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On pose alors

l(u)(x1,
Çxj

ij(«2)Ol,• • •, *7-1, 0 - 1(")(0) df.
J — 00

Il est clair que / est une application linéaire de dans fé"30 (X, R) qui
a

commute avec l'opérateur — pour k compris entre 1 et y -1. De plus, on a
ôxk

ô
N— {l(u))(xl9 ...9xn) ij(ü2)(xl9...9xj) - ij^1(u)(xl9 cc(xj)

l(dj-1u)(xl9...,xn) ij (uf) (x1? Xy).

On pose finalement

kj-i(u) kj(u 1) — dxj a kj(u2) + l(u)cOj

et l'on vérifie aisément l'assertion.

Il résulte du lemme de Poincaré que la suite d'espaces vectoriels et

d'applications linéaires

0 -> <6 (X, R) X (X, Q *) X (X, Qn) -U R -> 0

est exacte pour tout cube ouvert de Rw.

Remarque 1.

Toutes les constructions et les résultats de ce paragraphe demeurent
valables si l'on utilise les germes de fonctions à valeurs complexes. On
obtient alors le fibré cotangent complexe à X désigné par Qq. Pour tout
point x de X et toute carte </> dont le domaine contient x9 l'application sX(f>

identifie Qqx à HomR (Rn, C) (lemme 1). On désigne de même par
et Qc les fibrés vectoriels ArQc et AQq. Notons que l'on a des isomor-
phismes canoniques

Qç — Qr ® Cx et Qc Q ® Cx

§ 4. Calcul intégral

Lemme 1. Pour qu 'une variété différentielle X de dimension pure n soit
orientable, il faut et il suffit que le fibré Qn soit trivial.

Désignons par (<fiXei un atlas orienté de X et par (ocXei une partition
de l'unité subordonnée au recouvrement (Ut)iei formé des domaines de
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cartes de cet atlas. On définit une forme différentielle m de (X, û") en

posant
w X a a d(j)hn.

le!
Pour tout indice k, on a

" I
UK(Z at3iK)d<f>K, 1 A A

tel

où glK désigne le jacobien du changement de cartes de <j)K dans (j)r Ceci

montre que u ne s'annule jamais et par conséquent la condition est nécessaire.

Réciproquement, soit u une forme différentielle partout non nulle de

^°° (X, Qn). Pour toute carte </> de domaine U dans X, il existe une fonction

g partout non nulle dans ^ (Î/,R) telle que

u ] u —'• g d(j)^ a a d(J)n.

Quitte à remplacer cj)1 par on peut supposer que g est strictement

positive. Un atlas formé de telles cartes est évidemment orienté.

Sauf mention explicite du contraire, toutes les variétés différentielles
considérées dans ce paragraphe sont orientées.

Soit X une variété différentielle (orientée) de dimension pure n.

On dit qu'une forme différentielle u homogène de degré n est positive si

pour toute carte orientée 4> de domaine U dans X, l'unique fonction g
définie sur U par

u | u g d(j)1 a a d(j)n

est à valeurs réelles positives.
Désignons par u une forme différentielle de °c (X, Q£), par </> et \)/ des

cartes orientées de domaines respectifs U et V dans X. On suppose que le

support de u est contenu dans U n V. On peut écrire

u I u fd(j>i a a d(j)n et u | y g d\l/1 a a d\j/n

où/et g sont des fonctions continues à valeurs complexes. On a les formules

A=jac(r)^ et

où y désigne le changement de cartes de <fi dans ij/.

Puisque le jacobien de y est positif, la formule du changement de variables
dans les intégrales multiples montre que l'on a

g * dg (gt-y *) I jac (y) | g#Jk Jr" JR" J r' / 4, du
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en désignant par fi la mesure de Lebesgue dans Rn. On pose alors

u /s du.

Ce nombre est indépendant de la carte orientée <j> dont le domaine contient
le support de u.

Dans le cas général où le support de u n'est contenu dans aucun domaine
de carte, on désigne par (UXei (resp. (VK)KeK) un recouvrement de X par
de tels domaines et par (a,)ieI (resp. (ßK)KeK) une partition de l'unité
subordonnée à ce recouvrement. La famille (ocfK) est une partition de l'unité
subordonnée à et l'on a

z «,m £
ï (i,K)eI x K J

£ ßKu
X kgK J X

On appelle intégrale de u sur X le nombre complexe défini par

i •

tel J X

On notera que la forme linéaire canonique i ainsi obtenue sur #°c (X, Q£)
est réelle sur les formes différentielles réelles, positive sur les formes
différentielles positives.

