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THEOREME 1. Soit X une variété différentielle de dimension pure n et
soit w un fibré vectoriel de rang pur n sur X. On suppose que X est
ouverte ). 1l existe alors une section s de €% (X,n) partout non nulle.

On suppose X connexe et 'on désigne par (K;) ;.x une suite exhaustive
de parties compactes de X telles que X\K; n’ait aucune composante connexe
relativement compacte dans X (appendice II, lemme 6). On va construire
par récurrence sur j une section transverse s; de 7 qui coincide avec §;_
sur K;_ et qui ne s’annule pas sur K. Ceci établira I’assertion. On suppose
que K, est vide et ’on prend pour s, une section transverse quelconque de 7
(il en existe en vertu du lemme 5). Supposons s; construite; on désigne par 4
I’ensemble de ses z€ros (c’est un ensemble fermé et discret puisqu’elle est
transverse et puisque le rang de n est égal & la dimension de X) et par
{ x4, ..., x, } intersection de 4 et de K, ;. Il existe un ensemble de points
{¥1, ., y,} deux a deux distincts dans X\(K;,,;UA) tel que x, et y, se
trouvent dans la méme composante connexe de X\K ;.

Désignons par ¥; un voisinage connexe de { x;,y; } dans X\K; tel
que x; soit le seul zéro de 5; dans V;. Il existe une section transverse 7, de &
qui coincide avec s; sur X\V; et dont le seul zéro dans V4 soit y; (lemme 6).
On construit de la méme maniére et par récurrence sur K un voisinage
connexe ¥ de { x,, y,} dans X\K; tel que x, soit le seul zéro de 7,_4
dans V, et une section transverse ¢, de © qui coincide avec #,_, sur X\V,
et dont le seul zéro dans V; soit y,. Il suffit alors de prendre pour s;., la
section 7.

COROLLAIRE. Tout fibré vectoriel complexe de rang 1 sur une surface
différentielle ouverte est trivial.

Remarque 2.

Tout fibré vectoriel complexe 7 sur une surface différentielle ouverte est
trivial: la démonstration se fait par récurrence sur le rang de =. Elle est
laissée en exercice au lecteur (voir chap. V, § 4, théoréme 6).

§ 3. CALCUL DIFFERENTIEL

Dans tout ce paragraphe, on désigne par X une variété différentielle de
dimension pure .

1) On dit qu'une variété est ouverte si aucune de ses composantes connexes n’est
compacte.
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Pour tout point x de X, I'algébre 4% des germes en x de fonctions k-fois
continfiment dérivables & valeurs réelles posséde un unique idéal maximal
m (A4%), a savoir ’idéal des germes de fonctions qui s’annulent au point x.
~ Soient ¢ et  deux cartes de X dont les domaines contiennent x. On
désigne par y le changement de cartes de ¢ dans . Pour toute fonction f
continliment dérivable au voisinage de x, on a

Dfy(¢(x) = Dfy (¥ ) Dy(¢(x).

En particulier, la condition

Df¢(gb(x)) =0

ne dépend que du germe de f au point x (et non de la carte ¢).

Supposons k strictement positif. On dit qu’un germe de m (4 5 est
stationnaire s’il vérifie cette condition. L’ensemble des germes stationnaires
est un idéal a (4% de AL et on a les inclusions

m? (A%) < a(45) = m(47).

Pour toute carte ¢ de X dont le domaine contient x, on désigne par
&, 'application linéaire de A¥ dans (R")* définie par

ec9 (f) = Dfy(¢(x).

LEMME 1. Par restriction et passage au quotient, [’application ¢, , induit
un isomorphisme de m (A ﬁ)/g (A5 sur (R")*.

L’application induite est injective par définition méme de a (4%). D’autre
part, pour toute forme linéaire o sur R”, le germe en x de la fonction

% ¢ —(a-P)(x)

a pour image o ce qui démontre I’assertion.

On appelle espace cotangent @ X au point x et I'on désigne par Q1
’espace vectoriel m (4 i)/g (41). 1 résulte du lemme 1 que Q. est de dimen-
sion n et que I'injection canonique de A dans AL induit un isomorphisme
de m (A’;)/g (A% sur QL pour tout entier k strictement positif.

