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Théorème 1. Soit X une variété différentielle de dimension pure n et
soit n un fibré vectoriel de rang pur n sur X. On suppose que X est

ouverte 1). Il existe alors une section s de ^°° (X, n) partout non nulle.
On suppose X connexe et l'on désigne par (Kj)jeN une suite exhaustive

de parties compactes de X telles que X\Kj n'ait aucune composante connexe
relativement compacte dans X (appendice II, lemme 6). On va construire

par récurrence sur j une section transverse Sj de n qui coïncide avec Sj
sur Kj_ 1 et qui ne s'annule pas sur Kj. Ceci établira l'assertion. On suppose
que K0 est vide et l'on prend pour s0 une section transverse quelconque de n

(il en existe en vertu du lemme 5). Supposons Sj construite; on désigne par A
l'ensemble de ses zéros (c'est un ensemble fermé et discret puisqu'elle est

transverse et puisque le rang de n est égal à la dimension de X) et par
{xl9..., xp} l'intersection de A et de Kj+1. Il existe un ensemble de points
{yl9 deux à deux distincts dans X\(Kj+1kjA) tel que xk et yk se

trouvent dans la même composante connexe de X\Kj.
Désignons par V1 un voisinage connexe de {x1,yi} dans X\Kj tel

que xx soit le seul zéro de sj dans V1. Il existe une section transverse t1 de n

qui coïncide avec Sj sur X\V1 et dont le seul zéro dans V1 soit yt (lemme 6).

On construit de la même manière et par récurrence sur k un voisinage
connexe Vk de { xk, yk } dans X\Kj tel que xk soit le seul zéro de tk_1
dans Vk et une section transverse tk de n qui coïncide avec tk_1 sur X\Vk
et dont le seul zéro dans Vk soit yk. Il suffit alors de prendre pour sj+1 la
section tp.

Corollaire. Tout fibré vectoriel complexe de rang 1 sur une surface

différentielle ouverte est trivial.

Remarque 2.

Tout fibré vectoriel complexe n sur une surface différentielle ouverte est

trivial: la démonstration se fait par récurrence sur le rang de n. Elle est

laissée en exercice au lecteur (voir chap. Y, § 4, théorème 6).

§ 3. Calcul différentiel

Dans tout ce paragraphe, on désigne par X une variété différentielle de

dimension pure n.

b On dit qu'une variété est ouverte si aucune de ses composantes connexes n'est
compacte.
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Pour tout point x de X, l'algèbre A kx des germes en x de fonctions &-fois

continûment dérivables à valeurs réelles possède un unique idéal maximal

m (Akx), à savoir l'idéal des germes de fonctions qui s'annulent au point x.
Soient <f> et \J/ deux cartes de X dont les domaines contiennent x. On

désigne par y le changement de cartes de <fi dans xj/. Pour toute fonction f
continûment dérivable au voisinage de x, on a

£>/<#> (0 00) Df* 00) ' Dy (<t> 00) •

En particulier, la condition

Df,f, (<p <X)) 0

ne dépend que du germe de / au point x (et non de la carte 0).
Supposons k strictement positif. On dit qu'un germe de m ÇA*) est

stationnaire s'il vérifie cette condition. L'ensemble des germes stationnaires
est un idéal a (Ak) de Ak et on a les inclusions

m2 (A*) c a (A*) <= m (A*).

Pour toute carte (j) de X dont le domaine contient x, on désigne par
zxj) l'application linéaire de Ax dans (Rn)* définie par

Sx,4 (/) Vf4 (</> W) •

Lemme 1. Par restriction et passage au quotient, / 'application sx $ induit
un isomorphisme de m(Ax)/a(Ax) sur (Rn)*.

L'application induite est injective par définition même de a (.Akx). D'autre
part, pour toute forme linéaire a sur Rn, le germe en x de la fonction

a - (j) — (a • (j)) (x)

a pour image a ce qui démontre l'assertion.

