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§ 2. FIBRES VECTORIELS

Dans tout ce paragraphe, on désigne par k le corps des nombres réels ou
le corps des nombres complexes. Pour tout couple (p, ¢) d’entiers naturels,
on désigne par M (p, ¢; k) I’ensemble des matrices & p lignes et g colonnes
(a coefficients dans k), par M (p; k) 'ensemble des matrices carrées d’ordre p
et par G (p; k) I’ensemble des matrices carrées inversibles d’ordre p.

Rappelons que ’ensemble G (p; k) est ouvert dans I’espace vectoriel
M (p; k) et que le passage & 'inverse est un difféomorphisme.

Soit X une variété différentielle et soit 7= une application de but X.

On appelle carte réelle (resp. complexe) de © toute bijection ¢ de ™ )
sur U x R? (resp. U x CF), ou U est un ensemble ouvert de X appel€ (abusi-
vement) le domaine de @, vérifiant la relation

pri-® =1 In—l(U) .

Pour tout point x de U, on désigne par &, la bijection de la fibre n, de =
au point x sur R? (resp. CFP) définie par

D, (y) = (pry-®)(y) .

Soient @ et ¥ deux cartes réelles (resp. complexes) de © de domaines res-
pectifs U et V. On dit que @ et ¥ sont compatibles si pour tout point x de
UnV la bijection ¥, - &' est linéaire et si I'application g de Un V
dans M (p; R) (resp. M (p; C)) définie par

gx) =¥, - o.*

est indéfiniment dérivable. Cette application s’appelle la transition de @
dans V.

On appelle atlas réel (resp. complexe) de m tout ensemble de cartes deux
a deux compatibles dont les domaines recouvrent X. On dit que deux atlas
sont compatibles si leur réunion est un atlas. On vérifie aisément que cette
relation est une relation d’équivalence. Ses classes s’appellent les structures
vectorielles réelles (resp. complexes) de .

On appelle fibré vectoriel réel (resp. complexe) sur X toute application
de but X munie d’une structure vectorielle réelle (resp. complexe).

Soit © un fibré vectoriel (réel ou complexe) sur X.

On appelle (abusivement) atlas de 7 tout atlas appartenant a la structure
vectorielle de 7 et carte de m toute carte appartenant a un atlas de =.
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La fibre de © en un point x est naturellement munie d’une structure
d’espace vectoriel qui fait de @, un isomorphisme pour toute carte @ dont
le domaine contient x. La dimension de cet espace vectoriel s’appelle (mal-
heureusement) le rang de © au point x et se désigne par rg, (n). La fonction
rg (n) est localement constante. On dit que = est de rang pur si elle est
constante.

On appelle fibré en droites tout fibré vectoriel de rang pur 1.

Désignons par 1 (n) la source de n. Pour toute carte ¢ de X et toute
carte @ de m ayant méme domaine, I’application (¢-x, pr,-®) est une carte
de 7 (7). On vérifie aisément que deux telles cartes sont compatibles et ’on
munit 7 (7) de la structure différentielle correspondante. L’application 7
est indéfiniment dérivable, son rang est égal a la dimension de X (on prendra
garde de ne pas confondre le rang du fibré vectoriel 7 avec le rang de I’appli-
cation 7).

On appelle section de n toute application s de X dans 7 (n) telle que

s = 1y.
Pour toute carte @ de domaine U, ’application s4 définie sur U par

so (x) = P, (s(x))

s’appelle ’expression de s dans &@. Si W est une deuxiéme carte de domaine
V et si g désigne la transition de @ dans ¥, on a

s (x) = g(x) (50 (%))

pour tout point x de U n V.

Soit k un entier naturel (ou le symbole c0). On dit que s est k-fois conti-
niiment dérivable s’il en est ainsi de son expression dans toute carte de n
(ou ce qui revient au méme dans toute carte d’un atlas de = ou encore si
elle appartient & %* (X, 7 (n)) ). On désigne par ¢* (X, n) I'ensemble de
ces sections.

