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11 existe pour tout indice i une forme m, Qç) telle que

U Kl W, UK

en tout point de Ul n UK (§ 2, lemme 1). En particulier, puisque uKl est

fermée, les différentielles dul se recollent en une forme fermée v homogène

de degré 2.

Montrons que la classe de v dans H2 (X, C) ne dépend que de g. En

effet, si l'on a

"ki 3 u\ - uk

pour certaines formes u[ de ^°° (Uv Ü£), les formes du\ se recollent en une

forme v' de #°° (X, Qç), les u[-ul en une forme u de ^°° (X, Qq) et l'on a

v' v + du

ce qui démontre l'assertion.
La classe de - v dans H2 (X, C) s'appelle la classe de Chern de g et se

désigne par ch (g).

Lemme 3. Pour tout recouvrement ouvert de X, la classe de Chern

induit un homomorphisme de Pic (%, C*) dans H2 (X, C). Si y est un

recouvrement ouvert de X plus fin que le diagramme suivant est com-

mutatif:
a ira)Pic {ftl,C*)' Pic C*)

ch \ / ch

H2 (X, C)

La démonstration est laissée en exercice au lecteur.

Par passage à la limite inductive, on obtient donc un homomorphisme
canonique ch de Pic (X, C*) dans H2 (X, C). On appelle classe de Chern
d'un fihré en droites complexes n sur X et l'on désigne par ch (n) la classe

de Chern du fibré principal associé à n (§ 2, scholie).

§ 5. COHOMOLOGIE DES SURFACES

Dans tout ce paragraphe, on désigne par X une surface différentielle
connexe et orientée.

Désignons par y une application indéfiniment dérivable définie sur un
ensemble ouvert W de R à valeurs dans X, et par u une forme différentielle
de (X, Qç). Il est clair que la restriction de y* (u) à tout intervalle fermé
de W ne dépend que de la restriction de 7 à cet intervalle.
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On dit qu'un chemin c de X défini sur un intervalle fermé borné [a, b\
de R est dérivable s'il existe un intervalle ouvert W contenant [a, b] et une
application y indéfiniment dérivable de W dans X prolongeant c. Pour
toute forme différentielle u de (X, Qç), on désigne par c* (u) la restriction
de y* (u) à [a, b].

On appelle intégrale de u sur c le nombre complexe défini par

Je" fîc*(K).

On définit ainsi une forme linéaire sur (X, Qq), réelle sur les formes
différentielles réelles. De plus, si h est une application dérivable à dérivée

positive d'un intervalle fermé borné sur [a, b\, on a

Jc-ft" Je"-

Autrement dit l'intégrale de u sur c ne dépend pas de la paramétrisation
de c. Enfin, pour toute fonction / de të1 (X, C), on a

Icàf =f(c(b)) — /(c (a)).

Désignons maintenant par u une forme fermée de <8"3° Q'c). Le lemme
de Poincaré (§ 3, proposition 1) montre qu'il existe un recouvrement ouvert
(UXel de X et, pour chaque indice i, une fonctionf\ de ^°° (Ut, C) telle que

W I

u,

D'autre part, la compacité de l'intervalle [a, b] montre qu'il existe une suite
de nombres réels

a t0 < t1 < < tn < tn+1 b

et pour tout entierj compris entre 0 et n un indice t (j) tel que Ux{y)contienne
l'image par c de l'intervalle [tj9 tj+ J. Une telle suite est dite subordonnée au
recouvrement (Ut)iei- Une telle application est dite de subordination.

On a alors

f « Z f C*(u)X / (c i)) - /TÜ) (C (0) •

Je o^j-^n J tj o^j^n
Si c est un chemin quelconque de X (continu mais non nécessairement

dérivable), et si u est fermée, le membre de droite est toujours défini. Nous
allons voir qu'il est indépendant des différents choix que nous avons faits.

Tout d'abord, il est indépendant de % : désignons par o une autre application

de subordination de { 0,..., n } dans /. Pour tout entierj compris entre 0

j et n9 l'image par c de l'intervalle [tj, tj+ x] est contenue dans une composante
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connexe de UxU) n Ua(J), d'où l'assertion puisque la fonction fx(j) - fa(j)
est constante sur cette composante connexe.