On appelle espace cotangent à X au point x et l'on désigne par Ql
l'espace vectoriel m {Ax)ja (Al). Il résulte du lemme 1 que Ql est de dimension

n et que l'injection canonique de Al dans Al induit un isomorphisme
de m (Akx)/a (Akx) sur Ql pour tout entier k strictement positif.

Lemme 2. Il existe des germes uu un de m (A) tels que tout germefde a (Al) s'écrive

f E fj«j
avec /idans m (A*_1).
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En particulier, on a

a {AT) m2 (A)-
La question étant locale, on peut supposer que X est un ensemble ouvert

convexe de RM. Pour toute fonction/de %>k (X, R) et tout point y de X, on a

/(>•) -/(*) S yj-xj)
1

où l'on a posé

/; 0) J ~(ty+ (1 - 0 x) dt.

On en déduit aisément l'assertion.

On appelle différentielle d'un germe f de Al et l'on désigne par df la
classe dans Ql du germe / — f(x).

Lemme 3. L'application d de Al dans Ql est linéaire et l'on a

d(fg) g(*)df +f(x)dg

pour tout couple (/, g) d'éléments de Al.
La première assertion est évidente. La seconde résulte de la formule

fg -f(x)g(x) 0 (*)(/-/(*)) +/C*)(0-0(*))
+ (f -f(x))(g-g(x)).

Soit 4> une carte de domaine U dans X. On désigne par eu en la base

canonique de R" et par <p1,..., 4>n les fonctions coordonnées de <j>.

df df
Pour toute fonction/de # (X, R), on définit des fonctions

d(p i d(j)n

de c^k~1 (U, R) en posant

-fr (*"> (A) (Ê;) ff {4> 00) •

dq>j 0Xj

Remarquons que si X est un ensemble ouvert de R" et si </> est l'injection
df

canonique de X dans Rn, la fonction —— coïncide avec la dérivée partielle
d(pj

df
usuelle —Le lemme suivant est une conséquence immédiate de la règle de

dxj
dérivation des fonctions composées.



— 147 —

Lemme 4. Soient <j> et\j/deuxcartes de X et soit une fonction de

V1 (X, R). On a

df y _5/
d(j)j S^kÔ^j'

Lemme 5. Pour toute carte cj> de X et pour tout point x du domaine

de (p, les différentielles des germes <£lx,<p>nx forment une base de Qlx.

Pour tout germe f de Ax, on a

df£ ffW d^j-x
l^j^n 0<Pj

C'est une conséquence immédiate des définitions et du lemme 1.

Soit 7i la projection canonique de JJ 0^ dans X et soient 0 et 0 des
xeX

cartes de domaines respectifs U et V dans X. Le lemme 1 montre que les

applications

0:7t"1 (ET) -> U x (R")* et 0:;r_1(F) -> V x (R'1)*

définies par

<t>(x,y) (x, (3;)) et i (x, (x, $ (y))

sont des cartes de n. Ces cartes sont compatibles, la transition est donnée

par la formule Q(x) 'Dy(x))-1

où y désigne le changement de cartes de 0 dans 0.
Le fibré vectoriel réel de rang n ainsi défini s'appelle le fibré cotangent

à X et se désigne par Q1 (ou Q1 (X) s'il y a risque de confusion).
Pour tout entier r, on désigne par Qr le fibré vectoriel Ar Q1 et par Q le

fibré vectoriel AQ1.

On appelle forme différentielle toute section de Q. La structure des fibres
munit l'ensemble F (X, Q) de toutes les formes différentielles d'une structure

de 3F (X, R)-algèbre graduée. Notons que #k (X, O) en est une sous-

(X, R)-algèbre.
On dit qu'une forme différentielle est homogène de degré r si elle prend

ses valeurs dans Qr.