Munissons le fibré cotangent Q1 d'une métrique hermitienne (§ 2,

lemme 3). Les fibrés vectoriels Q et Qc sont alors naturellement munis
d'une métrique hermitienne (si eu en est une base orthonormale de

les vecteurs

^ eh a a eJr

où J parcourt Sr (n) forment une base orthonormale de Qrx et Qrc,x)• On

vérifie aisément que l'on a

I M A y I < I M I 1^1

quelles que soient les formes différentielles u et v.

Soient 4> et \j/ deux cartes orientées de X. Sur l'intersection de leurs

domaines, on a la relation

| d(j)1 a a d$n |_1 dcfri a a d(j)n

| d\j/l a a d\j/n I"1 d\j/1 a a dij/n.

La forme différentielle œ obtenue par recollement est positive, partout non
nulle; on l'appelle la forme volume associée à la métrique hermitienne de Q1.

En particulier, la forme volume fournit une trivialisation de Qn.
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La forme linéaire définie sur #°c (X, C) par

M/) \xfœ

est réelle positive. Le théorème de Riesz ([5], théorèmes (2.14) et (2.17))

montre qu'elle correspond à une unique mesure borélienne régulière que

l'on désigne encore par p,.

La tribu des ensembles /x-mesurables de X ne dépend pas de la structure

hermitienne de Q1 : une partie de X est ^i-mesurable si et seulement si son

image par toute carte de X est Lebesgue-mesurable.

Pour toute partie mesurable A de X, toute fonction mesurable f à

valeurs dans R+ ou toute fonction intégrable à valeurs dans C, on pose

L/û> h(XaÎ)

où Xa désigne la fonction caractéristique de A.

Soit n un fibré vectoriel complexe de rang pur m sur X, muni d'une

métrique hermitienne. Pour tout ensemble mesurable A de X toute section

mesurable s de % et tout nombre réel p au moins égal à 1, on pose

Il S \\LP,A(LMW/P
Il SÎU00,^. inf{feR+ \ß( \s|-1Qf, oo[) n 0}

Ce nombre dépend des structures hermitiennes de et de

Pour tout élément p de [1, oo], on désigne par Lfoc (X, n) l'ensemble des

classes d'équivalence de sections mesurables s de n telles que ||s||Lpjjfi:
soit fini pour tout ensemble compact K de X. C'est un espace vectoriel
topologique localement convexe et complet pour la famille de semi-normes

Il ||l*\k; c'est un espace de Fréchet si X est dénombrable à l'infini.
Pour qu'une section s appartienne à Lfoc (X, n), il faut et il suffit que

l'application (s#)# appartienne à Lfoc((f) (U), Cm) pour toute carte </> de X
et toute carte 0 de tz ayant même domaine U. Ceci montre en particulier
que l'espace vectoriel topologique Lfoc (X, n) est indépendant des structures
hermitiennes de Q1 et n.

Pour tout ensemble compact K de X, on désigne par (X, n)
l'ensemble des sections de Lfoc (X, n) dont le supportx) est contenu dans K.
C'est un espace de Banach (et même un espace de Hilbert si p est égal à 2)

pour la norme || \\LPtK.

x) On appelle support d'une section mesurable le plus petit ensemble en dehors
duquel elle est presque partout nulle.

L'Enseignement mathém., t. XXI, fasc. 2-3-4.
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On désigne enfin par Lp (X, n) l'ensemble des sections de Lfoc (X, n) à

support compact. C'est un espace localement convexe et complet pour la
topologie vectorielle limite inductive des espaces L\ (X, %).

Notons que les inclusions canoniques

L?oc(X,n) c= Lfoc (X, n) c Lpoc(X,n) cz L^X.n)
L(X9 n) c Lqc(X, n) c Lp(X,n) a L^X.n)

sont continues pour tout nombre réel q au moins égal à p.
Pour tout élément p de [1, oo], l'ensemble des fonctions à support

compact étagées sur la tribu borélienne de X est dense dans Lp (X, C)
et Lpoc (X, C) (loc. cit. théorème (3.13)).

