 5).

LEMME 2. Pour toute carte ¢ de X et tout point x du domaine de ¢,
les différentielles des germes ¢y yy ..., Gp. (resp. ¢y .o, o) forment
une base de Q.° (resp. Q>'). Pour tout germe f de AL, ona

of of _
df= "——(X)dgbx—i‘ —_X)d Px .
14_:%9 09; " 1é>;én 00; (940
Soit 7 la projection canonique de || QL% sur X et soient ¢ et Y des
xeX
cartes de domaines respectifs U et V" dans X. Le lemme 2 montre que les
applications

¢’ :n ' (U) » U x Hom(C",C) et ' :n ' (V) = ¥V x Hom(C", C)
définies par |
(%) =X e () et Y (x,9) = (x, 80, (1))

(on utilise les notations du paragraphe 1) sont des cartes complexes de =.

1 s




i
i
i
:
i
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Ces cartes sont holomorphiquement compatibles, la transition est donnée
par la formule

g(x) ="Dy(p(x))" ="Dy(p(x)"

ou 7y désigne le changement de cartes de ¢ dans .
Le fibré vectoriel holomorphe ainsi défini se désigne par Q'°. On
I’appelle parfois le fibré cotangent holomorphe a X.

Soit p la projection canonique de [[ Q7' sur X. Le lemme 2 montre
que les applications xeX

¢ :n 1 (U) - U x Homg(C",C) et y :n~ ' (V) - V x Homg(C", C)
définies par
(Nﬁ”(xa y) = (x: gx,qb(y)”) et JI" (x7 y) = (-xa 3x,![/ (y)”)

sont des cartes complexes de p. Ces cartes sont (différentiablement) compa-
tibles, la transition est donnée par la formule

g(x) ="Dy(p(x)""

Le fibré vectoriel différentiel ainsi défini se désigne par Q°'. Notons que
I’on a un isomorphisme canonique

Qé — QI,O ('B QO,l
Pour tout couple (p, g) d’entiers, on pose
QP11 = APQLO @ A1Q%1 .

On dit qu’une forme différentielle est homogene de bidegré (p, q) si elle
prend ses valeurs dans Q% La restriction a U de toute forme différentielle
homogéne de bidegré (p, g) s’écrit d’'une maniére et d’une seule

uly = 2 Usk dpy A ddy

JeSP(n) KeSq(n)

ou I’on a posé
d(b.] = d(/).]l N .. A d¢"P et d(_ﬁK =— dakl VAPV AN d(ﬁkq-
LEMME 3. La différentielle de toute forme de €* (X, Q"% appartient d
@° (X, Q1) @ %O (X, QPatYy.

On peut supposer que X est un ensemble ouvert de C". L’assertion résulte

- alors des définitions.
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Pour toute forme différentielle u de %' (X, Q7%), on désigne par d'u
(resp. d"u) la composante homogéne de bidegré (p+1, g) (resp. (p,q+1))de
du. Le lemme suivant est laissé en exercice au lecteur (chap. 0, § 3, theo-
réme 1).

LEMME 4. Pour qu’une forme différentielle u de %' (X, Q"°) soit holo-
morphe, il faut et il suffit que d"u soit nul.
Pour toute forme différentielle u de €* (X, Q¢), on a

d (d'u) =0 d(du) +d (du) =0 d (du) =0.
Pour tout couple (u, v) de formes différentielles dans €' (X, Q¢), avec u
homogeéne de degré r, on a
dwav)y =dunv+(—1)"undv
et

d"wav) =duno+(=1)'undo.

En particulier, I’application d" de €* (X, Qc) dans €° (X, Q) est O (X)-
linéaire.

Soit / une application holomorphe de X dans une variété holomorphe Y
de dimension pure m. Désignons par ¢ une carte de domaine U dans X
et par y une carte de domaine ¥ contenant 4 (U) dans Y. On a par définition

oW h
vy = o = 3 S ag,
ot 1=k=n k
_ _ o(Wr.-h)y _
@) =d@ = % P,
1=k=n d)k

pour tout entier j compris entre 1 et m. On en déduit aisément que I'image
réciproque par 4 d’une forme homogeéne de bidegré (p, g) est une forme
homogeéne de bidegré (p, q) et que 'on a

d'h* () = h*(d'u) et  d'h* () = h*(d"u)

pour toute forme différentielle u de €' (Y, Q).
Soit 7 un fibré vectoriel holomorphe de rang pur m sur X et soient ¢

et ¥ des cartes de © de domaines respectifs U et V. Pour toute section s de
¢! (X, n®QP7), on a

Sp = (ula s Uy et Sg = (7)1: vm)

ou les u; et les v; sont des formes différentielles homogénes de bidegré
(p, q). Pour tout entier j compris entre 1 et m, on a
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v; = Z 9k Uy
1l=k<=m
Ol (9 ji) 1 —j x—=m désigne la transition de ¢ dans ¥. On en déduit que
d”’t’)j _ Z gjkd”uk.
1<=k=m

Autrement dit, les m-uples (d"uq,...,d"u,,) et (d"v,,...,d"v,,) se recollent en
une section de €° (X, 7 ® Q”?*1) que ’on désigne encore par d”s.

Le lemme suivant est une conséquence immédiate de cette définition
et du lemme 4.

LEMME 5. Pour qu’une section s de €' (X, n) soit holozhorphe, il faut et
il suffit que d"s soit nul.
Pour toute section s de €*(X,n®Qc), on a

d"(d"s) = 0.

Pour toute forme différentielle u de €' (X, QL) et toute section v de
' (X, m®Qc), ona

A wuAv) =dunv+(=D'undv.

Pour toute section u de €' (X, = ® Qf) et toute section v de
€' (X, n*®Qc), ona
d (u,v) = (du,v) +(=1"(u,dv).

On appelle complexe de Dolbeault de n la suite d’espaces vectoriels et
d’applications linéaires

0 - % (X, 1)L 6° (X, 7®Q%) L5 . L1 47 (X, n®Q%") > 0

ol d"" désigne la restriction de d” & € (X, n ® 2°"). On appelle groupes de
cohomologie de 7 les espaces vectoriels

H' (X,n) = Kerd”"/[Imd"~*.
La différentielle d” diminuant les supports, on a une deuxi¢me suite

0> @2 (X,n) 2 g2 (X, n®@Q%) e, | 41, g2 (X, 1®Q%") - 0

et des groupes de cohomologie
H.(X,n) = Kerd."/Imd,""*.
Le noyau de d"° s’identifie aux sections holomorphes de #. On a donc

H° (X, 7) = 0(X, )

[ —————




—
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et si X est ouverte, ’espace vectoriel HY (X, n) est nul (principe du prolon-
gement analytique).

On prendra garde de ne pas confondre le groupe de cohomologie de
de Rham H" (X, C) de la variété¢ différentielle X R (chap. 0, §4) et le
groupe de cohomologie de Dolbeault H" (X, C,) du fibré produit C,.

§ 3. FONCTIONS MEROMORPHES

Dans tout ce paragraphe, on désigne par X une variété holomorphe et
par n un fibré vectoriel holomorphe sur X.

LEMME 1. On suppose X connexe et [’on désigne par f une fonction
holomorphe non identiquement nulle sur X. L’ensemble V défini par

V={xeX|f(x) #0)

est alors connexe et dense dans X.

11 suffit de montrer que tout point x, de X posséde un voisinage U tel que
V n U soit connexe et dense dans U.

On peut donc supposer que X est un ensemble ouvert de C" et, par un
changement linéaire affine de coordonnées, on peut également supposer
que x, est I’origine et que la fonction partielle £ (0, ..., 0, z,) n’est pas iden-
tiquement nulle au voisinage de 0. Désignons par D” un disque fermé de
centre 0 dans C tel que f(0, ..., 0, z,) soit holomorphe au voisinage de D"
et ne s’annule pas sur dD” (§ 1, théoréme 1, corollaire 3). Par continuité,
il existe un nombre réel ¢ strictement positif tel que f soit holomorphe au
voisinage de D’ X D” et ne s’annule pas sur D’ X 9D”, en désignant par
D' le polydisque de C"~! défini par

D' = {(z4,...,2,-9)€C"™ | max |z;]|<e}.
l=j=n—-1
L’ensemble V' n (D' % D") est connexe et dense dans D’ X D" comme il
résulte aussitdt de la formule

V(D' xD")
= (D'x 0D U U {(z4,..0r2,) €C"|f(zy,...,2,) # 0}.

(215+.-s2pn~1)eD’

Pour tout point x de X, ’anneau @, des germes en x de fonctions holo-
morphes est intégre (§ 1, proposition 1, corollaire 2) et I’ensemble 0 (n),
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des germes en x de sections holomorphes de 7 est un ¢,-module. On désigne
par X, le corps des fractions de @, et ’on pose

‘%/‘(n)x = '%‘x ®@x@(n)x

Tout €lément de A (n), s’écrit comme quotient d’un élément de O (7).
par un élément non nul de 0,.