On appelle différentielle d'une fonction f de ^ (X, R) et l'on désigne

par df la forme différentielle homogène de degré 1 définie par

df(x) d(fx).
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Avec les notations précédentes, on a

-Off* X
l^j^n VVj

En particulier, si/appartient à (Z, R), alors dfappartient à ^k~1 (Z, ß1).
Il résulte du lemme 5 que la restriction à U de toute forme différentielle

s homogène de degré r s'écrit d'une manière et d'une seule

s I u Y uJ
JeSr(n)

où Sr (n) désigne l'ensemble des suites strictement croissantes de r entiers

compris entre 1 et n et où l'on a posé

d(j)j d(j)jx A A d(j)jr J 0*1? -* • j r) '

Le lemme suivant est une conséquence immédiate de ces définitions et

de ce qui précède (§ 1, proposition 1, corollaire).

Lemme 6. Pour tout point x de X, il existe un voisinage V de x et des

fonctions vu vn de ^ (X, R) vérifiant la condition suivante: pour
toute forme différentielle s de ^k (X, Qr), il existe des fonctions Sj de

y>k (Z, R) telles que
s I v — Y SJ dyj I v -

JeSr(n)

Théorème 1. Il existe une application Pi-linéaire et une seule d de

y?1 (X, Q) dans (Z, Q) vérifiant les conditions suivantes :

(1) La restriction de d à (Z, R) coïncide avec la différentielle des

fonctions.

(2) Pour toute fonction f de (Z, R), on a

d (df) 0.

(3) Pour tout couple (u,v) d'éléments de <^1 (Z, Q), avec u homogène

de degré r, on a
d (u a v) du a v + — l)r u a dv

De plus, / 'opérateur d vérifie les conditions suivantes :

(4) Pour toute forme différentielle u de (Z, Q), le support de du

est contenu dans le support de u.

(5) Pour toute forme différentielle u de (Z, Q), on a

d (du) 0
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(6) Pour toute forme différentielle u de k (X, Qr), la forme du

appartient à cßk~1 (X, Qr+1).

Montrons tout d'abord que si d vérifie (1), (2) et (3), il vérifie aussi (4),

(5) et (6).
Soit u une forme différentielle de (ßl (X, Q) nulle sur un ensemble ouvert

F de X. Pour tout point x de V, il existe une fonction a de #®(X,R) égale

à 1 au voisinage de x. On a d'après (1) et (3),

0 d (au) doc a u + ccdu

et puisque le germe de a — 1 au point x est stationnaire, on en déduit que
du (x) est nul.

Pour démontrer (5), on peut supposer u de la forme

u — f dv1 a a dvr

où / est une fonction de (X, R) et vu vr des fonctions de ^°° (X, R)

(lemme 6). Par récurrence sur r, on déduit alors de (1), (2) et (3) que l'on a

du df a dv1 a a dvr

(ce qui en passant démontre (6) et l'unicité de d). De même,

d (du) 0

Il reste à montrer l'existence de d. Par localisation et unicité, on peut

supposer que X est un ensemble ouvert de R". Pour toute forme
différentielle

u£ Ujdxj,
JsSr(n)

où les fonctions Uj appartiennent à Cß1 (X, R) et pour tout entier j compris
entre 1 et n, on pose

du duj du
-— > dxr et du dx; a —
ÔXj JeSr(n) dXj l^j^n ^Xj

Si u est de degré 0, cette définition coïncide avec celle de la différentielle
d'une fonction. Si de plus u appartient à (X, R), on a

d2u
d (du) dxj a dxk

±^j,k^n ÔXjdxk

d2u d2u
dxj a dxk 0

1 ^j<k^n \dXjdxk dxhdx
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Montrons enfin la condition (3). On peut supposer u et v de la forme

u fdxj et v g dxK

où J appartient à Sr (;n) et K à Ss (n). On a alors

d (u a v) £ dxj a dxj a dxK
1 dxj

X! ^— G dxj a dxj a dxK + — l)r Yj f — dxj a dxj a dxK
l^j^n OXj l^j^n dXj

ce qui achève la démonstration du théorème.

On appelle différentielle d'une forme u de ^ (X, Q) la forme
différentielle du définie dans le théorème 1. On dit qu'une forme différentielle
est fermée (resp. exacte) si elle appartient au noyau (resp. à l'image) de d.

