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1l existe pour tout indice 1 une forme u, de ¢* (U,, QQ) telle que
U, = U, — Uy

en tout point de U, n U, (§2, lemme 1). En particulier, puisque #,, est
fermée, les différentielles du, se recollent en une forme fermée v homogéne
de degré 2.

Montrons que la classe de v dans H? (X, C) ne dépend que de g. En
effet, si 'on a

pour certaines formes u, de €% (U,, Q%), les formes du, se recollent en une
forme v’ de €® (X, Q2), les u, —u, en une forme u de ¥ (X, Q¢) et l'on a

v/ =v + du
ce qui démontre I’assertion.
La classe de —v dans H? (X, C) s’appelle la classe de Chern de g et se
désigne par ch (g).

LEMME 3. Pour tout recouvrement ouvert U de X, la classe de Chern
induit un homomorphisme de Pic (%, C*) dans H?* (X, C). Si ¥ est un
recouvrement ouvert de X plus fin que U, le diagramme suivant est com-

mutatif :
Pic (%, C*) % (v.2) Pic (v, C*)

ch X ¥ ch

HZ (X, C)

La démonstration est laissée en exercice au lecteur.

Par passage a la limite inductive, on obtient donc un homomorphisme
canonique ch de Pic (X, C*) dans H? (X, C). On appelle classe de Chern
d’un fibré en droites complexes m sur X et1’on désigne par ch (r) la classe
de Chern du fibré principal associé a = (§ 2, scholie).

§ 5. COHOMOLOGIE DES SURFACES

Dans tout ce paragraphe, on désigne par X une surface différentielle
connexe et orientée.

Désignons par y une application indéfiniment dérivable définie sur un
ensemble ouvert W de R a valeurs dans X, et par u une forme différentielle
de €° (X, Qp). Il est clair que la restriction de v* (u) a tout intervalle fermé
de W ne dépend que de la restriction de y & cet intervalle.
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On dit qu’un chemin ¢ de X défini sur un intervalle fermé borné [a, b]
* de R est dérivable s’il existe un intervalle ouvert W contenant [a, b] et une
application y indéfiniment dérivable de W dans X prolongeant c. Pour
toute forme différentielle u de €° (X, Q¢), on désigne par c* (1) la restriction
de y* (u) a [a, b].

On appelle intégrale de u sur ¢ le nombre complexe défini par

Jou = Jac* ).

On définit ainsi une forme linéaire sur ¥° (X, Q¢), réelle sur les formes
différentielles réelles. De plus, si 4 est une application dérivable a dérivée
positive d’un intervalle fermé borné sur [a, ], on a

fenu = [ou.

Autrement dit I'intégrale de u sur ¢ ne dépend pas de la paramétrisation
de c. Enfin, pour toute fonction f de €' (X, C), on a

Jedf = f(c®) —f(c(a).

Désignons maintenant par u une forme fermée de ¢ (X, Qé). Le lemme
de Poincaré (§ 3, proposition 1) montre qu’il existe un recouvrement ouvert
(U)o de X et, pour chaque indice 1, une fonction f, de €® (U,, C) telle que

u|U, = df,

D’autre part, la compacité de ’'intervalle [a, b] montre qu’il existe une suite
- de nombres réels
a = t0<t1<...<tn<tn+1 = b

et pour tout entier j compris entre 0 et 7 un indice 7 () tel que U, ;contienne
I'image par c de l'intervalle [z}, £;, {]. Une telle suite est dite subordonnée au
recouvrement (U,),.;. Une telle application est dite de subordination.

- On a alors

tj+1 '
f“ = 2 W) = Y feup(ctan) = fe(c(t)).
c 0=j=nJ tj 0=j=n
Si ¢ est un chemin quelconque de X (continu mais non nécessairement
dérivable), et si u est fermée, le membre de droite est toujours défini. Nous
allons voir qu’il est indépendant des différents choix que nous avons faits.
Tout d’abord, il est indépendant de 7: désignons par ¢ une autre applica-
- tion de subordination de {0,..,n } dans 1. Pour tout entier j compris entre 0
et n, 'image par c de I'intervalle [z;, ¢;, 1] est contenue dans une composante




— 169 —

connexe de U, ; n U,;, d’ou I'assertion puisque la fonction f.; = f5 ()
est constante sur cette composante connexe.
Pour tout nombre réel ¢ compris entre #; et £;, 4, la suite

a =to<...<t <t<tj+1<...<tn+1 =b

J
est encore subordonnée au recouvrement (U,),; et la somme correspon-

dante ne change pas. On en déduit que cette somme est indépendante de la
suite subordonnée au recouvrement (U)),;.