Pour tout élément p de [1, oo[, l'ensemble (^c (X, n) est dense dans

Lp(X,tc) et Lpoc (X, n) (loc. cit. théorème (3.14)). Notons que ^°c (X, n)
est fermé dans L (X, n) et que son adhérence dans L^c (X, n) est égale à

(X, n).
Soient n et p deux fibrés vectoriels complexes sur X et soit S une dualité

de 7i (x) p dans Cx. On suppose n et p munis de métriques hermitiennes
vérifiant la condition

I W®/)l<l/l l/l
pour tout point x de X et tout point y' (resp. y") de %x (resp. px).

1 1
Soient p et q deux éléments conjugués de [1, oo] (i.e. tels que —f - 1)

P <1

et soit K une partie compacte de X. Pour toute section u de (X, n) et

toute section v de L?oc (X, p), l'inégalité de Holder (loc. cit. théorème (3.8))
montre que l'on a

I Jx <5 (u, v) CO | <|| U IILP K II V IILq K

En particulier, la forme bilinéaire

A:Lp(X,n)x L?oc(X,p)->C
définie par

A (u,v) ô (u9v) co

est séparément continue (et même hypocontinue).

Lemme 2. La forme bilinéaire

A-/rc(X,n)x -L/oc (X, p) C

est non dégénérée.

Il suffit de montrer que toute section v de L{qc (X,p) rendant la forme
linéaire A v) nulle est elle-même identiquement nulle. La question étant
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locale, on peut supposer que X est un ensemble ouvert de Rn, que n et p
sont tous deux égaux au fibré produit C et que la dualité ö est donnée par
la formule

ô(y',y") x y'jy'j-
1

On se ramène immédiatement au cas où m est égal à 1. Pour tout ensemble

compact K de X et pour tout voisinage compact L de K dans X, il existe une
fonction u continue sur X dont le support est contenu dans L et égale à 1

sur K. On en déduit que

\A(xK,v) I \A{xK-u,v)I <<m(M*0|MUi,£.

et par conséquent la forme linéaire A v) est nulle sur l'ensemble des

fonctions à support compact étagées sur la tribu borélienne de X. Par densité

et continuité, elle est donc nulle sur U°c (X, C).
Pour toute partie compacte K de X, on définit alors une fonction u de

L (X, C) en posant

u (x) v (x) | v (x) |
~1 si x e K et si v (x) # 0

u (x) 0 si x K ou si v(x) 0

Il résulte de cette définition et de ce qui précède que l'on a

II "Uli,k A (u,v) 0

ce qui démontre l'assertion.

Théorème 1. Pour tout couple (p, q) d'éléments conjugués de ]1, oo[,
la forme bilinéaire

A:L>c{X,n) x, L?oc(X,p)-> C

est une dualité d'espaces vectoriels topologiques 1).

Il résulte du lemme 2 que les applications Ax et induites par A sont
injectives. Pour montrer qu'elles sont surjectives, nous allons tout d'abord
examiner le cas où net psont tous deux égaux au fibré produit C£ et où
la dualité ô est donnée par la formule

à (y', y")X

Soient E et F deux espaces vectoriels topologiques. On dit qu'une forme bilinéaire
A sur £ x Fest une dualité d'espaces vectoriels topologiques si elle est séparément continue
et si elle induit une bijection Ai (resp. A2) de E (resp. F) sur le dual topologique de F(resp. E).
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Toute forme linéaire continue a sur Lfoc (A', s'écrit

a (au..

où a1?..., am sont des formes linéaires continues sur L\oz (X, C). Par
définition de la topologie de Lfoc (X, C), il existe une partie compacte K de X
et une constante c telles que

K-0)| <c w\\LitK

pour tout w dans Lfoc (X, C). Il existe donc une fonction Uj de L\ (.X, C)
telle que

(Xj (w) ccj(xKw) p, (ujw)

(Joe. cit. théorème (6.16)) et si l'on pose

u (uu ...,um)
on voit que l'on a

A{u,v)£ n(ujVj)X «(»)
1 1

ce qui montre la surjectivité de

De même, toute forme linéaire continue ß sur Lp (X, n) s'écrit

ß — (ßi • • • ßm)

où ßu ßm sont des formes linéaires continues sur Lpc (X, C). Pour tout
ensemble compact X de X, la restriction de ßj à LPK (X, C) est continue et

l'on voit qu'il existe une fonction vK j et une seule dans LqK (X, C) telle que

ßj(w) ii(wvKfj)

pour tout w dans LPK (X, C). Ces fonctions se recollent en une fonction Vj
de Lfoc (X, C) et si l'on pose

v (vu...,vm),
on voit que l'on a

A(u,v)X ß(UjVj) £

ce qui montre la surjectivité de d2.
Démontrons maintenant le cas général. Si a est une forme linéaire

continue sur Lfoc (X, p), on voit comme précédemment qu'il existe un
ensemble compact K de X tel que