Soit h une application indéfiniment dérivable de X dans une variété
différentielle Y de dimension pure m.

Pour tout point x de X, la composition des applications induit un
homomorphisme

hx : ^h(x) Ax

qui envoie l'idéal maximal (resp. l'idéal des germes stationnaires) de A^x)
dans l'idéal correspondant de Ax. Par restriction et passage aux quotients,
on en déduit une application linéaire de Q\(x)(Y) dans ül(X) que l'on
appelle Vapplication cotangente à h au point x. Par passage à l'algèbre
extérieure, cette application définit un homomorphisme de Qh(x) Y) dans

Qx(X) que l'on désigne encore par h*.
Pour toute forme différentielle u sur Y, on définit une forme différentielle

h* (u) sur X appelée Yimage réciproque de u par h en posant

h*(u)(x) h{u (h (x)))

Cette application induit un homomorphisme de SF (7, Q) dans 3F (X, ß).
Désignons par (j) une carte de domaine U dans X et par ij/ une carte de

domaine V contenant h (U) dans Y. On a par définition

^ 3 0Isj'h)h*(#,.)d-h)x -d<t>k
l^k^n C(Pk

pour tout entier j compris entre 1 et m. Si u est homogène de degré r, on a

U|y £ Ujh Jr dlj/n A A #;r
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et par conséquent

h*(u)\v £ (iij1 Jr h) (ij/h a a à (i

En particulier, si u appartient à Y, Q), alors A* (u) appartient à %fk (X, Q)

et si k est strictement positif, on a

h* (du) dh* (u)

Proposition 1 (Lemme de Poincaré). Désignons par X un voisinage

convexe de l'origine dans Rn. Il existe une application linéaire k de

^ (X, Ü) dans lui-même telle que

d ' k -p k ' d — 1 — s

où s désigne la forme linéaire sur ^°° (X, Q) qui associe à toute forme
différentielle la valeur à l'origine de sa partie homogène de degré 0.

On désigne par I l'intervalle ouvert ]0, 1[ et par h l'application de

I x X dans X définie par
h (t, x) tx

Pour toute forme différentielle

VX VJdxJ
JeSr(n)

sur I x X indépendante de dt, on pose

ôv ôv
dxv 2_, dxj a —— dv — dt a —

1 d=zj^=n j
et

ftvdtX UoVjdt)
JêS^(h)

Pour toute forme différentielle

u Y,
JeSr(n)

sur X, l'image réciproque h* (u) s'écrit d'une manière et d'une seule

Ä* (u) — ux + dt a u2

où les formes différentielles u± et u2 sont indépendantes de dt. Notons que
les coefficients aj de ut sont donnés par la formule

aj(t9x) truj(tx)
On pose alors

k(u) \qU2 dt.



L'image réciproque de la différentielle de u est donnée par la formule

/du1
h* (du) dh* (u) dxu1 + dt A( ~dxu2

et par conséquent

(k - d) (u)
1

ôu1

n dt
dt — (dxu2) dt

On conclut en remarquant que l'on a

\o(dxu2)dt d(^u2dt) (d-k)(u)
et

r1 du1

J 0
~dt

r1 du1

J 0
~dt

dt u

dt u — u (0)

si r =£ 0

si r — 0

Il résulte du lemme de Poincaré que la suite d'espaces vectoriels et

d'applications linéaires

0 ->R-W°°(X,R) <T° (*, Q1) ^<g°°(X,Q,n) ->0

où i désigne l'injection canonique de R dans les fonctions constantes, est

exacte pour tout ensemble ouvert convexe (non vide) de R".