Finalement, désignons par (V,)..x un deuxiéme recouvrement ouvert
de X et, pour chaque indice x, par g, une fonction de €~ (V,, C) telle que

u I Vi = dgx .
Il existe une suite
a = t0<t1<...<tn+1 = b

subordonnée aux deux recouvrements. On désigne par t (resp. o) une appli-
cation de subordination de {0, ..., n } dans I (resp. K). Pour tout entier j
compris entre 0 et n, I'image par ¢ de l'intervalle [z}, £, ;] est contenue dans
une composante connexe de U, ;) N V,; et 'on conclut en remarquant
que f ;) — &4y €St constante sur cette composante connexe.

Pour tout chemin ¢ de X et toute forme fermée u de ¥ (X, Q¢), on pose

Ju = . Z fr(j) (C (tj+1)) "'fr(j) (C (tj))'

Cette définition coincide avec la précédente si ¢ est dérivable. Pour toute
application continue et croissante # d’un intervalle fermé borné sur [a, b},
on a

feonu = [.u.
De plus, pour toute fonction f de ¥* (X, C), on a
Jodf = flc(®) — f(c(a));

enfin, si ¢’ est un deuxiéme chemin de X ayant pour origine ’extrémité de c,
on a

feeu = feu + fou.

LeMME 1. Soient c, et ¢y deux chemins homotopes de X. On a alors

Jequ = fo u

pour toute forme différentielle fermée u de € (X, QJ).
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On peut toujours supposer que ¢, et ¢, sont définis sur 'intervalle [0, 1]
et 'on désigne par I' une homotopie de ¢, vers c,, i.e. une application
continue du carré

C={(neR|0<s<l e 0t}
dans X vérifiant les conditions suivantes:
I'(s,0) =¢co(s) et I (s,1) = c;(s)
@, =c(0) =c¢,(0) et TI(l,1) =co(l) =c;(1).

Il existe un recouvrement ouvert (U)),.; de X et, pour chaque indice 1, une
fonction f, de € (U,, C) telle que

u I v, — dfz :
Par compacité, il existe deux suites de nombres réels

0=S0<...<Sn+1=1
O=t0<...<tm+1=1
et pour tout couple d’entiers (j, k) un indice 7 (J, k) tel que I'image par I
du rectangle
{(s,)eR* |5; <s<s;41 et 4, <t<lhyg)

soit contenue dans U, ;). Pour tout entier k compris entre 0 et m, la
restriction de I' 2 [0, 1] x { ¢, } est un chemin y, de X et il suffit de montrer
que 'on a

jm W = J.vk+1u .

Or, pour tout entier j compris entre 1 et n+ 1, 'image par I" de ’ensemble

{5} % [tes tiea]

est contenue dans une composante connexe de U, ;j_1 5y N Uy . On en
déduit que

fr(j—l,k) (Vk (Sj)) _'fr(j,k) (Vk (Sj)) = f‘c(j"l,k) (Vk+1 (Sj)) —ft(j,k) (Yk+1 (Sj)) .

Par sommation, et en utilisant le fait que y, et y, ., ont mémes extrémités,
- on voit que 'on a

Z fr(j,k) (Vk (Sj+ 1)) —f‘c(j,k) (Vk (Sj))

0=j<n

= Z f‘c(j,k) (Yk+1 (Sj+1)) '_ft(j,k) (?’k+1 (Sj))

0=j=n

. ce qui établit Passertion.
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Désignons par C* le groupe multiplicatif des nombres complexes non
nuls et par U le groupe multiplicatif des nombres complexes de module 1.
On appelle support d’une fonction continue a valeurs dans C* (ou U) le
plus petit ensemble fermé en dehors duquel elle est égale a 1.

On désigne par ¥ (X, C*) (resp. ¥® (X, U)) le groupe multiplicatif
des fonctions de ¥” (X, C) a valeurs dans C* (resp. U) et par €7 (X, C¥)
(resp. €7 (X, U)) le sous-groupe formé de celles a support compact.

L’application exponentielle induit des homomorphismes

exp2in: €7 (X,C) > € (X, C*) et exp2in: 47 (X,C) » €7 (X, C¥)
exp 2in : € (X, R) » € (X,U) et expin: 4T (X,R) - €7 (X,U).

On dit qu’une fonction de €% (X, C*) possede un logarithme si elle est dans

I'image de ’application exponentielle.

1 d
Pour toute fonction f de €* (X, C*), la forme différentielle 2—~7f
in

s’appelle la différentielle logarithmique de f. Elle est réelle si fest a valeurs
dans U, a support compact si f'est & support compact. Puisqu’elle est fermée,
on a des applications canoniques

§:6°(X,C*->H'(X,C) et 6:47(X,C* -HLX, O
0:4°(X,U) -H'(X,R)et §: ¥°(X,U) ->H.(X,R).