Soit u une section de la projection canonique de [ o (n), sur X.
xeX

Pour éviter des confusions, on désigne par u, I'image du point x de X. On
dit que u est une section méromorphe de 7 si elle vérifie 1a condition suivante :

(M) Pour tout point x, de X, il existe un voisinage ouvert connexe U de
X, une section holomorphe s de = sur U et une fonction holomorphe f
non nulle sur U tels que

Sx
U, = —

fx

pour tout point x de U.

On désigne par " (X, n) ’ensemble des sections méromorphes de =
et par A4 (X) I’ensemble des fonctions méromorphes sur X (i.e. les sections
méromorphes du fibré produit Cy). On vérifie aisément que ’addition et la
multiplication point par point définissent sur " (X) une structure d’anneau
commutatif avec élément unité et sur ¢ (X, n) une structure de 4 (X)-
module.

La restriction a un ensemble ouvert d’une section méromorphe est une
section méromorphe. En particulier, on a pour tout point x de X une
application canonique

0,: lim A (U,n) - A (n),

ou U parcourt I’ensemble des voisinages ouverts de x. Il résulte immédia-
tement des définitions que cette application est un isomorphisme qui permet
d’identifier le germe en x d’une section méromorphe a sa valeur au point x.

On dit qu’une section méromorphe u de © est réguliére au point x si
u, appartient a 0 (n),. On appelle domaine de régularité de u 1’ensemble
R (u) des points ou u est régulicre. Les points n’appartenant pas au domaine
de régularité s’appellent les poles de u.

LEMME 2. Supposons X connexe. Le domaine de régularité d’une section
méromorphe u de m est un ensemble ouvert, connexe et dense dans X.

Soit x, un point de X. On désigne par U un voisinage ouvert connexe de
X9, par s une section holomorphe de 7 sur U et par f une fonction holo-
morphe non nulle sur U tels que

B e e



pour tout point x de U. Si u est réguliére au point x,, on peut supposer que f
ne s’annule pas sur U ce qui montre déja que R (u) est ouvert. Si u n’est pas
réguliére au point x,, ’ensemble

V={xeU|f(x) #0)}

est connexe et dense dans U (lemme 1), d’ou I’assertion puisqu’il est contenu
dans R (u).

Pour toute section méromorphe u de 7 et pour tout point x de R (u),
on pose

u(x) = u,(x).

Ceci a bien un sens puisque u, appartient 2 O (n),. Il est clair que u est une
section holomorphe de = sur R (x). On dit qu’elle est associée a u.

ProrosITION 1 (Principe du prolongement analytique). Supposons X
connexe et soient u et v deux sections méromorphes de . Les conditions
suivantes sont équivalentes :

(1) Les sections u et v .coincident partout.
(2) Les sections u et v coincident sur R (u) 0 R (v).

(3) Les germes de u et v coincident en un point.

11 suffit de montrer que (3) implique (1). Désignons par V ’ensemble des
points de X ou les germes de u et v coincident. Puisqu’il est ouvert, il suffit
de montrer qu’il est fermé. Tout point x, de ¥V posséde un voisinage ouvert
connexe U tel que

S t
o et UIU"——-—,

uly =
et puisque les germes u, et v, coincident en un point x de U, le principe du
prolongement analytique (§ 1, proposition 1, corollaire 2) montre que I’on a

gs = ft
ce qui démontre I’assertion.

COROLLAIRE. Si X est connexe, [’anneau K (X) des fonctions méro-
morphes sur X est un corps.

Désignons par u une fonction méromorphe non nulle sur X. Il résulte
de la proposition 1 que u, n’est jamais nul. On vérifie aisément que les
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germes u " définissent une fonction méromorphe sur X ce qui démontre
I’assertion.

Remarque 1.

Supposons X connexe et désignons par s une section holomorphe de =
sur un ensemble ouvert non vide U de X. La proposition 1 montre qu’il
existe au plus une section méromorphe de 7 dont le domaine de régularité
contient U et dont la restriction coincide avec s. S’il en existe une, on dit
(abusivement) que s est une section méromorphe de .

Supposons 7 de rang pur p. On désigne par (U,),.; un recouvrement de X
par des domaines de cartes de = et par (g,,) un cocycle holomorphe de
rang p subordonné a ce recouvrement et associé a m. Les sections méro-
morphes de © sont en correspondance biunivoque avec les familles (¢,),oy
ol u, est un p-uple de fonctions méromorphes sur U, , vérifiant les condi-
tions de recollement

ulc = gKlul'

On appelle forme différentielle méromorphe de degré r toute section
méromorphe de Q™°. On définit de maniére évidente I’image réciproque
d’une forme différentielle méromorphe par une application holomorphe.

Pour tout point x de X, on désigne par 2 (n), le 0 .-module quotient de
A (n), par O (n),.

Soit u une section de la projection canonique de [] 2 (n), sur X.
xeX

Pour éviter des confusions, I'image d’un point x de X se désigne par u,.
On dit que u est une partie principale de w si elle vérifie la condition sui-
vante:

(PP) Pour tout point x, de X, il existe un voisinage ouvert U de x, et une
section méromorphe de w sur U dont le germe représente u, en tout
point x de U.

On désigne par 2 (X, n) Pensemble des parties principales de 7. L’addi-
tion et la multiplication point par point en font un O (X)-module.

La restriction a un ensemble ouvert d’une partie principale est une partie
principale. En particulier, on a pour tout point x de X une application

canonique
0,: lim 2(U,n) - 2(n),

ou U parcourt ’ensemble des voisinages ouverts de x. Il résulte immédia-
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tement des définitions que cette application est un isomorphisme qui permet
d’identifier le germe en x d’une partie principale & sa valeur au point x.

PREMIER PROBLEME DE COUSIN. Donner des conditions nécessaires et suffi-
santes pour qu’une partie principale appartienne a l’image de l’application

canonique
oA (X,n) > 2(X,7n).

Pour tout élément u de 2 (X, n), il existe un recouvrement ouvert
(U ,er de X et pour chaque indice 1 une section méromorphe s, de  sur U,
représentant u [U,. Par définition, la section

Se = 8§, — S
est holomorphe sur U, n U,. 1l existe donc pour chaque indice 1 une sec-

tion ¢, de €% (U,, n) telle que

Se, = 1, — 1,

K1l

(chap. 0, §2, lemme 1). En particulier, les formes différentielles d”t, se
recollent en une section v de €® (X, n ® Q%'). La forme différentielle d"v
est nulle et 'on vérifie aisément que la classe 6 (#) de v dans H' (X, n) ne
dépend que de wu.

PROPOSITION 2. La suite de O (X)-modules et d’applications linéaires

AKX a0 H(X. )

est exacte.

On conserve les notations précédentes. Si u provient d’une section
meéromorphe de n, on peut prendre comme recouvrement ouvert ’ensemble
X lui-méme et 'on voit que § (u) est nul.

Réciproquement, supposons ¢ (u) nul. Ceci signifie qu’il existe une
section ¢ de ¥ (X, n) telle que

dt =v.

Pour tout indice 1, la section tl—t|Ul est holomorphe et les sections
Sz“fﬁLflU; se recollent en une section méromorphe de 7 représentant
u, d’out I’assertion.

Pour tout point x de X, on désigne par 2, le groupe abélien quotient de
A % par 0%, 00 OF (resp. #° %) désigne le groupe des éléments inversibles de
0, (resp. A ). Ce groupe est noté additivement.

L’Enseignement mathém., t. XXI, fasc. 2-3-4. 14
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Soit u une section de la projection canonique de J| &2, sur X. Pour
xeX

¢éviter des confusions, I’image d’un point x de X se désigne par u,. On dit
que u est un diviseur de X si la condition suivante est vérifiée:

(D) Pour tout point x, de X, il existe un voisinage ouvert U de x, et une
fonction méromorphe inversible sur U dont le germe en tout point
représente u,.

On désigne par & (X) 'ensemble des diviseurs de X. L’addition point par
point en fait un groupe abélien.

La restriction d’un diviseur & un ensemble ouvert est un diviseur. En
particulier, on a pour tout point x de X une application canonique

0, : l{l_l} 2(U) > 9D,

ou U parcourt I’ensemble des voisinages ouverts de x. Il résulte immédia-
tement des définitions que cette application est un isomorphisme qui permet
d’identifier le germe en x d’un diviseur a sa valeur au point x.

Soit 7 un fibré en droites holomorphe sur X. On désigne par J7* (X, n)
I’ensemble des sections méromorphes de n qui ne s’annulent identiquement
sur aucune composante connexe de X. Soit s une telle section. L’expression
de s dans toute carte @ de n est une fonction méromorphe inversible sur le
domaine U de @. La classe de cette fonction dans & (U) est indépendante
de ¢&. Par recollement, on obtient ainsi un diviseur sur X que ’on dit
associé a s et que I’on désigne par (s). On définit ainsi une application cano-
nique

V() 2 A (X, m) > D(X) .

DEUXIEME PROBLEME DE COUSIN. Donner des conditions nécessaires et
suffisantes pour qu ‘un diviseur appartienne a [ ’image de ’application canonique

Vit A F(X) = D(X) .