«0) a (xKv)
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pour tout v dans L\oc (X, p). Il existe aussi un recouvrement fini (U,)^ de

K par des domaines de cartes de p (ou de n) et pour chaque indice i une

fonction A, de ^°° (X, R) dont le support est contenu dans Ut telle que

I *,(*) 1

tel

pour tout point x de K. D'après la première partie de la démonstration, il
existe une section ul de Lp (Uv ri) telle que

a(A,fl) A (ul9v).

La somme des ut est une section u de Lpc (X, ri) et l'on a

a(v) a(xKv) ^ a(A,u) £ (u„v) A(u,v).
iel tel

L'assertion relative à A 2 est laissée en exercice au lecteur.

Exemple 1.

Soit 7i un fibré vectoriel complexe sur X et soit r un entier naturel. On
définit une dualité canonique

e:(n®Qc) ®(n*®Qncr) Qq

en posant
9((y'®t') ®(y"®t")) < yf,y" > t' a t"

pour tout point x de X et tout élément y' ® t' (resp. y" ® t") de nx® QrCx

(resp. 7i* ®Qç~x). Pour toute section u de n ® Qq et toute section v de

7i* 0 Qhqt, on pose
(u,v) 9(u,v).

On désigne par <5 la dualité obtenue en composant 6 avec la trivialisation
de la forme volume. Il résulte immédiatement de ces définitions que l'on a

(u,v) ô(u,v) co

Par conséquent, la forme bilinéaire canonique

A:Lpc(X,n®Qrc) x L?oc(X, tt* ®ß""cr) C
définie par

A (u9v) (u,v)

est une dualité d'espaces vectoriels topologiques pour tout couple (p, q)
d'éléments conjugués de ]1, oo[.
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Remarque 1.

Nous n'utiliserons le théorème 1 que dans le cas particulier où p et q
sont tous deux égaux à 2. Le résultat d'intégration nécessaire à la démonstration

est alors beaucoup plus simple (loc. cit. théorème (4.12)).

Remarque 2.

On montre de la même manière que la forme bilinéaire A induit des

bijections de L^c (X, p) sur le dual topologique de L\ (X, n) et de L (X, n)
sur le dual topologique de L\oc (X, p) (loc. cit. théorème (6.16)).

Remarque 3.

Il résulte de l'hypocontinuité de la forme bilinéaire A que les bijections
A1 et A 2 sont continues (pour la topologie forte) et du théorème du graphe
fermé que ce sont des isomorphismes.

On dit qu'une partie Y de X est une pièce si elle vérifie la condition
suivante :

(P) Pour tout point x de X, il existe une carte (j) de X dont le domaine U
contient x telle que

(j) (Un Y) cj)(U)n{(tu...,tn)eRn\t1 <0}.
Ceci implique en particulier que Y est fermée et que d Y est une sous-variété
de X. Nous allons munir d Y d'une orientation naturelle que l'on dit induite

par X. Tout d'abord, si n est égal à 1, le bord de Y est de dimension 0.

On munit tout point x de d Y de l'orientation 1 (resp. -1) (§ 1, remarque 2)
s'il existe une carte orientée </> de domaine U centrée en x telle que

(j) (Un Y) 0(C7)n{feR|f<Q}
(resp. (j) (Un Y) 0 (U) n { t e R \t > 0 }

Supposons n au moins égal à 2. Quitte à remplacer (j)n par - 4>n, on peut

supposer que les cartes qui vérifient la condition (P) sont orientées. Leurs
restrictions à ô Y forment alors un atlas orienté dont la classe est par
définition l'orientation induite.

Théorème 2 (Stokes). Pour toute pièce Y de X et toute forme
différentielle u de (X, Q^f1), on a

lay' *(") \ydu

où i désigne l 'injection canonique de dY dans X.
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On se ramène immédiatement au cas où X est un ensemble ouvert de

R" et où Y est de la forme

Y {(*!, ...,xn)eX \x± < 0}

Par linéarité, on peut supposer que u est donnée par
A

U fdxt A A dXj A dxn

où / est une fonction de \ (X, R). On a

dfdu (-I)-7'-1 —— dxx a a dxn
OXj

Supposons tout d'abord j égal à 1. On a par définition

i*(u) (f-i)dx2 a a
et par conséquent

df
dxx a a dxn

Y 3x ^

dx1 dx2 dxnIL
;0 cbq

/(0, x2, ...,xn)dxdxn

ce qui démontre l'assertion dans ce cas.