On vérifie aisément que ce sont des homomorphismes.

LemME 2. Considérons les deux diagrammes commutatifs de groupes
abéliens et d’homomorphismes

¢°(X,R) =¥, ¢°(X,U) —° . H'(X,R)
N N J @
€7 (X, 0 =02, g2 (X,C* 2 H'(X,C)

¢7(X,R) =27, ¢2(X,U) — - H!(X,R)
N ‘ N 0
(gcz'o(X, C) IR, (g?(Xa C*) ° Hi (X: C)

Les lignes sont exactes et 0 induit un isomorphisme sur les images de 6.
Pour toute fonction fde €® (X, C), on a

1 d(exp2inf)
2in  exp 2inf B

df

ce qui montre que le composé des deux homomorphismes est nul. D’autre
part, si g est une fonction de €~ (X, C*) telle que
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1 d
~ —af,

2in g
on voit que g exp (—2izn f) est constante, ce qui montre que les lignes sont
exactes.

Montrons que I’application induite par 6 est injective. Si g est & valeurs
dans U, et si I'on a
exp2inf =g,
on a la relation
exp(—2nlmf) = |g| = 1

autrement dit f est a valeurs réelles.
Montrons que l’application induite par 6 est surjective. Pour toute
fonction g de ¥ (X, C¥), il existe une fonction f de €® (X,R) telle que

lgl =expf.
On a alors
-1
d(lgl1 9) =d_g_df
lgl g g

ce qui démontre I’assertion.
Le second diagramme se traite de la méme maniére.

On désigne par H! (X, Z) (resp. H. (X, Z)) le sous-groupe de H! (X, R)
ou H! (X, C) (resp. H. (X, R) ou H. (X, C)), image de I’lhomomorphisme 4.

Désignons par G le groupe fondamental de X en un point base x,,.

Pour toute forme différentielle fermée u de ¥* (X, Q') et tout lacet ¢
de X, on appelle période de u sur c, I'intégrale de u sur c¢. Cette période ne
dépend que de la classe de cohomologie de u et de la classe d’homotopie de ¢
(lemme 1). On a donc un homomorphisme canonique

@ :H'(X,R) - Hom (G, R)

THEOREME 1. L’homomorphisme @ est un isomorphisme. Il envoie
H! (X,Z) sur Hom (G, Z).

Montrons tout d’abord que @ est injectif. Soit # une forme différentielle
fermée de €~ (X, Q') et soit ¢ un chemin d’origine x, et d’extrémité x
dans X. Si toutes les périodes de u sont nulles, 'intégrale

f(x) = [,u

ne dépend pas de c. Montrons que f appartient a ¥* (X, R) et que sa diffé-
rentielle est u. Tout point x; de X posséde un voisinage connexe U sur
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lequel u est la différentielle d’une fonction g de C* (U, R) (lemme de Poin-
caré). On a alors pour tout point x de U

fx) =J u+gx) —g(x)

oll ¢ est un chemin fixe joignant x, & x;. Ceci démontre I’assertion.
Montrons maintenant que @ est surjective. Désignons par o un homo-
morphisme de G dans R, par X le revétement universel de X et par 7 la
projection canonique de X dans X. On rappelle que le groupe G s’identifie
au groupe des transformations de ce revétement; on le fait opérer sur
X % R par la formule

¢ (x,1) = (c(x),a(c) +1).

On désigne par Y Despace des orbites, par p la projection canonique de
X X R dans Y et par p 'unique application rendant le diagramme suivant
commutatif

}~( )~(><R
- | L
X L4 Y

Soit U un ensemble ouvert simplement connexe de X et soit " une compo-
sante connexe de =~ ! (U). Le groupe G opérant trivialement sur ¥ X R,
on voit que p induit un homéomorphisme de ¥ X R sur p~* (U). On en
déduit aisément que Y est séparé et que X X R est son revétement universel.
On munit Y de 'unique structure différentielle faisant de p un isomorphisme
local (§ 1, exemple 4).

L’étape suivante consiste a construire une section s de p, i.e. une appli-
cation indéfiniment dérivable de X dans Y telle que

prs = 1y 1)-

On désigne par (U,),en €t (Viueny deux recouvrements ouverts localement
finis de X tels que U, soit simplement connexe et V, relativement compact
dans U, pour tout entier n. On construit alors par récurrence une section s,
de p indéfiniment dérivable au voisinage de U V; et qui coincide avec

0=j=n
Sp—q Sur V, o u V. Ceci est possible puisque ’on a un diagramme
0=j=n—1
commutatif -
p(U,) = U,xR
p \\ L

U

n

. ‘1) On prendra garde que p n’est pas un fibré vectoriel sur X: les transitions sont
linéaires affines et non linéaires.