Pour tout diviseur u# de X, il existe un recouvrement ouvert (U,),.; de X
et, pour chaque indice ¢ une fonction méromorphe inversible s, sur U,
représentant u | v,. Par définition, la fonction

SKL = SK S;_l
est holomorphe inversible sur U, n U, et la famille (s,,) est un cocycle holo-
morphe de rang 1 subordonné a (U,). On vérifie aisément que sa classe
v (1) dans Pic (X, C*) ne dépend que de w.
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LEMME 3. Pour tout diviseur u de X, il existe un fibré en droites holo-
morphe m sur X et une section méromorphe s de A* (X,n) dont le
diviseur est u.

La section s est déterminée modulo la multiplication par une fonction
holomorphe inversible. Le fibré mn est déterminé a isomorphisme pres.

Conservons les notations précédentes et désignons par m un fibré en
droites holomorphe associé au cocycle (s,,). Les fonctions méromorphes s,
se recollent en une section méromorphe s de 7 ayant les propriétés requises.
Si s’ est une deuxiéme section méromorphe dont le diviseur est u, le diviseur

S ; ; !
de la fonction méromorphe — est identiquement nul et cette fonction est
S

holomorphe inversible.
Enfin, si p est un deuxi¢me fibré en droites holomorphe et ¢ une section

. . . S 1o
méromorphe de p dont le diviseur est u, la section p de 7 ® p* est holo-

morphe et partout non nulle ce qui achéve la démonstration du lemme.

PROPOSITION 3. La suite de groupes abéliens et d’homomorphismes

y

A (X)L g (X) Pic (X, C¥)

est exacte.
La démonstration est analogue a celle de la proposition 2. Elle est laissée
en exercice au lecteur.

On dit qu’un diviseur de & (X)) est positif s’il est localement représentable
par une fonction holomorphe. Les diviseurs positifs de X forment un sous-
ensemble &, (X) de 2 (X) stable par addition. La relation

«u—v appartient 3 @, (X) »

est une relation d’ordre partiel sur 2 (X) que ’on désigne par v < u.
Supposons X connexe. Pour tout diviseur # de X, I’ensemble

H,(X) ={hextX (X)|h =0 ou (h) > —u}

est un sous-0 (X)-module de " (X). Désignons par 7 un fibré en droites
holomorphe sur X et par s une section méromorphe non nulle de 7 ayant u
pour diviseur (lemme 3). On vérifie aisément que la division par s induit un
isomorphisme de 0 (X, n) sur ", (X).
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§ 4. COURBES HOLOMORPHES

Nous allons maintenant nous limiter a I’étude des courbes holomorphes
(appelées aussi surfaces de Riemann). Nous avons toujours supposé les
vari€tés (topologiques, différentielles ou holomorphes) paracompactes.
Un célébre théoréme de Rado affirme que cette hypothése est superflue
dans le cas des courbes holomorphes (voir par exemple [6]). Nous n’utili-
serons pas ce résultat qui, au demeurant est trés particulier a la dimension
complexe 1.

THEOREME 1. Soient X et Y deux courbes holomorphes et soit u une
application holomorphe de X dans Y. On suppose X connexe. Alors u
est ouverte ou constante.

Supposons u non constante. L’assertion étant locale, on se raméne
aisément au cas ol X et Y sont des ensembles ouverts de C. Soit x, un
point de X. II suffit de montrer que u (X) est un voisinage de u (x,) (toutes
les composantes connexes d’'un ensemble ouvert de X sont ouvertes). Pour
ce faire, on peut supposer que u (x,) est nul. Il existe alors un disque D
de centre x, relativement compact dans X tel que u ne s’annule pas sur
dD (§ 1, théoréme 1, corollaire 3). Posons

p = inf |u(z)].

zegD

Il suffit de montrer que tout point w de Y n’appartenant pas a u (X) est de
module strictement supérieur a g On peut évidemment supposer qu’il est

de module strictement inférieur a p et I’on définit une fonction holomorphe f

sur X en posant
1

u(z) —w

(@) =

- Pour tout point z de D, on a

f(2) =

1 1

"D —w] =%’

On en déduit que (§ 1, théoréme 1, corollaire 1),

1 1
— = |f(xo) | < ”f”ap‘—‘—
p —

| w | wl

- ce qui démontre ’assertion.
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CoROLLAIRE | (Principe du maximum). Soit X une courbe holomiorphe
connexe et soit f une fonction holomorphe sur X. Sila fonction f posséde

un maximum relatif, elle est constante.
Soit x, un point de X et soit K un voisinage compact de x, tel que

|lf(xo) | = ||f”K

L’ensemble f(K) est contenu dans le disque fermé de centre O et de rayon
l f(x0) |, ce n’est donc pas un voisinage de f(x,) et par conséquent f est
constante.

COROLLAIRE 2. Soit X une courbe holomorphe connexe et soit K une
partie compacte de X distincte de X. Pour toute fonction holomorphe f
sur X, on a

[ flox =171 x-

En effet, si f atteint son maximum en un point de K, elle est constante.

COROLLAIRE 3. Toute fonction holomorphe sur une courbe holomorphe
compacte et connexe est constante.

COROLLAIRE 4. Soient X et Y deux courbes holomorphes connexes et
soit u une application holomorphe de X dans Y. On suppose X compacte.
Si Y est ouverte, [’application u est constante. Si Y est compacte, [’appli-
cation u est constante ou surjective.

Remarque 1.

Le théoréme 1 et ses corollaires demeurent valables si X est de dimension
supérieure a 1. C’est une conséquence facile du cas traité ici.

PROPOSITION 1. Soient X et Y deux courbes holomorphes et soit u une
application holomorphe de X dans Y. On suppose que u n’est constante
sur aucune composante connexe de X. Pour tout point x, de X, il existe
une carte ¢ de X centrée en x,, une carte Y de Y centrée en u(x,)
et un entier m Strictement positif tels que

qus(Z) — Zm .

Soit ¢ (resp. ) une carte de domaine U (resp. V) centrée en x, (resp.
u (xo)). L’expression de u dans (¢, ) est une fonction holomorphe f sur
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¢ (U), nulle a I’origine mais non identiquement nulle. Si ¢ (U) est un disque
suffisamment petit, il existe un entier m et une fonction g holomorphe
inversible sur ¢ (U) tels que

f(2) = z"g(2)

(§ 1, théoréme 1, corollaire 3). Il existe alors une fonction holomorphe 4
sur ¢ (U) dont la puissance m® est égale a g. En diminuant au besoin ¢ (U),
on peut supposer que I’application 6 définie par

0(z) = zh(2)

est un isomorphisme de ¢ (U) sur un ensemble ouvert de C. 1l suffit alors de
remplacer ¢ par 0 - ¢.

COROLLAIRE. Soient X et Y deux courbes holomorphes et soit u une
application holomorphe de X dans Y. Si u est injective au voisinage d’'un
point, elle est de rang 1 en ce point.

On conserve les notations et les hypothéses de la proposition 1. L’entier
m— 1 est indépendant des cartes ¢ et . On 'appelle 'indice de ramification
de u au point x, et on le désigne par v, (1). On dit que x, est un point de
ramification de u si v, (u) est strictement positif. Pour que x, soit un point
de ramification de u, il faut et il suffit que le rang de u au point x, soit
nul (autrement dit, les points de ramification sont exactement les points
critiques). L’ensemble des points de ramification est fermé et discret.

Supposons de plus X et Y connexes et u propre (ce qui implique que u est
surjective en vertu du théoréme 1). L’image B des points de ramification de u
(i.e. ensemble des valeurs critiques) est fermé discret, de méme que son
image réciproque 4. La restriction de u & X\4 est un revétement de Y'\B
dont le nombre de feuillets est le degré de u (chap. 0, § 4, théoréme 4). 1l
résulte immédiatement des définitions que 1’on a

deg(w) = 3 v.(w

xeu-1(y)

pour tout point y de Y.

Dans toute la suite, on désigne par X une courbe holomorphe que ’on
suppose connexe pour fixer les idées.

Soit 7 un fibré en droites holomorphe sur X et soit ¢ une carte de X
centrée en un point x. Tout germe non nul s de 4~ (n), s’€crit d’une maniere
et d’une seule
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ou m est un entier relatif appelé lordre de s et v un germe de 0 (n), ne
s’annulant pas en x. En particulier, les zéros et les poles d’une section méro-
morphe s non identiquement nulle sont isolés. On vérifie aisément que I’ordre
du germe s, coincide avec I'ordre de s au point x. Le lemme suivant en
découle aussitot (chap. 0, § 5, proposition 2).

LEMME 1. Supposons X compacte. Toutes les sections méromorphes de
ont pour ordre la classe de Chern de .
En particulier, toutes les fonctions méromorphes sur X sont d’ordre 0.

La deuxiéme assertion s’exprime aussi en disant que le nombre de
poles d’une fonction méromorphe est égal au nombre de ses z€ros.

LEMME 2. Soit u une application holomorphe non constante de X dans
une courbe holomorphe Y.