Soit Xun ensemble ouvert de R". Toute forme différentielle u de (X, Q)
s'écrit d'une manière et d'une seule

u X u J dxj
j

où J parcourt l'ensemble de toutes les suites strictement croissantes d'entiers

compris entre 1 et n. On pose

i(u) \xui,„dti dtn

Proposition 2 (Lemme de Poincaré). Désignons par X un cube ouvert
de R". Il existe une forme différentielle œ de (X, Qn) et une application
linéaire k de (X, Q) dans lui-même telles que

i (œ) 1 et d-k + k'd l— œi.

Pour tout entierj compris entre 0 et n, on désigne par Aj l'ensemble des

formes différentielles de ^°° (X, Q) indépendantes de dxl9 dxj. Notons

que l'on a

A0=^(X,Q) et An V?(X, R).
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On désigne par dj l'application de Aj dans lui-même définie par

du
djU — ^ dXfc A •

j+l^k^n VXh

Ô

Notons que dn est identiquement nulle et que l'opérateur —-1 commute

avec dj pour k compris entre 1 et n.

Désignons par / le côté de X. On définit une application ij de Aj dans
C00 (IJ\ R) en posant

ij(u)(xu ...,Xj) l1n-jUj+i,...,n{x1, ...dt„

où Uj+1)>n désigne le coefficient de la partie homogène de degré n—j
ô

dans u. Notons que in est l'application identique et que l'opérateur —
<•**

commute avec ij pour k compris entre 1 et j.
La formule fondamentale du calcul différentiel et intégral montre que

l'on a

ijidjU) X — d0

jtl-j ÖXk

Choisissons une fonction a de (/, R) telle que

Jja (t)dt 1

et posons
...,xn)/\

j + l^k^n
Notons que œn est la fonction constante 1 et que iQ (co0) est égal à 1.

Par récurrence descendante sur y, nous allons construire une appli-
ß

cation linéaire kj de Aj dans lui-même qui commute avec l'opérateur —-
fix*

pour k compris entre 1 et j et telle que

dj kj + kj dj 1 -
On prend pour kn l'application identique de An. Supposons j inférieur ou
égal à n et kj construit. Toute forme différentielle de Aj_ ^ s'écrit d'une
manière et d'une seule

u — U1 + dXj A u2

avec u1 et u2 dans Aj. Notons que l'on a

dj-i(u) djUj+ dxj a f~ - dju2
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On pose alors

l(u)(x1,
Çxj

ij(«2)Ol,• • •, *7-1, 0 - 1(")(0) df.
J — 00

Il est clair que / est une application linéaire de dans fé"30 (X, R) qui
a

commute avec l'opérateur — pour k compris entre 1 et y -1. De plus, on a
ôxk

ô
N— {l(u))(xl9 ...9xn) ij(ü2)(xl9...9xj) - ij^1(u)(xl9 cc(xj)

l(dj-1u)(xl9...,xn) ij (uf) (x1? Xy).

On pose finalement

kj-i(u) kj(u 1) — dxj a kj(u2) + l(u)cOj

et l'on vérifie aisément l'assertion.

Il résulte du lemme de Poincaré que la suite d'espaces vectoriels et

d'applications linéaires

0 -> <6 (X, R) X (X, Q *) X (X, Qn) -U R -> 0

est exacte pour tout cube ouvert de Rw.

Remarque 1.

Toutes les constructions et les résultats de ce paragraphe demeurent
valables si l'on utilise les germes de fonctions à valeurs complexes. On
obtient alors le fibré cotangent complexe à X désigné par Qq. Pour tout
point x de X et toute carte </> dont le domaine contient x9 l'application sX(f>

identifie Qqx à HomR (Rn, C) (lemme 1). On désigne de même par
et Qc les fibrés vectoriels ArQc et AQq. Notons que l'on a des isomor-
phismes canoniques

Qç — Qr ® Cx et Qc Q ® Cx

§ 4. Calcul intégral

Lemme 1. Pour qu 'une variété différentielle X de dimension pure n soit
orientable, il faut et il suffit que le fibré Qn soit trivial.

Désignons par (<fiXei un atlas orienté de X et par (ocXei une partition
de l'unité subordonnée au recouvrement (Ut)iei formé des domaines de
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