Supposons j strictement supérieur à 1. On a alors

et d'autre part

df
dx1 a a dxn

Y ÔXj

i* (M) 0

°L
XI ^0 \J R dXj

dxj j dXjL dxj 0

ce qui achève la démonstration du théorème.

Corollaire. Soient u et v deux formes différentielles de ^ (X, Qf)
et (X, respectivement. Pour toute pièce Y de X, on a

Jy du A V fôyl*(tt A v) + — l)r+1 j'y U A du

En particulier, on a

Aî) —l)r+1 jzu A df

C'est une conséquence immédiate du théorème 2 et de la formule

d (u Ali) du a v + — l)r u a dv



— 164 —

On appelle complexe de de Rham de X la suite d'espaces vectoriels et
d'applications linéaires

o —- (x, R)<p° (x, q1)—1-* Qn)—o

où dr désigne la restriction de la différentielle d aux formes homogènes de

degré r. On appelle groupes de cohomologie de X les espaces vectoriels

Hr (X, R) Ker dflm dr~x

La différentielle diminuant les supports, on a une deuxième suite

d°c dl d"~1
0 — (X, R) —> (X, Q1)—^ (X, Qn)~^0

et des groupes de cohomologie correspondants

Hrc (X, R) Ker drJIm àr~Y

Le noyau de d° s'identifie aux fonctions localement constantes sur X.
Si X est connexe, on a donc

H° (X, R) R

et si X est ouverte, l'espace vectoriel H° (X, R) est nul.
La formule de Stokes montre que l'intégration des formes différentielles

de degré n induit par passage au quotient une forme linéaire canonique
i sur H" (X, R).

Théorème 3. Si X est connexe, la forme linéaire i est un isomorphisme.
Si X est ouverte, / 'espace vectoriel H" (X, R) est nul.

Si X est un cube de Rw, l'assertion résulte du lemme de Poincaré (§ 3,

propositions 1 et 2).

Passons au cas général. Désignons par U0 un domaine de carte
isomorphe à un cube. Nous allons montrer qu'il existe pour toute forme u de

(X, Qn) des formes uQ et v de ^ (U0, Qn) et V (X, ß""1) respectivement

telles que
u u0 + dv

ce qui établira la première assertion.

Par partition de l'unité, on voit aisément que l'on peut supposer le

support de u contenu dans un domaine de carte isomorphe à un cube.

On construit alors une suite Ul9 Uk de tels domaines vérifiant les conditions

suivantes :
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(1) Pour tout entier j compris entre 1 et k, l'ensemble Uj n Uj-1 est

non vide.

(2) Le support de u est contenu dans Uk.

Par récurrence descendante sur l'entier y, le lemme de Poincaré (§ 3,

proposition 2) montre qu'il existe des formes Uj_ t et Vj-x de #® (£/,•_15 Qn)

et (X, Q"_1) respectivement telles que

uk — u et Uj Uj-i + dvj_1

Il suffit alors de prendre pour v la somme des Vj.
Supposons X ouverte et montrons que toute forme u de ^°° (X, Qn) est

exacte. Désignons par (Kj)jeN une suite exhaustive de parties compactes de

X (avec K0 vide pour fixer les idées) telles que X\Kj n'ait pas de composante
connexe relativement compacte dans X (appendice II, lemme 6) et par
0xj)jeN une partition de l'unité subordonnée au recouvrement

(kj+2\Kj)jeS.

La première partie du théorème montre qu'il existe des formes u0 et v0
de Çff (X\Kly Qn) et ^ (X, Qn~1) respectivement telles que

a0u u0 + dvo

Pour tout entier y strictement positif, on construit alors par récurrence
des formes Uj et Vj de (X\Kj+l9 Qn) et ^ (X\Kj9 Qn~i) respectivement
telles que

aju + Uj-i Uj + dvj

En effet, la restriction de 0CjU + uj„l à une composante connexe V de X\K -

est une forme différentielle de (F, Qn) et puisque V\Kj+1 est non vide,
l'assertion résulte de la première partie du théorème.