L’Enseignement mathém., t. XXI, fasc. 2-3-4. 12
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L’application s s’obtient par recollement des s,
Remarquons maintenant que la forme différentielle d¢ sur X x R est

invariante par G. Par passage au quotient, elle définit une forme diffé-
rentielle fermée u sur Y et ’on pose

v = s*(u).

Pour tout lacet ¢ de X au point x,, et tout point (x, ) de X x R se projetant
sur s (xg), il existe un chemin ¢ et un seul relevant s - ¢ et ayant (x, t) pour
origine. Son extrémité est par définition le point (¢ (x), « (c) + t) et 'on a

Lo =15 = ,u=],dt =2

ce qui démontre finalement la surjectivité de @.

Il reste a voir que les formes différenticlles & périodes entiéres sont
exactement les différentielles logarithmiques.

La premiere partie du théoréme montre qu’une fonction f de €~ (X, U)
possede un logarithme sur tout ensemble ouvert simplement connexe.

Puisque deux tels logarithmes différent d’un entier, toutes les périodes de

1 df .
—— —— sont des entiers.
2in f

Réciproquement, désignons par u une forme différentielle fermée de
% (X, Q). Toujours en vertu de la premiére partie du théoréme, la forme
différentielle * (u) est exacte sur le revétement universel X. Désignons par f
une fonction de ¥* (X, R) dont la différentielle est n* (u). Si les périodes de
u sont enticres, la fonction exp (2in ) est G-invariante ce qui achéve la
démonstration du théoréme.

COROLLAIRE 1. Si X est simplement connexe, toute forme différentielle
 fermée de €® (X, Q") est exacte et toute fonction de €* (X, C*) posséde
un logarithme. |

COROLLAIRE 2. Si le groupe G est de génération finie, l’injection cano-
nique de H' (X, Z) dans H' (X, R) induit un isomorphisme

H!'(X,Z) @R = H'(X,R) ).

Le corollaire 2 s’applique en particulier si X est compacte (appendice 11,
proposition 1).

1y On peut exprimer ce fait en disant que H* (X, Z) est un réseau de H! (X, R),
i.e. un sous-groupe libre dont le rang est égal 4 la dimension de H* (X, R).
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Soit ¢ une carte orientée de X et soit D un disque de centre x relati-
vement compact dans ¢. Pour toute forme différentielle fermée u de
%= (X\{x}, ), le nombre complexe

Rés (u,x) = i u
2im Jsp

ol dD désigne le bord orienté de D ne dépend que de u: c’est une conse-
quence immédiate de la formule de Stokes. On I'appelle le résidu de u au
point  X.

Supposons X simplement connexe. Il résulte du théoréme 1 appliqué
a la surface différentielle X\{x} que u est exacte si et seulement si son
résidu au point x est nul.

On identifie désormais R? et C au moyen de I'isomorphisme R-linéaire A
défini par

Alxy,%,) = x4 +ix, et A7l (z) = (% (z—l—i),%(z—i)).

En particulier, toute carte de X apparait comme une fonction a valeurs
complexes.

LEMME 3. Soient ¢ et Y deux cartes orientées de X centrées en un
point x, ayant pour domaine le méme ensemble simplement connexe U.

(1) La différentielle logarithmique de ¢ appartient & L., (U, Q).
Son résidu au point x est égal a 1.

(2) Tout logarithme de ¢~ demeure borné au voisinage de x.

La premicre assertion résulte immédiatement des définitions: il suffit
d’introduire des coordonnées polaires dans la carte ¢. Démontrons la
seconde. Dans un voisinage ouvert convexe V de ’origine, le changement
de cartes y de ¢ dans Y s’écrit

Y1 = UgXq +UzXx, ety = 01Xy + UyX,

(§ 3, lemme 2). Le jacobien de y a 'origine est positif. Il est donné par la
formule

jac (1) (0) = u; (0)v2(0) — u,(0)v, (0).

On définit des fonctions A4 et &, de ¥ (V, C) en posant

1 1 1 1
hy = 5 (ug +v,) + 5 (u,—vy) et h, = 5 (ug —v,y) — Y, (uy +v,).
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On a alors

Y =71+ =hiz +hz et jac()(0) = [h (0)[* — [y (0) 2.

11 existe par conséquent deux nombres réels ¢ et 1 strictement positifs tels que
|hy(2) = h (O) [ <n et |hy(2)| + 27 <[h(0)]

pour tout nombre complexe z de module inférieur ou égal a &. On en déduit
que

1)+ () = b ) <1+ 1ha ()] < [ O]~ 1.