Pour tout nombre réel t compris entre ti et tJ+ u la suite

a t0 < < tj < t < tJ+1 < < tn+1 b

est encore subordonnée au recouvrement (UXei la somme correspondante

ne change pas. On en déduit que cette somme est indépendante de la

suite subordonnée au recouvrement (UXei•

Finalement, désignons par (VK)KeK un deuxième recouvrement ouvert
de X et, pour chaque indice k, par gK une fonction de ^°° (VK, C) telle que

u I

vK — dgK

Il existe une suite

a t0 < t± < < tn+l b

subordonnée aux deux recouvrements. On désigne par t (resp. a) une
application de subordination de { 0,..., n } dans I (resp. K). Pour tout entier j
compris entre 0 et n, l'image par c de l'intervalle [tj9 tJ+ J est contenue dans

une composante connexe de UxU) n Ku> et l'on conclut en remarquant
que fT(j) — ga(j) est constante sur cette composante connexe.

Pour tout chemin c de Xet toute forme fermée u de ^°° (X, Qq), on pose

(* « E Un(c (hi» - / to) (c <E)) •

Je Q^j^n

Cette définition coïncide avec la précédente si c est dérivable. Pour toute
application continue et croissante h d'un intervalle fermé borné sur [a, b],
on a

Je-/," Je" •

De plus, pour toute fonction / de ^°° (X, C), on a

icdf =f(c(b))-f(c(a));
enfin, si est un deuxième chemin de X ayant pour origine l'extrémité de c,
on a

jee' W Je U + Je' u •

Lemme 1. Soient c0 et c1 deux chemins homotopes de X. On a alors

C« ictU

pour toute forme différentielle fermée u de ^°° (X, Q^).
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On peut toujours supposer que c0 et cx sont définis sur l'intervalle [0, 1]

et l'on désigne par f une homotopie de c0 vers cl5 i.e. une application
continue du carré

C {(s, 0 e R2 I 0 < 5 < 1 et 0 < £ < 1}
dans X vérifiant les conditions suivantes:

r (5, 0) Cq (s) et r (s, 1) Ci (5)

r(o,t) co(0) Ci(0) et r(i,o c0(i) - Cl(i).
Il existe un recouvrement ouvert (C7,)iej de X et, pour chaque indice 1, une
fonction fx de ^ (£/t, C) telle que

u\Vl dft.
Par compacité, il existe deux suites de nombres réels

0 — S0 sn+l 1

0 *0 < < hn+1 — 1

et pour tout couple d'entiers (7, k) un indice t (7, /c) tel que l'image par jT

du rectangle

{(s,t)eR2ISj<i<sy+1 et

soit contenue dans UT(jtky Pour tout entier k compris entre 0 et m, la
restriction de T à [0, 1] x { tk } est un chemin yk de X et il suffit de montrer

que l'on a

LuL+iu-
Or, pour tout entier j compris entre 1 et n+l, l'image par r de l'ensemble

{ sj } X \jk9 tk+ll

est contenue dans une composante connexe de C/T(7_1/c) n Uz(jky On en

déduit que

f x(j-l,k) (yk (.Sjf) f x(j,k) (jk (Sy)) ~ /r(j-l,fc) (?/c+1 (Sj)) / (?/c+1 (Sj)) •

Par sommation, et en utilisant le fait que yk et yk+1 ont mêmes extrémités,

on voit que l'on a

X] f r(j,k) (ïk (Sj+ l)) f x (j,k) (yk (5j))

Z /xO*,fc) (T/c+1 (5j + l)) ~~ f x(j,k) (Vfc+1 (5j))
O^j^n

ce qui établit l'assertion.
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Désignons par C* le groupe multiplicatif des nombres complexes non
nuls et par U le groupe multiplicatif des nombres complexes de module 1.

On appelle support d'une fonction continue à valeurs dans C* (ou U) le

plus petit ensemble fermé en dehors duquel elle est égale à 1.

On désigne par #°° (X, C*) (resp. #°° (X, U)) le groupe multiplicatif
des fonctions de ^°° (X, C) à valeurs dans C* (resp. U) et par cê (X, C*)
(resp. (X U)) le sous-groupe formé de celles à support compact.

L'application exponentielle induit des homomorphismes

exp 2in : f00 (X, C) -> ^°° (X, C*) et exp 2in : (X, C) (X, C*)

exp lin : ^°° (X, R) -> ^°° (X, U) et exp 2in : (X, R) (X, U)

On dit qu'une fonction de (X, C*) possède un logarithme si elle est dans

l'image de l'application exponentielle.
1 ci fPour toute fonction f de ^°° (X, C*), la forme différentielle — —

2in f
s'appelle la différentielle logarithmique de f. Elle est réelle si f est à valeurs
dans U, à support compact si/est à support compact. Puisqu'elle est fermée,
on a des applications canoniques

(5 : ^°° (X, C*) -> H1 (X, C) et (5 : <ß (X, C*) H1, (X, C)

(5:<r°(X,U) -> H1 (X, R) et Ö: <C(X,U) -^H^R).
On vérifie aisément que ce sont des homomorphismes.