(1) Pour toute fonction méromorphe h sur Y et pour tout point x de X,
on a

0. (u*(h) = (ve(w) + 1) 0, (h).

(2) Pour toute forme différentielle méromorphe s sur Y et pour tout
point x de X, ona

0, (u*(5)) = (v (@) + 1) 0, (8) + ve(u).

C’est une conséquence immédiate des définitions.

Soit u une fonction méromorphe sur X et soit u la fonction holomorphe
sur R (u) qui lui est associée. On identifie C a I’ensemble ouvert U, de P!
défini par

Up = {(20:2,)€P" | zy # 0}

et 'on prolonge u en posant
2(x) = (0:1)

pour tout pdle x de u. On vérifie aisément que 1’application # de X dans
P! ainsi définie est holomorphe. On identifie de cette maniére les fonctions
meromorphes sur X aux applications holomorphes de X dans P! non
identiquement égales & (0: 1) ).

Si X est compacte, on peut en particulier parler du degré d’une fonction
méromorphe non constante: c’est le degré de l’application holomorphe

1) On prendra garde que cette identification n’est plus possible si X est de dimension
strictement supé€rieure a 1.
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correspondante. Il résulte de ces définitions que c’est aussi le nombre de
poles (avec multiplicité) ou le nombre de zéros (avec multiplicité) de cette
fonction.

Soit x un point de X et soit s une forme différentielle holomorphe sur
X\{x}. Pour toute carte ¢ de domaine U centrée en x, telle que ¢ (U) soit
un disque de C, on a

sly =fdp et f=Zak<15"
keZ
ol f'est une fonction holomorphe sur U\ {x} et (@) .z une famille de nombres
complexes (§ 1, théoréme 1, corollaire 6). La formule suivante permet de
calculer le résidu de s au point x (chap. 0, § 5)

1 1
Rés(s, 0 = — | s=3 ak—.f $dp = a.
2in Jap kez  2IT Jop
ou D désigne un disque de centre x relativement compact dans ¢.

Soit 7 un fibré vectoriel holomorphe de rang pur p sur X et soit # une
partie principale de 7. Pour tout point x de X, il existe un voisinage ouvert U
de x et une section méromorphe s de n sur U représentant u [ p- On peut
toujours supposer que U est le domaine commun a une carte @ de 7 et a
une carte ¢ de X centrée en x et que de plus ¢ (U) est un disque. L’expression
de s dans @ est alors un p-uple (s4, ..., 5,) de fonctions méromorphes sur U
et Pon a

;= 2, ¢
keZ
pour tout entier j compris entre 1 et p. Notons que les a; ; d’indice stricte-
ment négatif sont presque tous nuls (§1, théoréme 1, corollaire 7). La
restriction de u & U est représentée par le p-uple

(Z ay %, s Y, ap,kqﬁ"> .

k<O k<O

En particulier, I’ensemble des points de X ou u est non nul est fermé discret.
Soit # un diviseur de X et soit x un point de X. Il existe un fibré en

droites holomorphe n sur X et une section méromorphe s non nulle de =

dont le diviseur est « (§ 3, lemme 3). L’ordre de s au point x (ou 'ordre de s

si X est compacte) ne dépend que de u (loc. cit.). On 'appelle 'ordre de u

au point x (oul'ordre de u) et on le désigne par 0, (u) (resp. O (v)).
L’application y («) de X dans Z définie par

2w (x) = 0, (u)
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est nulle en dehors d’un ensemble fermé discret. Le lemme suivant est une
conséquence immédiate de ces définitions.

LEMME 3. L’application 7y induit un isomorphisme de 9 (X) sur [’en-
semble des applications de X dans Z dont le support est fermé discret. Les
diviseurs positifs correspondent aux applications a valeurs dans N.

Soient X et Y deux courbes holomorphes connexes et soit u une appli-
cation holomorphe propre, non constante de degré p de X dans Y.

On désigne par Ay, ..., h, des fonctions méromorphes sur X et par o
un polyndéme de

CLT ;] 1=j=n1=k=p

symétrique en T}y, ..., T;, pour j fixé. Désignons par B I'image des points
de ramification de u et des pdles de %y, ..., 4,. Pour tout point y de Y\B,
la fibre #~" (¥) contient exactement p points x, ..., x, et 'on pose

Uy (ys .., ) (W) = o (h;(x).

L’hypothése faite sur ¢ montre que cette définition est indépendante de la

numérotation des points x4, ..., x,.

ProrosITION 2. La fonction u, (hy, ..., h,) est holomorphe (resp. méro-
morphe) sur 'Y si hy, ..., h, sont holomorphes (resp. méromorphes) sur X.
Supposons tout d’abord /44, ..., 4, holomorphes et montrons qu’il en est

de méme de
w = u,(hy,...,h,).

Pour tout ensemble ouvert simplement connexe V de Y\B, ’ensemble
u~ ! (V) est formé de p composantes connexes Uy, ..., U, et la restriction de u
a chacun des U, est un isomorphisme sur V. On désigne par v, I’isomor-
phisme réciproque. On a alors

wly = o(h; v

ce qui montre déja que w l v\g €st holomorphe. De plus, la fonction w
reste bornée au voisinage de tout point de B, ce qui démontre [’assertion
(§ 1, théoréme 1, corollaire 7).

Supposons maintenant 4, ..., s, méromorphes et ¢ homogéne de degré
g. Le raisonnement précédent montre que w [ y\p €st holomorphe. Soit
une carte de Y centrée en un point y de B. La fonction - u s’annule en
tout point de #~" (). Il existe par conséquent un entier naturel 7 tel que les
fonctions (1 -u)™h; soient holomorphes au voisinage de u~* (). On a alors
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o (- )"hy, oy (0 - w)™hy) = (O - w)™u, (hy, .oy hy)

et I'assertion résulte de la premiére partie de la démonstration.

Désignons par s une forme différentielle méromorphe sur X et par B
I'image des points de ramification de u et des pdles de s. Pour tout ensemble
ouvert simplement connexe ¥ de Y\B, I’ensemble u~! (V) est formé de p
composantes connexes Uy, ..., U, et la restriction de # a chacun des U, est
un isomorphisme sur V. On désigne par v, Iisomorphisme réciproque et
I’on pose

w=297(s) + ... +v}5(s).
La forme différentielle w est holomorphe sur V" et I'on obtient par recolle-
ment une forme différentielle holomorphe u,, (s) sur Y\B.

PrOPOSITION 3. La forme différentielle u, (s) est holomorphe (resp.
méromorphe ) sur Y si s est holomorphe (resp. méromorphe) sur X.

La démonstration est laissée en exercice au lecteur. Elle est tout a fait
analogue a celle de la proposition 2.

§ 5. EXEMPLES

(1) Quelques remarques sur la droite projective.

On fait opérer le groupe G (2; C) des matrices carrées inversibles
d’ordre 2 dans P! par la formule

d b
(Wo:wy) = (2¢:2;) <c a) = (dzy+cz; :bzg+azy).

Cette opération est continue. Dans C, identifi¢ a 'ensemble
Uy = {(20321)51)1 | zo # O} >
cette formule prend I’aspect suivant

az + b
cz +d

Une transformation de ce type est un automorphisme de P* appelé homo-
graphie. Le noyau de 'opération contenant les homothéties, on peut se
restreindre au groupe S/ (2; C) des matrices de déterminant 1. Le noyau
est alors réduit au centre de S/ (2; ©), i.e. le sous-groupe d’ordre 2 formé
de I'identité et de son opposé. Ainsi le groupe des homographies apparait
comme le quotient de S/ (2; C) par son centre.
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Le groupe d’isotropie du point (0: 1) s’identifie au sous-groupe de
G (2; C) formé des matrices de la forme

1 b
0 a)’
Ce sont aussi les homographies qui opérent sur C.

PrROPOSITION 1. (1) Les automorphismes de C sont exactement les
homographies laissant fixe le point (0: 1).

(2) Les automorphismes de P! sont exactement les homographies.

Soit # un automorphisme de C. On peut écrire

u(z) = Y az*

keN

ol les g, sont des nombres complexes et ou la série converge uniformément
sur tout ensemble compact de C. Puisque u est un homéomorphisme, il
résulte du théoréeme de Weierstrass (§ 1, théoréme 1, corollaire 7) que les
a, sont presque tous nuls. Le théoréme fondamental de I’algébre montre
que le polynome u est de degré au plus 1, ce qui démontre la premiére
assertion.

Démontrons la seconde. Puisque le groupe des homographies contient
le groupe d’isotropie de (0: 1), il suffit de vérifier qu’il opére transitivement
sur P!, ce qui est trivial.

Tout ensemble ouvert d’une courbe holomorphe est une courbe holo-
morphe. En particulier, les ensembles

D={zeC| |z|]<1l} et H={zeC|Im(z)>0)}
sont des courbes holomorphes. Remarquons que ’homographie w définie par

z —1

z +1i

w(z) =

induit un isomorphisme de H sur D. Avant de décrire les automorphismes
de ces deux courbes, nous allons établir un lemme qui nous sera utile par
la suite.