En particulier, la fonction z~!y qui n’est autre que I’expression de ¢~ 1y
dans la carte ¢ posséde un logarithme borné dans la couronne

{zeCl|O<|z]|<¢},

ce qui démontre 1’assertion.

PROPOSITION 1. Pour tout chemin c¢ d’origine x et d’extrémité y dans
X, il existe une fonction h de €% (X\{x, y}, C¥) vérifiant les conditions
suivantes :

(1) La différentielle logarithmique de h appartient & L. (X, Qp).
(2) La restriction de h (resp. h™') a unm voisinage convenable de x

(resp. y) est une carte orientée de X centrée en x (resp. y).

(3) Pour toute forme différentielle fermée u de 4 (X, Q¢), on a

1 dh
— | — Au=| u.
2in |y h .

Si de plus ¢ est un lacet, on peut supposer que h appartient a €% (X, C*).
Nous démontrerons tout d’abord une propriété d’additivité que nous
utiliserons plusieurs fois par la suite. Supposons que I'on ait

cC = C1C2

et qu’il existe des fonctions %, et A, vérifiant les conditions de la proposition
pour les chemins ¢, et ¢,. Désignons par a l'extrémité de c¢; (qui est aussi
Porigine de c¢,). La fonction Ak, posséde toutes les propriétés requises,
sauf qu’elle est peut étre singuliére au point a. Sur un voisinage ouvert
convenable U de a, 1a fonction % ,k, posséde un logarithme fet ce logarithme
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demeure borné au voisinage de a (lemme 3). Désignons par o une fonction
de €% (U, R) égale a 1 au voisinage de a et posons

h = hh, exp (—2inof).

La fonction /4 appartient & €® (X\{x, y}, C*) et Pon a pour toute forme
différentielle fermée u de €~ (X, Q)

dh
_l_ — AU = L{—J d(ocf)/\u.
2im Xh ¢ X

De plus, si ’on désigne par D, le disque de centre a et de rayon & dans
une carte orientée de centre a, on a

&0 e>0

Jd(af)ALz:limf d(ef) Au = —1imJ ofu = 0.
X x\p, oDg
On peut donc supposer que X est un ensemble ouvert convexe de C
et que ¢ est donné par la formule
c(t) = (2t—1,0)

pour f compris entre 0 et 1. Désignons par X' le complémentaire de I'image
de c. Il résulte du théoréme 1 que la fonction g définie par

z +1
z — 1

g(z) =

posséde un logarithme sur X’ et 'on pose

h(z) = exp (2ino(z)logg(z)) sizeX’
h(z) = g(2) si ze X\ X’
en désignant par o une fonction de % (X, R) égale & 1 au voisinage de

I’image de c¢. Vérifions la condition (3). Toute forme différentielle fermée
sur X est exacte (lemme de Poincaré) et ’on a pour toute fonction f de

¢* (X, O),
dh . dh
— Adf =1lim — d{f—
X h £>0 x\(DjuDy) h

: dh : dh
= lim f— + lim f—,
aDé h ” ]’l

&0 e-0 oD%

olt D, (resp. D,) désigne le disque de centre x (resp. y) et de rayon ¢. En
passant en coordonnées polaires, on vérifie aisément que ’on a
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.| dh , dh
lim f— = 2in f(y) et llmj f— = =2in f(x)
&0 JoDj h oD{ h

>0

ce qui démontre la proposition.

Remarque 1.

On appelle chemin joignant un point x d [l’infini dans X toute application
propre et continue ¢ de R, dans X qui envoie ’origine sur x. Un tel chemin
existe toujours si X est ouverte (exercice pour le lecteur). On définit de
maniére évidente I'intégrale d’une forme fermée de ¥ (X, Q¢) le long de ¢
et 'on vérifie aisément qu’il existe une fonction # de ¥* (X'\{x}, C¥) véri-
fiant les conditions suivantes:

(1) La différentielle logarithmique de % appartient & L, _ (X, QJ).

(2) La restriction de 4 a un voisinage convenable de x est une carte
orientée de X centrée en Xx.

(3) Pour toute forme différentielle fermée u de €% (X, Q¢), on a
1 dh
— | un—=| u.
2i7f X h c

On peut de plus supposer que le support de /# est contenu dans un
voisinage arbitraire de I'image de c.

La formule de Stokes montre que la forme bilinéaire canonique

A:62(X,0H x €°(X,2Y) - R
définie par
Au,v) =[xu Av
induit par restriction et passage aux quotients une forme bilinéaire cano-

nique
A:H (X,R) x H (X,R) - R.