Lemme 2. Considérons les deux diagrammes commutatifs de groupes
abéliens et d'homomorphismes

<r°(x,R) exp2/* i <r°(x,u) —5—> h1 (x, r)
^ n j e

<r°(x,c) exp2/* i r»(x, c*) —*—> h1 (x, c)

V?(X,R) V?(X,U) Hi(A-,R)

V?(X,C*) H'(VC).
Leslignes sont exactes et 9induit un isomorphisme sur les images de Ö.

Pour toute fonction / de Li'iJ (X, C), on a

1 d(exp 2m/)
_

2 inexp 2inf
ce qui montre que le composé des deux homomorphismes est nul. D'autre
part, si g est une fonction de ('ri (X, C*) telle que



2in g

on voit que g exp { — lin f) est constante, ce qui montre que les lignes sont
exactes.

Montrons que l'application induite par 9 est injective. Si g est à valeurs
dans U, et si l'on a

exp 2inf g
on a la relation

exp — 2nlmf) | g | 1

autrement dit / est à valeurs réelles.

Montrons que l'application induite par 9 est surjective. Pour toute
fonction g de #°° (Z, C*), il existe une fonction / de ^°° (Z,R) telle que

\g\ exp/.
On a alors

d(\g\~1g) dg
——— df

\g I g g

ce qui démontre l'assertion.
Le second diagramme se traite de la même manière.

On désigne par H1 (X, Z) (resp. H* (X, Z)) le sous-groupe de H1 (X, R)
ou H1 (X, C) (resp. H* (X, R) ou (X, C)), image de l'homomorphisme S.

Désignons par G le groupe fondamental de X en un point base x0.
Pour toute forme différentielle fermée u de ^°° (Z, O1) et tout lacet c

de X, on appelle période de u sur c, l'intégrale de u sur c. Cette période ne

dépend que de la classe de cohomologie de u et de la classe d'homotopie de c

(lemme 1). On a donc un homomorphisme canonique

m : H1 (Z, R) Horn (G, R)

Théorème 1. L'homomorphisme œ est un isomorphisme. Il envoie
H1 (Z, Z) sur Horn (G, Z).

Montrons tout d'abord que cô est injectif. Soit u une forme différentielle
fermée de ^°° (Z, ß1) et soit c un chemin d'origine x0 et d'extrémité x
dans Z. Si toutes les périodes de u sont nulles, l'intégrale

f(x) JCU

ne dépend pas de c. Montrons que/ appartient à ^°° (Z, R) et que sa

différentielle est u. Tout point x1 de Z possède un voisinage connexe U sur
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lequel u est la différentielle d'une fonction g de C00 (£/,R) (lemme de Poin-

caré). On a alors pour tout point x de U

/(x) j> + g(x) - g (xt)

où c est un chemin fixe joignant x0 à xv Ceci démontre l'assertion.

Montrons maintenant que cô est surjective. Désignons par a un homo-

morphisme de G dans R, par X le revêtement universel de X et par n la

projection canonique de X dans X. On rappelle que le groupe G s'identifie

au groupe des transformations de ce revêtement; on le fait opérer sur

X x R par la formule
c - (x, t) (c (x), a (c) + t).

On désigne par Y l'espace des orbites, par p la projection canonique de

X x R dans Y et par p l'unique application rendant le diagramme suivant

commutatif
X —m- IxR

« | i p

X <—Y
Soit U un ensemble ouvert simplement connexe de X et soit V une composante

connexe de 7i_1 (U). Le groupe G opérant trivialement sur F x R,
on voit que p induit un homéomorphisme de F x R sur p~x (U). On en
déduit aisément que Y est séparé et que I x Rest son revêtement universel.
On munit Y de l'unique structure différentielle faisant de p un isomorphisme
local (§ 1, exemple 4).

L'étape suivante consiste à construire une section s de p, i.e. une
application indéfiniment dérivable de X dans Y telle que

P-s lz 1).

On désigne par (Un)neN et (V„)„eN deux recouvrements ouverts localement
finis de X tels que Un soit simplement connexe et Vn relativement compact
dans Un pour tout entier n. On construit alors par récurrence une section sn

de p indéfiniment dérivable au voisinage de u Fy et qui coïncide avec
°—•7—n

sn-x sur Vn n u Vf, Ceci est possible puisque l'on a un diagramme
o^j^n-l

commutatif _1/rM TT ^P '(Un) Ä X RP\X pri
Un

x) On prendra garde que p n'est pas un fibré vectoriel sur X: les transitions sont
linéaires affines et non linéaires.