LEMME 2. I existe des germes u,, ..., u, de m (AY) tels que tout germe f
de a (4 5 s’écrive
f= % fu
l=j<=n

avec fi, ..., [, dans m(AX™).
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En particulier, on a
a(A%) = m*(49).

La question étant locale, on peut supposer que X est un ensemble ouvert
convexe de R". Pour toute fonction ' de €* (X, R) et tout point y de X, on a

S —f(x) = Z fj(y)(yj"‘xj)

l=j=n
ou ’on a posé

1o
£, =f O (4 (—px)ar.

0 0X;

On en déduit aisément 1’assertion.

On appelle différentielle d’un germe f de A. et I’on désigne par df la
classe dans QL du germe f — f(x).

LEMME 3. L application d de AL dans QL est linéaire et I’on a

d(fg) = gxdf +f(x)dg

pour tout couple (f,g) d’éléments de AL
La premiére assertion est évidente. La seconde résulte de la formule

fa9—fx)gx) =g@(f—fx)+fx)(g—gx®)
+(f—f®)(g—9 ®).

Soit ¢ une carte de domaine U dans X. On désigne par e, ..., ¢, la base
canonique de R" et par ¢4, ..., ¢, les fonctions coordonnées de ¢.

. " o . Of aof
Pour toute fonction fde € (X, R), on définit des fonctions ——,

a¢1 s

de €*~1 (U, R) en posant

of of
2, 0 = om0 (1) () = 5x—"‘ (¢ (%)) .

Remarquons que si X est un ensemble ouvert de R" et si ¢ est I'injection

canonique de X dans R”, la fonction —— coincide avec la dérivée partielle
. a i
usuelle T Le lemme suivant est une conséquence immeédiate de la régle de
X :
J
dérivation des fonctions composées.
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LEMME 4. Soient ¢ et W deux cartes de X et soit f une fonction de
%' (X,R). Ona
o _ g 3
0p; 1w Wi 0

LEMME 5. Pour toute carte ¢ de X et pour tout point x du domaine

1

de ¢, les différentielles des germes ¢y , ..., ¢, forment une base de L.
Pour tout germe f de A%, ona

0
if= 5 Las,..

l=j=n ad)}

C’est une conséquence immédiate des définitions et du lemme 1.

Soit 7 la projection canonique de [] Q! dans X et soient ¢ et Y des
xeX

cartes de domaines respectifs U et ¥ dans X. Le lemme 1 montre que les
applications

~

b (U)> Ux (R)* et y:in i (V) > VxR

définies par

6. y) = (%, 605(0) et Y6 y) = (%, 24y ()

sont des cartes de m. Ces cartes sont compatibles, la transition est donnée
par la formule

g(x) = Dy(¢(x)"

ou y désigne le changement de cartes de ¢ dans V.

Le fibré vectoriel réel de rang » ainsi défini s’appelle le fibré cotangent
a X etse désigne par Q' (ou Q! (X) s’il y a risque de confusion).

Pour tout entier r, on désigne par Q" le fibré vectoriel A" Q" et par Q le
fibré vectoriel AQ*.

On appelle forme différentielle toute section de Q. La structure des fibres
munit 'ensemble & (X, Q) de toutes les formes différentielles d’une struc-
ture de & (X, R)-algébre graduée. Notons que €* (X, Q) en est une sous-
%* (X, R)-algebre.

On dit qu’une forme différentielle est homogéne de degré r si elle prend
ses valeurs dans Q.

On appelle différentielle d’une fonction f de €' (X,R) et ’on désigne
par d f la forme différentielle homogéne de degré 1 définie par

df(x) =d(f,.
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Avec les notations précédentes, on a

af
@df)g =Dfyd = )
1=j=n a¢
En particulier, si fappartient & 4* (X, R), alors d fappartient a €%~ (X, Q1).
Il résulte du lemme 5 que la restriction a U de toute forme différentielle
s homogeéne de degré r s’écrit d’une maniére et d’une seule

sly = Z uydo,

JeS,(n)

dg; .

ou S, (n) désigne I’ensemble des suites strictement croissantes de r entiers
compris entre 1 et n et ol 'on a posé

d¢J == d¢11 A oo A d¢Jr J == (jl, ...,jr).