La famille des supports des Vj étant localement finie, la somme

•••' I vj
jeN

appartient à ^°° (X, Q,I~1). On a alors

dv £ dVj 0CQU - U0 + £ (oCjU +U;_1 -Uj) £ OLjU u
j^l jgN

ce qui achève la démonstration du théorème.

Théorème 4. Soient X et Y deux variétés différentielles (orientées) de
dimension pure n et soit h une application indéfiniment dérivable de X
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da?is Y. On suppose que Y est connexe et h propre 1). Il existe alors un

entier relatif v tel que

$xh*(u) v

pour toute forme différentielle u de (Y, Qn).

La forme linéaire X définie sur ^ Y, Qn) par

A(m) \xh*(u)
induit par passage au quotient une forme linéaire sur H" Y, R). 11 résulte
du théorème 3 que cette forme linéaire est proportionnelle à i. Tout revient
à montrer que le facteur de proportionnalité est un entier.

Désignons par y une valeur régulière de A (§ 1, théorème 2), par \j/ une
carte orientée de centre y et de domaine V dans Y et par xl9xp les points
de A-1 (y). Si V est suffisamment petit, l'application A induit pour tout
entier j compris entre 1 et p un isomorphisme hj de Uj sur V, où Uj désigne
la composante connexe de Xj dans A-1 (V) (§ 1, théorème 1). Posons

s (j) =1 si \j/ - hj est une carte orientée de X
s (j) =• — 1 si ij/ • hj n'est pas une carte orientée de X.

Pour toute forme différentielle u de ^ (V, Qn), on a

}x/z*(M) X $Vjh*(.u) Z eO)JV"

ce qui démontre l'assertion.

L'entier v du théorème 4 s'appelle le degré de u et se désigne par deg (u).

Remarque 4.

La considération des formes différentielles complexes sur X permet
d'introduire des groupes de cohomologie Hr (X, C) et H£ (X, C). On notera

que l'on a des isomorphismes canoniques

Hr(X, C) Hr(X, R) 0 C et Urc(X, C) H£(X, R) ® C

Soit X une variété différentielle et soit g (gK) un cocycle complexe
de rang 1 subordonné à un recouvrement ouvert % (UXei X- P°ur
tout couple (z, k) d'indices, on désigne par uKl la forme différentielle

1 dg K i

2in gKl

1) Ceci signifie que l'image réciproque par h de toute partie compacte de Y est
une partie compacte de X.
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11 existe pour tout indice i une forme m, Qç) telle que

U Kl W, UK

en tout point de Ul n UK (§ 2, lemme 1). En particulier, puisque uKl est

fermée, les différentielles dul se recollent en une forme fermée v homogène

de degré 2.

Montrons que la classe de v dans H2 (X, C) ne dépend que de g. En

effet, si l'on a

"ki 3 u\ - uk

pour certaines formes u[ de ^°° (Uv Ü£), les formes du\ se recollent en une

forme v' de #°° (X, Qç), les u[-ul en une forme u de ^°° (X, Qq) et l'on a

v' v + du

ce qui démontre l'assertion.
La classe de - v dans H2 (X, C) s'appelle la classe de Chern de g et se

désigne par ch (g).

Lemme 3. Pour tout recouvrement ouvert de X, la classe de Chern

induit un homomorphisme de Pic (%, C*) dans H2 (X, C). Si y est un

recouvrement ouvert de X plus fin que le diagramme suivant est com-

mutatif:
a ira)Pic {ftl,C*)' Pic C*)

ch \ / ch

H2 (X, C)

La démonstration est laissée en exercice au lecteur.

Par passage à la limite inductive, on obtient donc un homomorphisme
canonique ch de Pic (X, C*) dans H2 (X, C). On appelle classe de Chern
d'un fihré en droites complexes n sur X et l'on désigne par ch (n) la classe

de Chern du fibré principal associé à n (§ 2, scholie).

§ 5. COHOMOLOGIE DES SURFACES

Dans tout ce paragraphe, on désigne par X une surface différentielle
connexe et orientée.

Désignons par y une application indéfiniment dérivable définie sur un
ensemble ouvert W de R à valeurs dans X, et par u une forme différentielle
de (X, Qç). Il est clair que la restriction de y* (u) à tout intervalle fermé
de W ne dépend que de la restriction de 7 à cet intervalle.
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