Désignons par X un voisinage ouvert connexe de I’origine dans C et
par G le groupe des automorphismes de X. Pour tout élément g du groupe
d’1sotropie G de I’origine, on pose

.. 0g
J(g)—E(O)-
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On définit ainsi un homomorphisme j de G, dans C*,

LemMmE 1. On suppose X borné.
(1) Le nombre complexe j(g) est de module 1.
(2) Si j(g) estégal al, alors g est [’identité.

Les deux assertions sont évidentes si g est linéaire. Sinon, on peut écrire

g(z) =a,z + ) a2z’

vI>n

pour tout point z suffisamment voisin de I’origine, ou les a, sont des nombres
complexes tels que

a; =j(g) et a,#0.

Pour tout entier naturel k, on a de méme

g*(z) = b®z 4+ Y b®

v>>n
et un calcul élémentaire fournit les relations

b,® =di et bY =diTla, ¥ (@7,
0=<v<k
Puisque X est borné, il résulte de la formule de Cauchy (§ 1, théoréme 1,
corollaire 1) qu’il existe une constante M telle que
16,0 ] = latla, ¥ (@< M
0=v<k
pour tout entier naturel £. Ceci n’est possible que si | a, | est au plus égal
4 1. Le méme raisonnement appliqué a 'automorphisme g~ ' démontre la
premicre assertion.
Supposons a; égal a 1. La formule ci-dessus montre que 'on a

b, = ka, e |b®| = |ka,| <M
~ ce qui est absurde, et par conséquent g est I’identité.

Revenons a nos homographies. Remarquons tout d’abord que les
homographies laissant fixe H sont exactement celles a coefficients réels

et de déterminant positif. Ceci résulte immédiatement des définitions. Notons
que dans ce cas on a I’égalité

Im(w) =
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En utilisant Iisomorphisme ®, on montre aisément que les homo-
graphies laissant fixe D sont celles de la forme
Pz +{
qz +p

w

avec |p|*—lq|® =1

PROPOSITION 2. (1) Les automorphismes de D sont exactement les
homographies laissant fixe D.

(2) Les automorphismes de H sont exactement les homographies laissant
fixe H.

11 faut vérifier que le groupe des homographies laissant fixe D opére
transitivement dans D ce qui est immédiat et qu’il contient le groupe
d’isotropie de l’origine. Or le lemme 1 montre que ce dernier groupe est
formé des rotations de centre 0, d’ou I’assertion.

On appelle fonction rationnelle sur C toute fonction méromorphe
s’écrivant comme le quotient de deux polyndmes. Les fonctions rationnelles
sur C forment un sous-corps de 2 (C) isomorphe au corps C (7T") des frac-
tions rationnelles 2 une indéterminée.

LEMME 2. Les fonctions rationnelles sur C sont exactement les fonctions
méromorphes sur P1.

On vérifie aisément que toute fonction rationnelle sur C est une fonction
méromorphe sur P (il suffit d’exprimer cette fonction dans I’autre carte de
P1). Réciproquement, soit f une fonction méromorphe sur P'. On désigne
par u la restriction & C du diviseur de f et ’on pose

g(2) = [] (=07O.
u(f)#0
Ceci a bien un sens puisque le support de u est fini. Il est clair que g est
une fonction rationnelle sur C donc méromorphe sur P! et que le diviseur

de fg est nul en dehors du point (0: 1). Cette derniére fonction est donc
constante (§ 4, lemme 1), d’ou I’assertion.

(2) Le faisceau des fonctions holomorphes sur C.

Pour tout point x de C, on désigne par 0, ’anneau des germes en x de

fonctions holomorphes. Soit @ I'ensemble [] @, et soit = la projection
xeX
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canonique de @ dans C. Pour tout ensemble ouvert U de C et toute fonction
holomorphe f sur U, on pose

NU,f) ={(x,u)eO|xeU et u=f,}.

PROPOSITION 3. Les ensembles du type N (U,f) forment une base de
topologie sur (. Pour cette topologie, l’espace O est séparé et la projection «
est un homéomorphisme local.

Si 'ensemble N (U, f) n N (V, g) est non vide, il existe par définition
un point x de U n V ou les germes f, et g, coincident. Les fonctions fet g
coincident donc sur un voisinage ouvert ¥ de x dans U n V. On en déduit
que ’ensemble

NW,f) = N(W,9)

est contenu dans N (U, f) nn N (V, g), ce qui démontre la premiére assertion.

Munissons @ de la topologie engendrée par les N (U, f). Soient (x, f,) et
(¥, g,) deux points distincts de ¢. On désigne par U et V" des voisinages ou-
verts de x et y respectivement sur lesquels f et g sont holomorphes. L’en-
semble N (U, f) est un voisinage de (x, f,) et ’ensemble N (V, g) un voi-
sinage de (¥, g,). Si x et y sont distincts, on peut supposer U et V' disjoints.
Il en est alors de méme de N (U, f) et N (¥, g). Si x et y sont confondus,
on peut supposer U et V connexes et égaux. Les germes de f et g sont dis-
tincts au point x, donc en tout point de U (principe du prolongement ana-
lytique). Ceci montre que @ est séparé.

La derniére assertion est triviale.

Il résulte de la proposition 3 et du théoréme de Poincaré-Volterra
(appendice II, théoréme 1) que toute composante connexe de @ est une
surface topologique (de type dénombrable). On la munit de I'unique struc-
ture holomorphe faisant de = un isomorphisme local.

Chacune des composantes connexes de ¢ est donc une courbe holo-
morphe ouverte.

Soit X la composante connexe d’un point (x, f,) de 0. La fonction f
définie sur X par

Fu) =u(y)

est holomorphe. En effet, pour tout voisinage ouvert U de y et toute fonc-
tion holomorphe g sur U dont le germe au point y est égal a u, on a

~

f=9g-m.
On dit que f est le prolongement analytique de f.
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(3) Quotients de courbes holomorphes

Dans tout ce numéro, on désigne par X une courbe holomorphe connexe,
par G le groupe des automorphismes de X et par I' un sous-groupe pro-
prement discontinu de G ).

LEMME 3. (1) L’espace des orbites X|I" est séparé.

(2) Pour tout point x,, le groupe d’isotropie I, est fini et il existe
un systéme fondamental de voisinages U de x, vérifiant les conditions
suivantes :

y(U)ynU =g si y¢l,
{y(U)=U si yely,.

Désignons par = la projection canonique de X sur X/I'. Pour démontrer
(1), il faut montrer que la diagonale de X/I' x X/I' est fermée ou ce qui
revient au méme que son image réciproque A par © X 7 est fermée dans
X x X. Par définition, on a

A={(x,y)eXx X|ilexiste yetel que y = y(x) } .

Désignons par (x,, Y,y Une suite de 4 qui converge vers un peint (x, y)
de X X X etsoient K et L des voisinages compacts de x et y respectivement.
Pour 7 suffisamment grand, le point x, appartient a K et le point y, appar-
tient a L. On désigne par 7y, un élément de I' transformant x, en y,. Par
hypothese, il existe une infinité d’entiers n pour lesquels y, coincide avec un
élément fixe y de I'. On en déduit que y transforme x en y, d’ou I’assertion.
Démontrons (2). Soit K un voisinage compact de x,. On pose

S={yel[y(K)nK # 3}

et 'on désigne par yy, ..., 9, les €léments de S\I', . Pour tout entier j compris
entre 1 et n, il existe un voisinage V; de x, dans K tel que V; n y; (V) soit
vide. Il suffit alors de poser
1=j=<n
'YGFxO
LEMME 4. Pour tout point x, de X, le groupe d’isotropie I, est cyclique.
Désignons par U un voisinage connexe de x, vérifiant les conditions
du lemme 3. On peut supposer que U est le domaine d’une carte ¢ centrée

1) Ceci signifie que pour tout ensemble compact K de X, ensemble

{yel' | y(KYNK # @ }

est fini.
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en x, et que ¢ (U) est borné. L’expression d’un élément y de I',, dans la
carte ¢ est alors un automorphisme y, de ¢ (U) laissant fixe 'origine et
le lemme 2 montre que 'application # de I',, dans C* définie par

n@) =j,)

est un homomorphisme injectif de I',, dans U, ce qui démontre le lemme.

THEOREME 1. Désignons par ©n la projection canonique de X dans [’espace
des orbites X|I'. 1l existe une structure holomorphe et une seule sur X|I'
vérifiant la condition suivante :

(Q) Pour tout ensemble ouvert U de X|I', [’application =* induit une
bijection de O (U) sur l’ensemble des fonctions holomorphes I'-inva-
riantes de O (n™* (U)).

L’unicité résulte immédiatement de la condition (Q) (§ 2, lemme 1).
Désignons par Y I’espace des orbites X/I'. Les points fixes d’un automor-
phisme y distinct de I'identité sont isolés (§ 1, théoréme 1, corollaire 3).
Il résulte alors du lemme 3 que I’ensemble A des points fixes de I (i.e. ’en-
semble de tous les points fixes des automorphismes de I' distincts de 1’iden-
tité) est fermé discret, de méme que son image B. Ce lemme montre aussi
que la restriction de # a X\A4 est un revétement de Y\B. On munit Y\B
de I'unique structure holomorphe qui fait de = un isomorphisme local. Il
est clair que la condition (Q) est vérifiée pour tout ensemble ouvert U de Y\B.