THEOREME 2. Les formes bilinéaires
A:H(X,Z) xH X,R)-R e 4:H(X,R)xH' (X,Z)—>R

~ sont non dégénérées.
| Soit v une forme différentielle fermée de €= (X, Q) telle que 4 ( , v)
soit nulle. Pour tout lacet c, il existe une fonction 2 de €% (X, C*) telle que

1 dh
=— | — Av =0.
. 2im Jx h
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En particulier, toutes les périodes de v sont nulles et par conséquent v est
exacte (théoréme 1). Ceci montre que la premiére forme est non dégénérée.

Soit # une forme différentielle fermée de €% (X, Q') telle que 4 (u, )
soit nulle. Il résulte de ce qui précéde que u est la différentielle d’une fonc-
tion fde € (X, R) et tout revient a montrer que I’on peut choisir f'a support
compact. Soit K un voisinage compact du support de u# dont le complé-
mentaire n’a pas de composante connexe relativement compacte (appen-
dice II, lemme 5). Il est clair que f est constante sur chaque composante
connexe de X\K. Montrons qu’elle est constante sur X\K.

Soient U et V les composantes connexes de deux points x et y de X\K.
On désigne par o un chemin joignant x a 'infini dans U, par f un chemin
joignant y a linfini dans V et par ¢ un chemin joignant x a y dans X. Il
existe des fonctions 4, et #; dans € (X\{x}, C*) et ¥* (X\{y}, C*¥) respec-
tivement dont le support est contenu dans le complémentaire de K, vérifiant
les conditions de la remarque 1 pour les chemins o et 8, et une fonction A
de €* (X\{x, y}, C*) vérifiant les conditions de la proposition 1 pour le
chemin ¢. Comme dans la proposition 1, on voit que ’on peut supposer la
fonction A,h™ A" indéfiniment dérivable. On a alors
1 d(h,h™*hy")

f(y) —‘f(X) = J;u = El; Xu A hah—lhzl

ce qui démontre I’assertion.

COROLLAIRE 1. La forme bilinéaire canonique

A:H.(X,R) x H'(X,R) > R
est non dégéncrée.

COROLLAIRE 2. Si le groupe G est de génération finie, la forme bilinéaire A
induit des isomorphismes

H.(X,R) = H'(X,R)* e H' (X,R) =H.(X,R)*.
Remarque 2.

Le corollaire 2 du théoréme 2 s’applique en particulier si X est compacte
(appendice II, proposition 1). On voit alors que I’espace vectoriel H* (X, R)

est de dimension paire puisque la forme bilinéaire 4 est non dégénérée et
alternée.

L’ensemble G" défini par
G' ={ceG|f u =0 pour tout ueH' (X,2))}




est un sous-groupe contenant le groupe des commutateurs. Le quotient G
est donc un groupe abélien dont on vérifie aisément qu’il est sans torsion.
Il résulte par ailleurs du théoréme 1 que @ induit un isomorphisme de

H' (X, Z) sur Hom (G, Z). _

Tout lacet ¢ de X posséde une image naturelle dans G, a savoir la classe
du lacet aca ™t ol « est un chemin joignant x, & un point de I’image de c.
En particulier, toute courbe compacte orientée de X posséde une image

naturelle dans G (appendice 1V, théoréme 1). D’autre part, si 2 désigne une
fonction de €% (X, C*) vérifiant les conditions de la proposition 1 pour
le lacet ¢, la classe dans HL (X, Z) de la différentielle logarithmique de 4

ne dépend que de la classe de ¢ dans G. C’est une conséquence immédiate
des définitions et du théoréme 2. On a donc un homomorphisme canonique

0:G—H-(X,Z).

THEOREME 3. L ’homomorphisme 0 est un isomorphisme.

L’injectivité de 0 résulte immédiatement des définitions.

Soit / une fonction de ¥7 (X, U). Pour toute valeur régulicre z de A
différente de 1, ’ensemble 4! (z) est une courbe compacte de X. Cest
donc une réunion finie de courbes isomorphes & U. Nous allons munir cette
courbe d’une orientation naturelle. Désignons par f I’'unique isomorphisme
de U\{1} sur 10, 1] tel que

exp (2inf) = 1y,

et par ¢ 'image de z par cet isomorphisme. L’ensemble (/- A)~* (10, ¢]) est
une piece de la surface différentielle (£ - £)~* (10, 1[) dont le bord est préci-
sément #~! (z). On munit ce bord de I'orientation induite.

Soient ¢’ et t” deux valeurs réguliéres de f - & avec ¢’ strictement inférieur
- at”. L’ensemble

Y, 1) = (- [ 0)
- est une piéce compacte de X et ’on a pour toute forme différentielle fermée
u de €° (X, Q0),

j(f'h)"l(t”) u - j(f-h)‘l(t’)u = 5Y<r',t") du = 0.