L'Enseignement mathém., t. XXI, fasc. 2-3-4. 12
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L'application s s'obtient par recollement des sn.

Remarquons maintenant que la forme différentielle dt sur X x R est
invariante par G. Par passage au quotient, elle définit une forme
différentielle fermée u sur Y et l'on pose

V s*(u).

Pour tout lacet c de X au point x0 et tout point (x, t) de X x R se projetant
sur ^ (x0), il existe un chemin c et un seul relevant s • c et ayant (x, t) pour
origine. Son extrémité est par définition le point (c (x), a (c) + t) et l'on a

J," Le" 1-0 a(c)

ce qui démontre finalement la surjectivité de œ.

Il reste à voir que les formes différentielles à périodes entières sont
exactement les différentielles logarithmiques.

La première partie du théorème montre qu'une fonction/ de ^°° (X, U)
possède un logarithme sur tout ensemble ouvert simplement connexe.
Puisque deux tels logarithmes diffèrent d'un entier, toutes les périodes de

1 df
sont des entiers.

2in f
Réciproquement, désignons par u une forme différentielle fermée de

^°° (X, Q1). Toujours en vertu de la première partie du théorème, la forme
différentielle u* (u) est exacte sur le revêtement universel X. Désignons par/
une fonction de ^00 (X, R) dont la différentielle est 7i* (m). Si les périodes de

u sont entières, la fonction exp (2inf) est G-invariante ce qui achève la
démonstration du théorème.

Corollaire 1. Si X est simplement connexe, toute forme différentielle
fermée de (X, Q1) est exacte et toute fonction de ^ (X, C*) possède

un logarithme.

Corollaire 2. Si le groupe G est de génération finie, l'injection
canonique de H1 (X, Z) dans H1 (X, R) induit un isomorphisme

H1 (X, Z) 0 R H1 (X, R) x)

Le corollaire 2 s'applique en particulier si X est compacte (appendice II,
proposition 1).

x) On peut exprimer ce fait en disant que H1 (X, Z) est un réseau de H1 (X, R),
i.e. un sous-groupe libre dont le rang est égal à la dimension de H1 (X, R).
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Soit 4> une carte orientée de X et soit D un disque de centre x
relativement compact dans (j). Pour toute forme différentielle fermée u de

^°° (X\{x}, ßc), le nombre complexe
1

Rés (u, x)
2in

u
ÔD

où ôD désigne le bord orienté de D ne dépend que de u: c'est une

conséquence immédiate de la formule de Stokes. On l'appelle le résidu de u au

point x.
Supposons X simplement connexe. Il résulte du théorème 1 appliqué

à la surface différentielle X\{x} que u est exacte si et seulement si son

résidu au point x est nul.
On identifie désormais R2 et C au moyen de l'isomorphisme R-linéaire X

défini par

â(.\'i,.y2) x, + i.\-2 et A-1(z) ^l(z + z),i(z-z)^.

En particulier, toute carte de X apparaît comme une fonction à valeurs

complexes.

Lemme 3. Soient (j) et \jj deux cartes orientées de X centrées en un

point x, ayant pour domaine le même ensemble simplement connexe U.

(1) La différentielle logarithmique de (j) appartient à L{oc (U, Qq).
Son résidu au point x est égal à 1.

(2) Tout logarithme de (j)'1 \j/ demeure borné au voisinage de x.

La première assertion résulte immédiatement des définitions: il suffit
d'introduire des coordonnées polaires dans la carte 4>. Démontrons la
seconde. Dans un voisinage ouvert convexe V de l'origine, le changement
de cartes y de (j) dans \j/ s'écrit

y1 u1x1 + u2x2 et y2 v1xl + v2x2

(§ 3, lemme 2). Le jacobien de y à l'origine est positif. Il est donné par la
formule

jac (y) (0) «j (0) v2 (0) - u2 (0) ^ (0).

On définit des fonctions hx et h2 de cêa' (V, C) en posant11 11h -(«! +v2)+ — (m2-vt) et - (uL-v2) - — (u2 +wx)I II 2 21
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On a alors

y Vi + iy2 Kz + M et jac(y)(0) | hl (0) |2 - | h2(0) |2

Il existe par conséquent deux nombres réels s et r\ strictement positifs tels que

I K 0) - h (0) I < ri et I h2 (z) I + 2rj < j h1 (0) |

pour tout nombre complexe z de module inférieur ou égal à s. On en déduit

que

I hx (z) + ?h2(z) - Ä! (0) I <rj + \h2(z)\<\h1(G)\-rj.
z

En particulier, la fonction z~iy qui n'est autre que l'expression de

dans la carte (j) possède un logarithme borné dans la couronne

{ z g C I 0 < I z I <e},
ce qui démontre l'assertion.