Il reste a prolonger la structure holomorphe de Y\B aux points de B.
La question étant locale, on peut supposer que X est un voisinage ouvert
borné de 1’origine dans C et que tous les éléments de I' laissent fixe I’ori-
gine. En particulier, le groupe I est fini cyclique d’ordre p. On définit une
fonction holomorphe /# sur X en posant

h(z) = []7(2)
yell
L’ordre de & a l’origine étant p, on peut supposer en diminuant au besoin X

que & est de la forme
h = u?

ol u est un isomorphisme de X sur un voisinage de I’origine (§ 4, propo-
sition 1). La fonction 4 étant I'-invariante, elle définit par passage au quo-
tient une application continue ¢ de Y sur 'image Z de A. Quitte & diminuer
Z, on peut supposer que la restriction de 4 (resp. ) a X\{0} est un revé-
tement a p feuillets de Z\{0} (resp. Y\{n(0)}). En particulier, I’application ¢
est un homéomorphisme de Y sur Z induisant un isomorphisme de Y\{n(0)}
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sur Z\{0}. Autrement dit, cette application est une carte de ¥ compatible
avec la structure holomorphe de Y\{n(0)}.

Il reste & voir que la structure holomorphe ainsi définie vérifie la condi-
tion (Q). Tout d’abord, I’application n est holomorphe par définition.
D’autre part, toute fonction I'-invariante f sur X définit par passage au
quotient une fonction continue sur Y qui est holomorphe sur Y\{n(0)}.
Le théoréme de Weierstrass (§ 1, théoréme 1, corollaire 7) montre qu’elle est
holomorphe sur Y ce qui achéve la démonstration du théoréme.

Avant de donner des exemples concrets, nous allons établir un critére
permettant de reconnaitre aisément si un sous-groupe I" du groupe des auto-
morphismes de D (ou de H) est proprement discontinu. Rappelons tout
d’abord que le groupe des automorphismes de D (ou de H) est naturellement
muni d’une topologie (et méme d’une structure de groupe de Lie), a savoir
celle provenant de la topologie de G (2; C) (numéro 1).

LEMME 5. Pour qu’un sous-groupe I’ du groupe des automorphismes de
D (oude H) soit proprement discontinu, il faut et il suffit qu’il soit discret.

La condition est évidemment nécessaire: si une suite (7,),.n d’éléments
deux & deux distincts de I' converge vers I'identité, la suite (7, (0))nen
converge vers 0 et I' ne peut pas étre proprement discontinu.

Montrons qu’elle est suffisante. Désignons par

pz +4q
W =
qz + p

une transformation de I' (proposition 2). Un calcul élémentaire montre que
I’'on a

avec  |pl>—|q|* =1

1w = 22120 -

lgz + p|? p
Soit  un nombre réel strictement compris entre 0 et 1. Si z et w sont tous
deux de module au plus égal a r, on a

<1.

1
PP —=r?"
On en déduit qu’il n’existe qu’un nombre fini d’éléments de I' transformant

un point z de module au plus égal & r en un point w de module au plus égal
a r, d’ou I’assertion.

lgz +p| =|pl| |%z+1|é|p|(1—r) et 1 —p? <

Désignons par w,; et w, deux nombres complexes linéairement indé-

pendants sur R et par I' le groupe d’automorphismes de C engendré par les
translations
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71(2) =z4+ 0, et y,(2) =z + w,.

Il est clair que I' est proprement discontinu et n’a pas de points fixes. La
courbe holomorphe C/I' se désigne par T (w,, ®,). Elle est compacte et
connexe et I’application canonique de C dans T (o, ®,) est le revétement
universel de T (w,, w,).

On appelle courbe elliptique toute courbe holomorphe isomorphe a une
courbe de la forme T (w,, ®,). Remarquons que le groupe des automor-
phismes d’une courbe elliptique opére de manicre transitive.

Nous allons chercher a quelles conditions deux courbes elliptiques sont
isomorphes.

Tout d’abord, quitte a remplacer w, par —w,, on peut supposer que le
nombre complexe défini par

T = w;w,!

a une partie imaginaire strictement positive. Considérons ensuite 1’auto-
morphisme 0 de C défini par

0(z) = w3'z.

Par passage aux quotients, il définit un isomorphisme de T (w,, w,) sur
T (z, 1). Pour étudier une courbe elliptique, on peut donc toujours supposer
qu’elle est de la forme T (7, 1) avec 7 dans H. Un tel nombre complexe
s’appelle un module de la courbe elliptique.

Soient X et Y deux courbes elliptiques et soit # un isomorphisme de X
sur Y. On désigne par 7 et p les revétements universels de C dans X et ¥
respectivement. Quitte & modifier # par un automorphisme de Y, on peut
supposer que l’on a

u(m(0)) = p(0).
1l existe alors un automorphisme v de C et un seul tel que
20 =0 e pv=u-'m.
Cet automorphisme est de la forme
v(z) = az

ol o est un nombre complexe non nul (proposition 1). De plus, puisqu’il
passe aux quotients, il existe des entiers relatifs a, b, ¢ et d tels que

{arzaa-l—b

et ad —bc =1,
« =co +d
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en désignant par 7 et ¢ des modules de X et ¥ respectivement. On en déduit
que X et Y sont isomorphes si et seulement si les modules 7 et ¢ sont dans
la méme orbite pour ’action de S/ (2; Z).

Le quotient de S7(2; Z) par son centre est un sous-groupe discret I du
groupe des automorphismes de H. Il résulte alors du lemme 5 et du théo-
réme 1 quil existe sur H/I' une structure holomorphe canonique. On
notera que les classes d’isomorphie de courbes elliptiques sont en corres-
pondance biunivoque avec les points de H/I'.

Remarque 1.

La courbe H/I" est isomorphe a C. Ceci résulte par exemple de existence
et des propriétés de la fonction modulaire J ([3], Kap. 1V, § 3, Satz 3).

(4) Courbes algébriques

On dit qu’une partie X de ’espace numérique C" est algébrique si elle est
le lieu des zéros d’une famille de polynémes. L’ensemble a des polyndmes de
CI[T,, ..., T,] qui s’annulent sur X est un idéal que I’on appelle I’idéal de X.
On notera que X est aussi le lieu des zéros de toute famille de générateurs
de a. En particulier, le théoréme de la base de Hilbert ([4], chap. VI, § 2,
théoréme 1) montre que X est le lieu des zéros d’une famille finie de poly-
ndmes.

Soit X un ensemble algébrique de C" et soit a son idéal.

On dit qu'une fonction définie sur X et a valeurs complexes est réguliére
si elle est la restriction d’une fonction polynomiale sur C". L’ensemble des
fonctions réguliéres sur X est une sous-algébre de ° (X, C) qui s’identifie
canoniquement a C [Ty, ..., T,}/a.

On dit qu’un point x de X est régulier s’il existe un voisinage ouvert U
de x dans C" tel que U n X soit une sous-variété (holomorphe) de U. Un
point est dit singulier s’il n’est pas régulier.

Il résulte de cette définition que ’ensemble des points réguliers de X
est une partie ouverte de X et une sous-variété localement fermée de C".

On dit que X est irréductible s’il satisfait I’'une des conditions suivantes
dont on vérifie aisément qu’elles sont équivalentes:

(1) L’idéal a est premier.
(2) Si X est réunion de deux ensembles algébriques, I’'un au moins est
¢gal a X.

Supposons X irréductible. On appelle dimension algébriqgue de X le
degré de transcendance du corps des fractions de ’anneau C [T, ..., T }/a.
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On appelle courbe algébrique affine tout ensemble algébrique irréductible
de dimension algébrique 1 dans un certain espace numérique.

LEMME 5. Soient z, ay, ..., a, des nombres complexes vérifiant la relation

¢ 4 a ¢t

+ see + ak == 0-
On a l’inégalité

|z| <2 max |[a;|'.
1=j=k

Désignons par r le maximum des | a; |'//. On peut supposer r non nul et
I'on a
2\*  a, [z\¥! a
o) T M § o + i+ = =0.
r r\r r
On en déduit que

i
<14 |-
r

ce qui démontre ’assertion.

LEMME 6. Soit U un voisinage ouvert connexe du point (0:1) dans P*
et soient U, ..., u, des fonctions méromorphes sur U. On suppose que u,
est non nulle. 1l existe alors des nombres réels r et M strictement positifs
et un entier relatif m tels que

|27z | <M
pour tout couple (z,z,) de nombres complexes vérifiant les relations
lzg | =71 et ug(z)z5 + ... +u(zy) =0,
Soit m un entier vérifiant la relation

m < inf 0(0:1)(“j)_0(0:1)(uo)
S .