~

En particulier, la classe ¢ de A~ ' (z) dans G est indépendante de la valeur
- réguliére z. D’autre part, sur 'ensemble ouvert 27" (U\{1}), on a la relation

1 dh

ﬂ_}_{ =d(f-h).
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On en déduit que

1 dh , ,
— — AU =1 u—t u .
2im Y (") h (f-m—=1@") (S-h=-1@)

Le théoréme de Sard (§ 1, théoréme 2) montre qu’il existe des valeurs
réguliéres de f - h arbitrairement voisines de 0 et de 1. On en déduit que

1 dh 1 dh j
e — A u =lim— — AW = u.
2in | y h 0 20 ) yqrary B .

"1

Autrement dit, 'image de ¢ par ’application 6 n’est autre que la classe de 4
dans H.. (X, Z), ce qui démontre le théoréme.

Remarque 3.

Si u et v sont des éléments de H. (X, Z) et H' (X, Z) respectivement,
on a
fyu nv=1{v

ol ¢ désigne I'unique élément de (N} défini par u. Ceci montre en particulier
que 4 induit une forme Z-bilinéaire rendant le diagramme

H.(X,Z) x H!

o1 Lo |

G x Hom(é,Z) =i F

commutatif. La forme bilinéaire < , > ¢tant non dégénérée par défi-
nition de G, il en est de méme de 4 et ’on a un isomorphisme canonique de

H! (X, Z) sur H, (X, Z)*. Si de plus G est de type fini, on a un isomorphisme
canonique de H. (X, Z) sur H! (X, Z)*.

La forme Z-bilinéaire A s’appelle la forme d intersection de X. Nous
allons essayer d’expliquer pourquoi.

Soient g et 4 deux fonctions de €7 (X, U) et € (X, U) respectivement
et soit u ’application produit (g, #) de X dans U x U.

L’application de g ~* (U\{1}) dans (U\{1}) x U induite par u est propre.
On désigne par v son degré (§ 4, théoréme 4). Notons que I’on a

dg dh —v dz dw
A _

T 42
472 x 9 h 4n° | yxu 2 W
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Désignons par (z, w) une valeur réguliére de u, avec z et w distincts de I,
par f I'unique isomorphisme de U\{1} sur ]0, 1] tel que

exp (2inf) = ly\u,

et par (sq, o) 'image de (z, w) par f x f.

Les ensembles g ! (z) et A~ (w) sont deux courbes de X naturellement
orientées (démonstration du théoréme 3), dont la premiére est compacte.
Soit x un point de l'intersection de ces deux courbes. La restriction de
(f x f) - u aun voisinage convenable de x est une carte de X et I"image de
g~ (2) (resp. A~ (w)) par cette carte est la courbe

{(s,)eR*|s = s} (resp. {(s,)eR*|t =15}).

Si la carte est orientée, on dit que le nombre d’intersection de g~ * (2)
et h™'(w) au point x est 1 (quand on se proméne le long de g~ (2),
la courbe 27! (w) vient de la droite). Si la carte n’est pas orientée, on dit
que le nombre d’intersection de g~ ' (z) et h™'(w) au point x est —1
(quand on se proméne le long de g~ ' (2), la courbe ~2~! (w) vient de la
gauche). Ainsi le degré v apparait comme le nombre de points d’intersection
(avec signes) des deux courbes orientées g ™! (z) et A~ (w).

Nous allons maintenant calculer la classe de Chern d’un fibré en droites
complexes sur X. On peut se limiter au cas ou X est compacte: si X est
ouverte, les deux groupes Pic (X, C*) et H? (X, C) sont nuls (§ 2, corollaire
du théoréme 1 et § 4, théoréme 3). On sait alors que 'intégration des formes
différentielles de degré 2 induit un isomorphisme canonique de H? (X, C)
sur C (§ 4, théoréeme 3). La classe de Chern d’un fibré en droites complexes
sur X apparait donc comme un nombre complexe.

Soit 7 un fibré en droites complexes sur X et soit x un point de X.

Désignons par @ et ¥ des cartes de w ayant pour domaine le méme voi-
sinage de x et par g la transition de @ dans ¥. Pour toute section s de
%~ (X\{x}, ), on a

Sgp = g Sg -

En particulier, si s ne s’annule pas, le résidu au point x de la différentielle
logarithmique de s4 est indépendant de @. C’est un entier que ’on appelle
[’ordre de s au point x et que ’on désigne par 0, (s).
Soit 4 un ensemble fini de X et soit s une section partout non nulle de
%* (X\4, ). On appelle ordre de s Ventier défini par
0(s) = ). 0,(s).

xeAd
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PROPOSITION 2. On suppose X compacte et [’on désigne par A un ensernble
fini de X. Pour toute section s partout non nulle de €% (X\A, n), on a

0(s) = ch(n).