Proposition 1. Pour tout chemin c d'origine x et d'extrémité y dans

Xil existe une fonction h de ^ (X\{x, y}, C*) vérifiant les conditions

suivantes :

(1) La différentielle logarithmique de h appartient à L\ (X,

(2) La restriction de h (resp. h~1) à un voisinage convenable de x
(resp. y) est une carte orientée de X centrée en x (resp. y).

(3) Pour toute forme différentielle fermée u de ^ (X\ Qq), on a

1

lin

• dh
A U

x h

Si de plus c est un lacet, on peut supposer que h appartient à ^ (X,
Nous démontrerons tout d'abord une propriété d'additivité que nous

utiliserons plusieurs fois par la suite. Supposons que l'on ait

CiClc2

et qu'il existe des fonctions h1 et h2 vérifiant les conditions de la proposition

pour les chemins c1 et c2. Désignons par a l'extrémité de c± (qui est aussi

l'origine de c2). La fonction hfh2 possède toutes les propriétés requises,

sauf qu'elle est peut être singulière au point a. Sur un voisinage ouvert
convenable U de a, la fonction h fi2 possède un logarithme/et ce logarithme



— 177

demeure borné au voisinage de a (lemme 3). Désignons par a une fonction

de f c ([/, R) égale à 1 au voisinage de a et posons

h h1h2 exp — linccf

La fonction h appartient à ^°° (X\{x, y}, C*) et l'on a pour toute forme

différentielle fermée u de ^°° (X, Qq),

1

2/71

dh

Y A U — d (a/) a u

De plus, si l'on désigne par De le disque de centre a et de rayon s dans

une carte orientée de centre a, on a

d(otf) au lim
X £->0

d(ocf) a u — lim
X\.DP £—>0

ocfu 0

On peut donc supposer que X est un ensemble ouvert convexe de C

et que c est donné par la formule

c(t) (2t — 1, 0)

pour t compris entre 0 et 1. Désignons par X' le complémentaire de l'image
de c. Il résulte du théorème 1 que la fonction g définie par

9(z)
z + 1

z — 1

possède un logarithme sur Xr et l'on pose

h(z) exp (2z*7ia(z)logg (z)) si zeX'
h (z) g (z) si z eX\X'

en désignant par a une fonction de ^ ^ (X, R) égale à 1 au voisinage de

l'image de c. Vérifions la condition (3). Toute forme différentielle fermée

sur X est exacte (lemme de Poincaré) et l'on a pour toute fonction / de

(X, C),

f dh

h
a df lim —

£—>-0

dlf —
X\(D^D'^) \ h

lim
£-^0 J ôd:

dh
î-r + Hm

h
8-> 0

dhft '
dD" h

où De (resp. De) désigne le disque de centre x (resp. y) et de rayon s. En
passant en coordonnées polaires, on vérifie aisément que l'on a
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f dh r dh
lim /— 2in f(y) et lim /— — 2in f{x)
e-+0 " £_>0 JôDg ^

ce qui démontre la proposition.

Remarque 1.

On appelle chemin joignant un point x à l'infini dans X toute application
propre et continue c de R+ dans X qui envoie l'origine sur x. Un tel chemin
existe toujours si X est ouverte (exercice pour le lecteur). On définit de

manière évidente l'intégrale d'une forme fermée de ^ (X, Qç) le long de c

et l'on vérifie aisément qu'il existe une fonction h de ^°° (X\{x), C*)
vérifiant les conditions suivantes :

(1) La différentielle logarithmique de h appartient à L{oc (X,
(2) La restriction de h à un voisinage convenable de x est une carte

orientée de X centrée en x.

(3) Pour toute forme différentielle fermée u de ^ (X, Qq), on a

1

2in

dh
u a — | u

h

On peut de plus supposer que le support de h est contenu dans un
voisinage arbitraire de l'image de c.

La formule de Stokes montre que la forme bilinéaire canonique

A : (X, Q1) x (X, Q1) -> R
définie par

A (u, v) U A V

induit par restriction et passage aux quotients une forme bilinéaire
canonique

A : H* (X, R) x H1 (X, R) -> R

Théorème 2. Les formes bilinéaires

A : Hlc(X9 Z) x H1 (X, R) ^ R et A: Hj(X, R) x H1 (X, Z) -> R

sont non dégénérées.