Le lemme suivant est une conséquence immédiate de ces définitions et
de ce qui précede (§ 1, proposition 1, corollaire).

LEMME 6. Pour tout point x de X, il existe un voisinage V de x et des
fonctions v4,..,v, de ¥ (X,R) vérifiant la condition suivante: pour
toute forme différentielle s de € (X, Q"), il existe des fonctions s; de
@* (X, R) telles que

sly = ), spdvgly.

JeS,(n)

THEOREME 1. Il existe une application R-linéaire et une seule d de
%' (X, Q) dans ¥° (X, Q) vérifiant les conditions suivantes :

(1) La restriction de d a €' (X, R) coincide avec la différentielle des
fonctions.

(2) Pour toute fonction f de %*(X,R), on a
ddf) =

(3) Pour tout couple (u,v) d’éléments de €' (X, Q), avec u homogéne
de degré r, on a
duAv) =du Av+(=1D)"u Adv.
De plus, [’opérateur d vérifie les conditions suivantes :

(4) Pour toute forme différentielle u de €' (X, Q), le support de du
est contenu dans le support de u.

(5) Pour toute forme différentielle u de €* (X, @), ona
Al =



P R T

— 149 —

(6) Pour toute forme différentielle u de ¢ (X, Q"), la forme du
appartient a €' (X, Q).

Montrons tout d’abord que si d vérifie (1), (2) et (3), il vérifie aussi (4),
(5) et (6).

Soit u une forme différentielle de ¥* (X, Q) nulle sur un ensemble ouvert
V de X. Pour tout point x de V, il existe une fonction o de 7 (X,R) égale
a 1 au voisinage de x. On a d’aprés (1) et (3),

0 =d(au) = dou A u + adu

et puisque le germe de «—1 au point x est stationnaire, on en déduit que
du (x) est nul.
Pour démontrer (5), on peut supposer u de la forme

u = fdv; A ... Adv,

ou f est une fonction de % (X, R) et vy, ..., v, des fonctions de ¢* (X, R)
(lemme 6). Par récurrence sur r, on déduit alors de (1), (2) et (3) que 'on a

du = df Adv, A ... Ady,
(ce qui en passant démontre (6) et 'unicité de d). De méme,
d(du) = 0.

Il reste a montrer ’existence de d. Par localisation et unicité, on peut

supposer que X est un ensemble ouvert de R". Pour toute forme diffé-
rentielle

u = Z quXJ,

JeS,(n)
ou les fonctions u; appartiennent & ¢ (X,R) et pour tout entier j compris

entre 1 et n, on pose

ou ou 0
= ¥ —dx, et du = Y dxj/\—i.

0%X;  jes,my OX; 1—j=n X;

Si u est de degré 0, cette définition coincide avec celle de la différentielle
d’une fonction. Si de plus u appartient 4 ¢* (X, R), on a

0*u
2

1=jk<n 0x jaxk

d*u d*u

1=j<k<=n axjaxk axkaxj

I

d (du) dx; A dx,

I
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Montrons enfin la condition (3). On peut supposer u et v de la forme
u =fdx; et v =gdxg

ou J appartient a S, (n) et K a S, (n). On a alors

0
dwAv) = > (/9) dx; A dx; A dxg
1=jen  0X;
0 0
= Z lgdxj ANdxy Adxg + (=17 ) f——g— dxy A dx; A dxg
1=j=n 0X; 1=j=n d Jj

ce qui achéve la démonstration du théoréme.

On appelle différentielle d’une forme u de €' (X, Q) la forme diffé-
rentielle du définie dans le théoréme 1. On dit qu’une forme différentielle
est fermée (resp. exacte) si elle appartient au noyau (resp. a I'image) de d.

Soit 4 une application indéfiniment dérivable de X dans une variété
différentielle Y de dimension pure m.