Désignons par x4, ..., X, les points de A. Il existe deux familles(U;); ;.
et (V)1 —;—n d’ensembles ouverts de X vérifiant les conditions suivantes:

(1) L’ensemble U; est le domaine d’une carte @; de 7 et le domaine
d’une carte orientée ¥ ; de X centrée au point x;.

(2) L’ensemble V; est un disque relativement compact de centre Xx;
dans .

(3) Les ensembles Uy, ..., U, sont deux a deux disjoints.

Puisque la section s est partout non nulle sur X\4, le fibré 7 est trivial sur
I’ensemble

J
1=j=n

Choisissons une trivialisation @, et désignons par g,; la transition de &;
dans @, pour tout couple d’entiers (j, k) compris entre 0 et n. On a

Sk = YkjS;j

ou s; désigne I'expression de s dans &;. Choisissons pour tout entier j
compris entre 1 et n une fonction «; de € (X, R) égale a 1 au voisinage de

- . . ds; :
X\V;eta0auvoisinage de x ;. Les formes différentielles o; — appartiennent

Sj

a %> (U, Qé) et I'on a
1 ds, 1 ds;

J

1 dgy;

" 2in Gk

2in S 2irn S;

en tout point de V; n V. Par définition de la classe de Chern, on a donc

ol u désigne la forme différentielle de ¥ (X, Q&) obtenue par recollement
1 ds; ,
des — da; A —=. Par conséquent,
in S;
1 ds; 1 ds.
ch(n) = ) _J do A — = Y — —i=0(s)
1=j=n 217‘5 U Sj l=j=n 217'5 an Sj
! ce qui démontre 1’assertion.
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COROLLAIRE. La classe de Chern d’un fibré en droites complexes sur X
est un entier.

C’est une conséquence immédiate de la proposition 2 et de ’existence
de sections transverses (§ 2, lemme 5).

LEMME 4. Soient © et p deux fibrés en droites complexes sur X et
soient s et t deux sections transverses de T et p respectivement.

(1) L’ordre de s en un de ses zéros est égal @ 1 ou —1.

(2) Sil’ordre de s est égal a l’ordre de t en tout point, alors © et p
sont isomorphes.

La premiere assertion résulte immédiatement des définitions. La démons-
tration de la seconde est laissée en exercice au lecteur (on procédera comme
dans la proposition 1 pour construire une section partout non nulle de

€~ (X, n®@p*)).

Soit ¢ une carte orientée de X centrée en un point x. On désigne par
U, son domaine et par U, ’ensemble X\{x}. On définit un cocycle complexe
de rang 1 subordonné au recouvrement (U, U,) en posant

91,0 = ¢—1 et Jdo1 = ¢ .

Désignons par n un fibré en droites complexes associé a ce cocycle. La
fonction ¢ sur U, et la fonction constante 1 sur U, se recollent en une sec-
tion transverse s de 7 et 'on a

ch(n) =0(s) =0,(s) = 1.

Le lemme 4 montre que la classe £, de n dans Pic (X, C*) ne dépend que
de x.

LEMME 5. Le groupe Pic (X, C*) est engendré par les fibrés de la forme &..

Soit & un fibré principal de groupe structural C* sur X et soit 7 un fibré
en droites complexes associé a £. On désigne par s une section transverse de
7, par Xy, ..., X, les zéros d’ordre 1 de s et par y, ..., y,, les zéros d’ordre
—1 de s. On voit aisément a ’aide du lemme 4 que 'on a

=80l

ce qui démontre I’assertion (§ 2, lemme 4).

THEOREME 4. Si X est compacte, la classe de Chern induit un isomor-
phisme canonique de Pic (X, C*) sur Z.
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En vertu de ce qui précéde, il suffit de montrer que ch est injective, ou
ce qui revient au méme, que tout fibré principal de la forme

E = &8

est trivial. Désignons par 7« (resp. p) un fibré en droites complexes associé a
¢, (resp. &) et par s (resp. ¢) une section transverse de 7 (resp. p) possédant
un seul zéro d’ordre 1 au point x (resp. y). Soit ¢ un chemin joignant x a y
dans X et soit 4 une fonction de ¥% (X\{x, y}, C*) vérifiant les conditions

t
de la proposition 1. La section /z — de € (X\{x, ¥}, 7 ®p*) est partout non
s

nulle. Elle est d’ordre 0 au point x et au point y. L’assertion résulte alors du
lemme 4.
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