Soit v une forme différentielle fermée de ^°° (X, Q1) telle que A v)
soit nulle. Pour tout lacet c, il existe une fonction h de ^ (X, C*) telle que

1 f dh

lin J* h
A V 0

lin



— 179 —

En particulier, toutes les périodes de v sont nulles et par conséquent v est

exacte (théorème 1). Ceci montre que la première forme est non dégénérée.

Soit u une forme différentielle fermée de ^ (X, Q1) telle que A (u,

soit nulle. Il résulte de ce qui précède que u est la différentielle d'une fonction

/de ^°° (X, R) et tout revient à montrer que l'on peut choisir/à support
compact. Soit K un voisinage compact du support de u dont le
complémentaire n'a pas de composante connexe relativement compacte (appendice

II, lemme 5). Il est clair que / est constante sur chaque composante
connexe de X\K. Montrons qu'elle est constante sur X\K.

Soient U et V les composantes connexes de deux points x et y de X\K.
On désigne par a un chemin joignant x à l'infini dans U, par ß un chemin

joignant y à l'infini dans V et par c un chemin joignant x k y dans X. Il
existe des fonctions ha et hß dans #°° (X\{x}, C*) et ^°° (X\{j}, C*)
respectivement dont le support est contenu dans le complémentaire de K, vérifiant
les conditions de la remarque 1 pour les chemins a et ß, et une fonction h

de #°° (X\{x, j}, C*) vérifiant les conditions de la proposition 1 pour le
chemin c. Comme dans la proposition 1, on voit que l'on peut supposer la
fonction hah~1h~ß1 indéfiniment dérivable. On a alors

„ „ f If diKh-%1)f(y) -/(*) u — u A 0
Je 2,17t

^ x hoft hß

ce qui démontre l'assertion.

Corollaire 1. La forme bilinéaire canonique

A : (X, R) x H1 (X, R) R
est non dégénérée.

Corollaire 2. Si le groupe G est de génération finie, la forme bilinéaire A

induit des isomorphismes

H' (X, R) H1 (X, R) * et H1 (X, R) H* R) *

Remarque 2.

Le corollaire 2 du théorème 2 s'applique en particulier si X est compacte
(appendice II, proposition 1). On voit alors que l'espace vectoriel H1 (X, R)
est de dimension paire puisque la forme bilinéaire A est non dégénérée et
alternée.

L'ensemble G' défini par

G' { c e G | m 0 pour tout H1 {X, Z)}
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est un sous-groupe contenant le groupe des commutateurs. Le quotient G

est donc un groupe abélien dont on vérifie aisément qu'il est sans torsion.
Il résulte par ailleurs du théorème 1 que cö induit un isomorphisme de

H1 (X, Z) sur Horn (G, Z).
Tout lacet c de X possède une image naturelle dans G, à savoir la classe

du lacet aca-1 où a est un chemin joignant x0 à un point de l'image de c.

En particulier, toute courbe compacte orientée de X possède une image

naturelle dans G (appendice IV, théorème 1). D'autre part, si h désigne une
fonction de ^ (X, C*) vérifiant les conditions de la proposition 1 pour
le lacet c, la classe dans H*(X, Z) de la différentielle logarithmique de h

ne dépend que de la classe de c dans G. C'est une conséquence immédiate
des définitions et du théorème 2. On a donc un homomorphisme canonique

9 : G H* (X, Z).

Théorème 3. L 'homomorphisme 6 est un isomorphisme.

L'injectivité de 9 résulte immédiatement des définitions.
Soit h une fonction de U). Pour toute valeur régulière z de h

différente de 1, l'ensemble /z"1 (z) est une courbe compacte de X. C'est
donc une réunion finie de courbes isomorphes à U. Nous allons munir cette
courbe d'une orientation naturelle. Désignons par /l'unique isomorphisme
de U\{1} sur ]0, 1[ tel que

exp(2 inf) 1UU1}

et par t l'image de z par cet isomorphisme. L'ensemble (/• /z)-1 (]0, £]) est

une pièce de la surface différentielle (/• /z)-1 (]0, 1[) dont le bord est
précisément /z"1 (z). On munit ce bord de l'orientation induite.

Soient t' et t" deux valeurs régulières de/ • h avec t' strictement inférieur
à t". L'ensemble

7(L,0 (/•Ù)-1([L,/])
est une pièce compacte de X et l'on a pour toute forme différentielle fermée

u de ^°° (X, ßc),

- ï(f-h)-ir)u jr(*V") du 0.