Pour tout point x de X, la composition des applications induit un

homomorphisme
h* :A,f(x) — Al

qui envoie I'idéal maximal (resp. I'idéal des germes stationnaires) de A},(x)
dans I'idéal correspondant de AL. Par restriction et passage aux quotients,
on en déduit une application linéaire de Q},(x)(Y) dans Q. (X) que I'on
appelle Uapplication cotangente a h au point x. Par passage a 1’algébre
extérieure, cette application définit un homomorphisme de @, (¥) dans
Q. (X) que I’on désigne encore par Ax.

Pour toute forme différentielle # sur Y, on définit une forme différen-
tielle A* (1) sur X appelée I'image réciproque de u par h en posant

R ) (x) = hE (u(h(x)).

Cette application induit un homomorphisme de & (7, Q) dans & (X, Q).
Désignons par ¢ une carte de domaine U dans X et par Y une carte de
domaine V contenant 2 (U) dans Y. On a par définition

oy h
h*(dl,bj)=d(lﬁj'h)= Z‘ Md

1=k=n a¢k

s

pour tout entier j compris entre 1 et m. Si u est homogéne de degré r, on a

uly = > Uiy, e Wy A oo A AP,

1=j1<...<Jr=m
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et par conséquent

@l = Y Gy DAG R A AR

l=j1<..<jr=m
En particulier, si u appartient 2 6* (¥, Q), alors A* (u) appartient 3 €* (X, Q)

et si k est strictement positif, on a

h* (du) = dh* (u) .

ProrosiTiON 1 (Lemme de Poincaré). Désignons par X un voisinage
convexe de l’origine dans R". 1l existe une application linéaire k de
€~ (X, Q) dans lui-méme telle que

d-k+k-d=1-—¢

ou ¢ désigne la forme linéaire sur €° (X, Q) qui associe a toute forme diffé-
rentielle la valeur a l’origine de sa partie homogéne de degré O.
On désigne par 7 lintervalle ouvert 10, 1[ et par %~ P’application de
I X X dans X définie par
h(t,x) = tx.
Pour toute forme différentielle

vV = Z UJ de
JeSy(n)

sur I X X indépendante de df, on pose

ov 0
dw = Y dxj/\b——=d7)—dt/\—v

1=j=n Xj t
et

fsvdt = Y ([sv,di)dx; .

JeS,(n)
Pour toute forme différentielle

u = Y usdx,
JeS,(n)

sur X, 'image réciproque A* (u) s’écrit d’'une maniére et d’une seule
h*(u) = uy + dt A u,

ou les formes différentielles u, et u, sont indépendantes de dz. Notons que
les coeflicients a; de u,; sont donnés par la formule

aJ(t,X) - truj(tx) .
On pose alors

k() = [ju,dt.
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I’image réciproque de la différentielle de u est donnée par la formule
Ou 4
h*(du) - dh*(u) = qul + dt AN -a—t‘ —quz
et par conséquent

1 1
(k-d)(u) = j ?—ui dt — f (dxu,)dt
o Ot 0

On conclut en remarquant que ’on a

fo(dxuz)dt = d(fouydi) = (d- k) ()

et
f'laul .
—dt = u si r#0
Jo Ot
3 nlaul
——dt =u —u(0 i = 0.
R u — u(0) si r

Il résulte du lemme de Poincaré que la suite d’espaces vectoriels et
d’applications linéaires

L d d d
0->R->F°X,R) > 6°X, Q) > ... > (X, Q) -0

ol . désigne 'injection canonique de R dans les fonctions constantes, est
exacte pour tout ensemble ouvert convexe (non vide) de R".

Soit X un ensemble ouvert de R". Toute forme différentielle ude €% (X, Q)
s’écrit d’une manicre et d’'une seule

u =Y uydx,
J

ou J parcourt I’ensemble de toutes les suites strictement croissantes d’entiers
compris entre 1 et n. On pose

i(u) - J‘Xul,”_’"dtl .ws dtn .