1=<j=<k J

et soit » un nombre réel strictement positif tel que u, soit holomorphe
inversible et les uq, ..., 4, holomorphes au voisinage de la couronne

C={zeC| |z|>r}.

Pour tout entier j compris entre 1 et n, on définit une fonction holomorphe
- au voisinage de C en posant

w;(2) = u;(2)ug(z) ' z™ .



— 225 —

L’ordre au point (0: 1) de cette fonction étant positif, on pose

M=2 max |w, H 1
1=j=k

Si (z,, z,) est un couple de nombres complexes vérifiant les conditions de
I’énoncé, on a

(z7z,)F + wy(z) (2T2) " + ... + we(z) = 0.

On conclut en appliquant le lemme 5.

LEMME 7. Soit X un sous-ensemble algébrique strict de C" et soit f une
fonction holomorphe sur C"\X. Si f est bornée au voisinage de chaque point
de C", elle se prolonge en une unique fonction holomorphe g sur C". Si
de plus il existe une constante M et un entier naturel k tels que

f@I<M|z[f

pour tout point z de C"\X, alors g est polynomiale.

Soit ¢ un point de C". Quitte & effectuer un changement linéaire de
coordonnées, on peut supposer qu’il existe un polydisque D’ X D” de
centre { dans C*~! x C tel que

(D'x3D YN X =

(§ 3, démonstration lemme 1). Supposons f bornée sur D’ X D”. Pour tout
point (z4, ..., z,_ ;) de D’, la fonction partielle f(zq, ..., z,— 1, ) S€ prolonge
en une fonction holomorphe ¢ (z4,..., Z,-1, ) sur D" (§1, théoréme 1,
corollaire 1) et ’on a

f(Zla“" n 1>Z)
5ty d
9 (24 Zn) 2lnf z z

—Z,

pour tout point z, de D”. On vérifie aisément que cette fonction g est holo-
morphe sur D' X D", ce qui démontre la premiére assertion.
Démontrons la seconde. 1l existe une famille (a,),.n- de nombres com-
plexes telle que
g(2) = ¥ a,z% et |a,| <M<l
acA

pour tout nombre réel strictement positif » (§ 1, théoréme 1, corollaire 1).
L’assertion en découle aussitot.

Pour la commodité du lecteur, les résultats d’algébre nécessaires a la
démonstration du théoréme suivant sont groupés dans ’appendice I11.
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THEOREME 2. Soit X wun ensemble algébrique irréductible de dimension
algébrique k. 1l existe des fonctions régulieres uy,...,u, sur X et un
ensemble algébrique N de C* vérifiant les conditions suivantes :

(1) L’application u = (uy,...,u,) de X dans C* est propre a fibres
finies.

(2) Tous les points de X \u™' (N) sont réguliers et la restriction de u
a cet ensemble est un isomorphisme local (donc en particulier un revétement
fini de CK\N d’aprés (1)).

(3) L’ensemble X\u™'(N) est connexe et dense dans X.

Supposons X plongé dans I’espace numérique C". On désigne par A4
I’anneau C [T}, ..., T3], par K son corps des fractions, par B I’anneau des
fonctions réguliéres sur X et par L son corps des fractions. Quitte a effectuer
un changement linéaire de coordonnées dans C", on peut supposer que 1’on
est dans la situation suivante:

(a) Les classes uy, ..., u, de T'q, ..., T} dans B sont algébriquement indé-
pendantes. Elles engendrent un sous-anneau sur lequel B est entier. Autre-
ment dit, Papplication canonique de 4 dans C [T}, ..., T,] induit une injec-
tion de A dans B et B est un A-module de type fini.

(b) La classe « de T}, dans B est un générateur de L sur K.

Désignons par p le polyndme minimal de « dans K [T}, ,]. C’est un
polynéme monique irréductible, et puisque a est entier sur A4 et 4 factoriel,
il appartient & 4 [T}, ;]. On a donc un isomorphisme

A[T;44]/(p) =~ Ala] = B.

Désignons par m le degré de p et par 4 son discriminant. On a les inclusions
ABc A[a] = B.

En particulier, il existe pour tout entier j compris entre k+2 et » un poly-
noéme r; de degré strictement inférieur & m dans A4 [T}, ] tel que le poly-
ndme

q; = AT; —r;

J J

appartienne a I'idéal b de X.

LEMME 8. 1] existe un entier naturel v tel que A’b soit contenu dans [’idéal
engendré par p, gy 2y - Gy

Désignons par ¢ un polyndme de degré v dans C [Ty, ..., T,]. Modulo
’idéal engendré par g4 », ..., g, le polynéme A4%g est congru a un polyndme
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rde A [T, ] (& savoir le polyndme 4°q (T, s Tis 1 4™ Frwas oo 4711))-
Ia division euclidienne des polyndmes montre que modulo I’idéal engendré
DAL P, Gys 25 - Gn, ON peut choisir r de degré strictement inférieur a m.
Si g appartient & b, il en est de méme de r qui est donc nul (car p est le poly-
ndéme minimal de o). Ceci montre que 4”q appartient a I’idéal engendré par
Dy Qi s --r Gn. ON conclut en remarquant que b est de type fini.

Revenons a notre théoréme. L’ensemble N des zéros de 4 est un sous-
ensemble algébrique strict de C* (car p est irréductible).

Démontrons (1). On voit comme précédemment que le polynéme
minimal p; de la classe de T; appartient a 4 [7';] pour tout entier j compris
entre k+2 et n. Tout point (z4, ..., z,) de X vérifiant les équations

p(zla'°'azk+1) = pk+2(zla"'>zk7 Zk+2) = e = pn(zlb'“azk: Zn) = 0:

I'assertion découle du lemme 5.
Démontrons (2). On définit une application y de C" dans C"~* en posant

U(zyyoos 2, =
(P (Z1s s Zew1)s Dt 2 (215 vvs Zios Zigr2)s ooos Gn (215 oo Zs Zn))‘

L’ensemble Z des zéros de i coincide avec X sur (C¥\N) x C*"~* (lemme 8).

0
Puisque P ({4 ..., {4+ 1) est non nul en tout point ({4, ..., {,) de
k+1

X\u~! (N), lapplication partielle ¢ ({4, ..., {x, ) est de rang n—k au point
(Cisqs s £). On conclut & I'aide du théoréme des fonctions implicites
(appendice I, théoréeme 3).

Démontrons (3). On désigne par Y l’ensemble des z€ros de p dans
C**1 par v, la restriction & Y de la premiére projection de C* x C dans
C* et par v, la restriction & X de la premiére projection de C**1 x Cr -1
dans C**1. 1l est clair que I'image de v, est contenue dans Y et que ’on a

u ='l)1'7}2.

De plus, il résulte aisément de ce qui précéde que v, induit un isomorphisme
de X\u=! (N) sur Y\vi! (N). Démontrons par I’absurde que ce dernier
ensemble est connexe. Supposons qu’il existe deux ensembles ouverts non
vides disjoints Y’ et ¥Y” recouvrant ¥\u~' (N). Pour tout point z de C¥\N,
on pose

p'(z, Tysy) = H (Ths1—Zk+1)
(2,2 1)€Y’
p (2, Ty = H (Tys1—2Zps1) -

(z,2k+1)eY”
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On a par définition

p(z, Tyyy) = p' (2, Tk+1)P” (z, Tis1)

et il suffit de montrer que les coefficients de p’ et p” sont des fonctions poly-
nomiales. Tout d’abord, ces coefficients sont des fonctions holomorphes sur
C*\N (§ 4, proposition 2), et puisque v, est propre, ils demeurent bornés au
voisinage de tout point de N. On conclut a ’aide des lemmes 6 et 7.

Il reste & montrer que X\u~! (N) est dense dans X. C’est une consé-
quence immédiate de I'irréductibilité de X et du lemme suivant.

LEMME 9. L adhérence de X\u™' (N) est un ensemble algébrique.
Pour toute fonction polynomiale f sur C" et pour tout point z de C¥\N,
on pose

0,(z, T) = 11 (T —f(2, Zgs 1> o> Z4)) -

(2,2 4 15+--sZn)eX

On vérifie comme précédemment que les coefficients de 0, sont des fonctions
polynomiales. Nous allons montrer que I’adhérence ¥V de X\u~' (N) est
¢gale a I’ensemble algébrique W défini par

W = {(Zlﬂ cees Zn) EC" ! Hf(zl, veey Zk,f(zl, ceny Zn)) == O
pour tout feC[Ty,...,T,]}.

Tout d’abord, il résulte des définitions que W contient V. Réciproquement,
soit ({4, ..., {,) un point de W et montrons qu’il appartient a la fibre

E=u',..0)nV.

Raisonnons par I’absurde. Puisque E est fini, il existe un polyndme f qui
s’annule au point ({, ..., {,) mais ne s’annule en aucun point de E. Ceci
implique en particulier que O est une racine du polyndme 0, ({4, ..., {3, T).
11 existe alors une suite (z7, ..., 2 ;oy de C¥\ N qui converge vers ({4, ..., {;)
et une suite (a;) ;o de C qui converge vers 0, telles que «; soit une racine du
polyndme 6; (z“ ). ..., z¥, T) pour tout entier j (cont1nu1te des racines d’un
polyndéme).