En particulier, la classe c de h~1 (z) dans G est indépendante de la valeur

régulière z. D'autre part, sur l'ensemble ouvert h~1 (U\{1}), on a la relation

d(f'h).
2m h
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On en déduit que

1

2in

dh
AU t U — t'

(f'h)-Ht")
U

(f-h)-l(t')

Le théorème de Sard (§ 1, théorème 2) montre qu'il existe des valeurs

régulières de /• h arbitrairement voisines de 0 et de 1. On en déduit que

1

2x71

dh f.
1

— a u hm —
o lint

t"-* i

dh

h
A U U

Autrement dit, l'image de c par l'application 6 n'est autre que la classe de h

dans H* (X, Z), ce qui démontre le théorème.

Remarque 3.

Si u et v sont des éléments de H* (X, Z) et H1 (X, Z) respectivement,

on a

lxu AVL
où c désigne l'unique élément de G défini par u. Ceci montre en particulier
que A induit une forme Z-bilinéaire rendant le diagramme

H' (X.Z) x H1 (A'.Z) —— Z
»t 1 » I

Gx Hom (G,Z) Z

commutatif. La forme bilinéaire < > étant non dégénérée par

définition de G, il en est de même de A et l'on a un isomorphisme canonique de

H1 (X, Z) sur Hj. (X, Z)*. Si de plus G est de type fini, on a un isomorphisme
canonique de (X, Z) sur H1 (X, Z)*.

La forme Z-bilinéaire zl s'appelle la forme d'intersection de X. Nous
allons essayer d'expliquer pourquoi.

Soient g et h deux fonctions de ^ (X, U) et ^°° (X, U) respectivement
et soit u l'application produit {g, h) de X dans U x U.

L'application de g~1 (U\{1}) dans (U\{1}) x u induite par u est propre.
On désigne par v son degré (§ 4, théorème 4). Notons que l'on a

-1
4712

dg

x 9

dh — v

h 4n2

dz dw
— a — v

U x U Z W
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Désignons par (z, w) une valeur régulière de u, avec z et w distincts de 1,

par /l'unique isomorphisme de U\{1} sur ]0, 1[ tel que

exp(2 inf) lv\{1}

et par (s0, t0) l'image de (z, w) par / x /.
Les ensembles g~1 (z) et h ~1 (w) sont deux courbes de X naturellement

orientées (démonstration du théorème 3), dont la première est compacte.
Soit x un point de l'intersection de ces deux courbes. La restriction de

(/ x /) ' u à un voisinage convenable de x est une carte de X et l'image de

g-1 (z) (resp. h~1 (w)) par cette carte est la courbe

{(5, t) e R2 I s Sq } (resp. {(5, t) e R2 \t t0 }

Si la carte est orientée, on dit que le nombre d'intersection de g~x (z)
et h~1 (w) au point x est 1 (quand on se promène le long de g"1 (z),
la courbe h~x (w) vient de la droite). Si la carte n'est pas orientée, on dit
que le nombre d'intersection de g"1 (z) et h'1 (w) au point x est — 1

(quand on se promène le long de g'1 (z), la courbe h'1 (w) vient de la
gauche). Ainsi le degré v apparaît comme le nombre de points d'intersection
(avec signes) des deux courbes orientées g~x (z) et h'1 (w).

Nous allons maintenant calculer la classe de Chern d'un fibré en droites

complexes sur X. On peut se limiter au cas où X est compacte: si X est

ouverte, les deux groupes Pic (X, C*) et H2 (X, C) sont nuls (§ 2, corollaire
du théorème 1 et § 4, théorème 3). On sait alors que l'intégration des formes
différentielles de degré 2 induit un isomorphisme canonique de H2 (X, C)

sur C (§ 4, théorème 3). La classe de Chern d'un fibré en droites complexes

sur X apparaît donc comme un nombre complexe.
Soit 71 un fibré en droites complexes sur X et soit x un point de X.

Désignons par $ et W des cartes de n ayant pour domaine le même

voisinage de x et par g la transition de $ dans W. Pour toute section s de

^°° (X\{x), 7t), on a

% g Sq

En particulier, si ne s'annule pas, le résidu au point x de la différentielle

logarithmique de s0 est indépendant de <P. C'est un entier que l'on appelle
l'ordre de s au point x et que l'on désigne par 0X (s).