ProrosITION 2 (Lemme de Poincaré). Désignons par X un cube ouvert
de R". 1l existe une forme différentielle w de €%, (X, Q") et une application
linéaire k de €% (X, Q) dans lui-méme telles que

i(wy=1 e d-k+kd=1-owi.

Pour tout entier j compris entre 0 et n, on désigne par 4 ; ’ensemble des
formes différentielles de ¥ (X, Q) indépendantes de dxq, ..., dx;. Notons

que 'on a
Ay = €7 (X,Q) e A, = %7 (X,R).
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On désigne par d; 'application de 4; dans lui-méme définie par

ou
dju — Z dxk N —

jrl=k=n 0xy, .
Notons que d, est identiquement nulle et que ’opérateur gx_ commute
k
avec d; pour k compris entre 1 et .
Désignons par [ le c6té de X. On définit une application i; de 4; dans
C*® (I, R) en posant

i] (U) (xl, sees xj) = j]n_j uj+1’“_’n(xl, teey xJ', tj+1’ ceey tn) dtj+1 e dtn

ol ;44 .. » désigne le coeflicient de la partie homogeéne de degré n—j

0

dans u. Notons que 7, est I’application identique et que l’opérateur T
k

commute avec i; pour k compris entre 1 et j.
La formule fondamentale du calcul différentiel et intégral montre que
I'on a

. ou ; .
i;du = Y (—D""‘lf 2 b ity dt, = 0
J+1<=k=n Jid —-J aX:k
Choisissons une fonction o de €% (I, R) telle que
et posons
@; (Xg,y 00y X,) = A o(xy) dxy .
J+1=k=n

Notons que w, est la fonction constante 1 et que i, (w,) est égal & 1.
Par récurrence descendante sur j, nous allons construire une appli-

0

cation lin€aire k; de 4; dans lui-méme qui commute avec 1’opérateur P
Xk

pour k compris entre 1 et j et telle que

On prend pour k, I'application identique de 4,. Supposons j inférieur ou
€gal a n et k; construit. Toute forme différentielle u de A j—1 S’écrit d’une
maniére et d’une seule

U =uy +dx; Au,

avec uy et u, dans 4 ;. Notons que ’on a
Ju4

dj_l(u) = djul + dxj N\ (a— - dju2>.

Xj
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On pose alors
T(u)(xq, ... X,)

= j : (i () Xy eos X g, 8) — dj—q () (x4, o Xjog) (D) dt .

Il est clair que / est une application linéaire de 4;_; dans ¥* (X, R) qui

commute avec I’opérateur — pour k compris entre 1 et j— 1. De plus, on a
Xk

0
g; (l(u))(xla wney xn) = ij(uZ) (x1> '“axj) - ij—-l (u) (xl’ "'axj—l) OC(xj)

Idj—qu)(Xg, o0y X)) = ij(ug) (Xgs .05 X5)

On pose finalement
ki—y(u) = k;(u;) —dx; Ak;(uy) + 1(uw) w;

et ’on vérifie aisément 1’assertion.

Il résulte du lemme de Poincaré que la suite d’espaces vectoriels et
d’applications linéaires

d d d i
02X, R -%42X, QN> ... %X, 0N >R -0
est exacte pour tout cube ouvert de R".

Remarque 1.

Toutes les constructions et les résultats de ce paragraphe demeurent
valables si I'on utilise les germes de fonctions a valeurs complexes. On
obtient alors le fibré cotangent complexe @ X désigné par Q¢. Pour tout
point x de X et toute carte ¢ dont le domaine contient x, 'application &, 4
identifie Qé,x a Homg (R”, C) (lemme 1). On désigne de méme par Q;
et Q. les fibrés vectoriels A"Q¢ et AQ¢. Notons que Ion a des isomor-
phismes canoniques |

QL="Q®Cy e Qc=0Q®Cy.

§ 4. CALCUL INTEGRAL

LEMME 1. Pour qu’une variété différentielle X de dimension pure n soit
orientable, il faut et il suffit que le fibré Q" soit trivial.

Désignons par (¢,),.; un atlas orienté de X et par («,),; une partition
de T'unité subordonnée au recouvrement (U)),.; formé des domaines de
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