On désigne par z) un point de X\u~* (N) se projetant sur (27, ..., z{)
tel que £ (z"?) soit égal & «;. La restriction de u & ¥ étant propre, on peut
supposer, quitte 3 passer A une sous-suite, que (z\)) . converge vers un
point z de V. On en déduit que

f(z) = lim f(z9) =0
J—> 00

ce qui est absurde.
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COROLLAIRE. L ’ensemble des points singuliers d’une courbe algébrique
affine X est fini. L ’ensemble des points réguliers est une courbe holomorphe
connexe et dense dans X.

THEOREME 3. Pour toute courbe algébrique X de C", il existe une courbe

holomorphe X et une application holomorphe non constante n de X dans
C" vérifiant les conditions suivantes :

(1) L’image de m est contenue dans X.

(2) Pour toute courbe holomorphe Y et toute application holomorphe v
de Y dans C" constante sur aucune composante connexe de Y, il existe une

application holomorphe et une seule v de Y dans X telle que

~

TV =9.

Le couple (X, m) est déterminé a isomorphisme pres par ces conditions.
De plus, I’application m est propre (a fibres finies). Elle induit un isomor-

phisme de X\n~' (A) sur X\A, en désignant par A [’ensemble des points
singuliers de X.

Désignons par u une fonction réguliére sur X et par N un ensemble fini
de C vérifiant les conditions du théoréme 2. Pour tout point { de N, il
existe un disque D de centre { et de rayon r dans C tel que la restriction de
ua u~ ' (D\{{}) soit un revétement a m feuillets de D\{{}. Désignons par
Ui, ..., U, les composantes connexes de u~1 (D\{{}). La restriction de u
a U; est un revétement a m; feuillets de D\{({} et I'on a

n’l:m1+...+mp.

Désignons par D; le disque centré a I’origine et de rayon r'/™ dans C et
par v ; 'application de D; dans D définie par

¥;(2) = 2" + (.

La restriction de ; & D;\{0} est un revétement & m; feuillets de D\{{}.
Il existe donc un unique homéomorphisme /; de D;\{0} sur U; rendant le
diagramme suivant commutatif
h.
DNO}——1 U,
\\ //
lpj N Y u

D\({)
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Cette application est en fait un isomorphisme. On désigne par X ’espace
obtenu en recollant X\u~" (N) et les D; au moyen des homéomorphismes
h; (lorsque { parcourt N), par n Papplication réciproque de I’injection

canonique de X\u"!(N) dans X et par ¢ ; Tapplication réciproque de

Uinjection canonique de D; dans X. On vérifie aisément que X est une sur-
face topologique et que les ¢ ; sont des cartes holomorphiquement compa-

tibles avec toute carte de X\u~! (N). On munit X de la structure holo-
morphe correspondante.

L’application 7 est une application holomorphe a valeurs dans C",

définie sur le complémentaire d’un ensemble fini de X. Puisqu’elle demeure
bornée au voisinage de chaque point, elle se prolonge en une application

holomorphe de X dans C".
Il est clair que I'application 7 est propre a fibres finies, que son image

est contenue dans X et qu’elle induit un isomorphisme de X\n~! (4) sur
X\A4 (§4, proposition 1, corollaire). Il reste a vérifier la condition (2).
L’image réciproque de A est un ensemble fini et 'on pose

- -1
V=T 0 | x\p-10a) -

On vérifie aisément que v se prolonge par continuité aux points de v ™! (4)
ce qui achéve la démonstration du théoréme.

Le couple (X, 7) construit dans le théoréme 3 s’appelle la normalisation
(ou la désingularisation) de X. Le lemme suivant est une conséquence immé-
diate de ce qui précede.

LemMME 10. Soit X une courbe algébrique de C" et soit v une application
holomorphe d’une courbe holomorphe Y dans C". On suppose que |’appli-
cation v est propre (a fibre finies) et qu’elle induit un isomorphisme de
Y\o~ ' (4) sur X\A, en désignant par A [’ensemble des points singuliers
de X. Alors (Y,v) est la normalisation de X.

Tout polynéme p de C [Ty, ..., T,] s’écrit d’une manicre et d’une seule

P =DPo+ ...+ D

ol p; est homogéne de degré j. Pour tout point x de C"*! et tout nombre
complexe A, on a

p(Ax) = po + ... + AFp(x).
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En particulier, si p s’annule sur une partie de C"*'\0 saturée pour la pro-
jection canonique Y de C"*1\0 dans P”, il en est de méme de chacun des p;.

Pour tout polynéme homogéne p de C [T, ..., T,], 'ensemble des z€ros
de p dans C"*1\0 est saturé pour . Son image dans P" s’appelle (abusive-
ment) le lieu des zéros de p.

On dit qu’une partie X de P" est algébrique si elle est le lieu des zéros
d’une famille de polyndmes homogenes. L’ensemble a des polyndmes de
CIT,,...,T,] qui s’annulent sur ¥~ ! (X) est un idéal homogéne (i.e.
engendré par des polyndmes homogénes) que 'on appelle Uidéal de X.
On notera que X est aussi le lieu des zéros de toute famille de générateurs
de a. En particulier, le théoréme de la base de Hilbert montre que X est le
lieu des zéros d’une famille finie de polynémes homogénes.

Soit X un ensemble algébrique de P” et soit a son idéal.

On dit qu’un point x de X est régulier s’il existe un voisinage ouvert U
de x dans P" tel que U n X soit une sous-variété (holomorphe) de U. Un
point est dit singulier s’il n’est pas régulier.

Il résulte de cette définition que I’ensemble des points réguliers de X est
une partie ouverte de X et une sous-variété localement fermée de P”.

Pour tout entier j compris entre O et , la trace de X sur I’ensemble

UJ = {(ZO: 5 5§ Zn)EPn [ Zj ?é 0}

est un sous-ensemble algébrique de C" dont I’idéal est donné par la formule

A

a; ={peClTy, .., T} .., T,]| il existe g e a tel que

P = g(Lg ooy Li e T}

C’est une conséquence immédiate des définitions.
On dit que X est irréductible s’il vérifie I'une des conditions suivantes
dont on vérifie aisément qu’elles sont équivalentes:

(I) L’idéal a est premier.
(2) Si X est réunion de deux ensembles algébriques, I’un au moins est
égal a X.

Supposons X irréductible. On vérifie aisément que I’ensemble 4 défini
par

P
A= { ge CcTy...T,) | p et ¢ homogénes de méme degré et g ¢c_z}

est un sous-anneau de C (T, ..., T,) et que le quotient AlaA est un corps.
On Iappelle le corps des fonctions rationnelles sur X et on le désigne par




i

4
v

%
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Kk (X). On appelle dimension algébrique de X le degré de transcendance
de k (X).

PROPOSITION 4. Soit X un ensemble algébrique de P" et soit a son idéal.

St X est irréductible et si T; n’appartient pas a a, la trace de X sur

U; est irréductible et le corps 1« (X) des fonctions rationnelles sur X
A

s 'identifie au corps des fractions de C [Ty, ..., T}, ..., T,] |a;.
Désignons par p et p, des polynémes de degré k, et k, respectivement

dans C [T, ..., T}, ..., T,] tels que le produit p,p, appartienne a a ;. Ceci
signifie qu’il existe un polyndéme g dans a tel que
p1p2 = Q(TOB *rs 19 M 7-;!) *

Comme a est premier et que 7T; n’appartient pas a a, on peut supposer que
q n’est pas divisible par 7';. On a alors

pua, (T T (T T,
J 1 '1_"1- ooy T 2 T 9 cney T

-

J J J
e Tl‘zl-i-kl q (I?_ i Tf) —_ q
’ T; T; T;

d’ou l’assertion. Le reste de la proposition est laissé en exercice au lecteur.

On appelle courbe algébrique projective tout ensemble algébrique irré-
ductible de dimension algébrique 1 dans un espace projectif.

Les deux théorémes suivants sont des conséquences immédiates des
résultats correspondants du cas affine.

THEOREME 4. L ’ensemble des points singuliers d’une courbe algébrique
projective X est fini. L ’ensemble des points réguliers est une courbe holo-

- morphe connexe et dense dans X.

THEOREME 5. Pour toute courbe algébrique projective X de P", il existe

une courbe holomorphe X et une application holomorphe non constante

n de X dans P" vérifiant les conditions suivantes :
(1) L’image de m est contenue dans X.

(2) Pour toute courbe holomorphe connexe Y et toute application
holomorphe non constante v de Y dans P" dont l'image est contenue dans
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X, il existe une application holomorphe v et une seule de Y dans X telle
que

~

Ty =19.

Le couple (X,n) est déterminé a isomorphisme prés par ces conditions.
De plus, la courbe X est compacte et connexe et [’application © induit un

isomorphisme de X\n~' (A) sur X\A, en désignant par A [’ensemble des
points singuliers de X.

Le couple (X,n) du théoréme 5 s’appelle la normalisation (ou la désingu-
larisation) de X.
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