Soit A un ensemble fini de X et soit s une section partout non nulle de

^ (X\A9 7t). On appelle ordre de s l'entier défini par

0(5) S 0x(s).
xeA
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Proposition 2. On suppose X compacte et I 'on désigne par A un ensemble

fini de X. Pour toute section s partout non nulle de (X\A, n), on a

0 (s) ch (:71)

Désignons par xu*..,xn les points de A. Il existe deux familles fiUfij
et (Vj)ldËj^n d'ensembles ouverts de X vérifiant les conditions suivantes:

(1) L'ensemble Uj est le domaine d'une carte <Pj de n et le domaine

d'une carte orientée xj/j de X centrée au point Xj.

(2) L'ensemble Vj est un disque relativement compact de centre Xj
dans iJjj.

(3) Les ensembles Uu Un sont deux à deux disjoints.

Puisque la section s est partout non nulle sur X\A, le fibré n est trivial sur
l'ensemble

F0 X\ u Vj.
1

Choisissons une trivialisation <ï>0 et désignons par gkj la transition de <Pj

dans 0k pour tout couple d'entiers (/, k) compris entre 0 et n. On a

Sk — QkjSj

où Sj désigne l'expression de s dans <Pj. Choisissons pour tout entier j
compris entre 1 et n une fonction ccj de ^°° (X, R) égale à 1 au voisinage de

ds-
X\Vj et à 0 au voisinage de x Les formes différentielles a — appartiennent

sj
à ^°° (Uj, Qc) et l'on a

1 dsk 1 dSj 1 âgkj

2in k
sk 2'm J

Sj 2in gkj

en tout point de Vj n Vk. Par définition de la classe de Chern, on a donc

ch(7i) jxu
où u désigne la forme différentielle de ^°° (X, Q£) obtenue par recollement

1 ds-
des — aa- a —. Par conséquent,

2Î7T Sj

ce qui démontre l'assertion.
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Corollaire. La classe de Chern d'un fibre en droites complexes sur X
est un entier.

C'est une conséquence immédiate de la proposition 2 et de l'existence
de sections transverses (§ 2, lemme 5).

Lemme 4. Soient n et p deux fibrés en droites complexes sur X et
soient s et t deux sections transverses de n et p respectivement.

(1) L'ordre de s en un de ses zéros est égal à 1 ou — 1.

(2) Si l'ordre de s est égal à l'ordre de t en tout point, alors n et p
sont isomorphes.

La première assertion résulte immédiatement des définitions. La démonstration

de la seconde est laissée en exercice au lecteur (on procédera comme
dans la proposition 1 pour construire une section partout non nulle de

^°°(X,7l®p*)).

Soit <j> une carte orientée de X centrée en un point x. On désigne par
U0 son domaine et par U1 l'ensemble X\{x}. On définit un cocycle complexe
de rang 1 subordonné au recouvrement (£/u? U1) en posant

0i,o <fi
1 et g01 4>.

Désignons par n un fibré en droites complexes associé à ce cocycle. La
fonction (p sur U0 et la fonction constante 1 sur U1 se recollent en une
section transverse s de n et l'on a

ch (n)0 (s) 0,, (s) 1

Le lemme 4 montre que la classe Çx de n dans Pic (X, C*) ne dépend que
de x.

Lemme 5. Le groupe Pic (X\ C*) est engendré par les fibrés de la forme Çx.

Soit £ un fibré principal de groupe structural C* sur X et soit n un fibré

en droites complexes associé à Ç. On désigne par s une section transverse de

n, par xl5 xn les zéros d'ordre 1 de »s* et par yl9..., ym les zéros d'ordre

-1 de s. On voit aisément à l'aide du lemme 4 que l'on a

£ ~ ••• £xn Çyi ••• £ym

ce qui démontre l'assertion (§ 2, lemme 4).

Théorème 4. Si X est compacte, la classe de Chern induit un isomor-

phisme canonique de Pic (X, C*) sur Z.
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En vertu de ce qui précède, il suffit de montrer que ch est injective, ou
ce qui revient au même, que tout fibré principal de la forme

« u
est trivial. Désignons par n (resp. p) un fibré en droites complexes, associé à

Çx (resp. Çy) et par s (resp. t) une section transverse de n (resp. p) possédant
un seul zéro d'ordre 1 au point x (resp. y). Soit c un chemin joignant x à y
dans X et soit h une fonction de ^°° (X\{x, y}, C*) vérifiant les conditions

t
de la proposition 1. La section h - de ^ (^\{x, y], 7i®p*) est partout non

s

nulle. Elle est d'ordre 0 au point x et au point y. L'assertion résulte alors du
lemme 4.
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