Remarquons que I'ensemble & (X, n) de toutes les sections de 7 est
naturellement muni d’une structure de & (X, k)-module et que %" (X, n)
en est un sous-¢* (X, k)-module.

L’expression dans une carte & de domaine U induit une application
linéaire de %* (X, ) dans €* (U, kP) et ’on munit €* (X, ©) de la topologie
la moins fine rendant ces applications continues. C’est un espace localement
convexe et complet. C’est un espace de Fréchet si X est dénombrable a
I’infini.
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Pour tout ensemble compact K de X, ’ensemble € ¥ (X, m) des sections
dont le support ) est contenu dans K est un sous-espace fermé de €* (X, 7).

I’ensemble €% (X, n) des sections de €* (X, m) & support compact est un
espace localement convexe et complet pour la topologie vectorielle limite
inductive des espaces %y (X, 7). h

LEMME 1. On désigne par (U,),.; un recouvrement ouvert de X et, pour
tout couple (1x) d’indices, par s,, une section de €*(U,nU,m). On
suppose que [’on a

Sei — S+ 8, =0

en tout point de U, n U, U,. Il existe alors pour tout indice 1 une sec-
tion s, de €* (U, n) telle que I’on ait

S, = 8, — 5,
en tout point de U, n U,.

Désignons par («,),.; une partition de I'unité subordonnée a (U,
(§ 1, proposition 1). La section #,, obtenue en prolongeant par 0 la section
o, s., appartient 3 * (U, n) et I'on pose

S, = Y. b

kel\{1}

On vérifie aisément que ces sections ont toutes les propriétés requises.

Soient 7 et p deux fibrés vectoriels (réels ou complexes) sur X et soit u
une application de 7 () dans 7 (p). On suppose que 1'on a

pru =

et que l'application u, de n, dans p, induite par u est linéaire pour tout
point x de X.

Désignons par @ et ¥ des cartes de © et p a valeurs dans U XKk? et
U X k" respectivement. On appelle expression de u dans (&, ¥) I’appli-
cation uyge de U dans M (r, p; k) définie par

Upg (X) = Pyu,- Ot

On dit que P'application u est un morphisme si elle vérifie les conditions
ci-dessus et si son expression dans tout couple de cartes est indéfiniment
dérivable (ou ce qui revient au méme si c’est une application indéfiniment
dérivable de 7 (n) dans 7 (p)). On désigne par ¥ (w, p) ’ensemble des
morphismes de © dans p. C’est de maniére naturelle un ¥* (X, k)-module.

1) On appelle support d’une section continue le plus petit ensemble fermé en dehors
duquel elle est nulle.
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Les fibrés vectoriels sur X et leurs morphismes s’organisent de maniére
évidente en une catégorie.

LEMME 2. Pour qu’'un morphisme de m dans p soit un isomorphisme, il
Sfaut et il suffit qu’il soit bijectif.

La condition est évidemment nécessaire. Montrons qu’elle est suffi-
sante. Si u est bijective, on a

(“—1)@1' (x) = .- (”_l)x ) gj;l = (uw (x))_l
et par conséquent (u‘l)q,;,, est indéfiniment dérivable.

Exemple 1.

On appelle fibré vectoriel produit de rang p sur X et ’on désigne par
k I'application pr; de X Xk? dans X munie de la structure vectorielle dont
un atlas est réduit a Papplication identique de X XkP. On dit qu’'un fibré
vectoriel © sur X est trivial s’il est isomorphe a un fibré produit k. 11 revient
au méme de dire qu’il existe p sections de ¥~ (X, ©) qui engendrent la fibre
en tout point.

Exemple 2.

Soit 7 un fibré vectoriel sur X. Pour toute sous-variété Y de X, ’appli-
cation =« ln_l(y) est naturellement munie d’une structure vectorielle. Le
fibré vectoriel correspondant se désigne par = {Y.

Exemple 3.

Soit @ un fibré vectoriel sur X. On dit que la restriction p de = & une
partie de 7 () est un sous-fibré si elle vérifie la condition suivante:

(SF) Pour tout point x de X, il existe une carte ® de © a valeurs dans
U x kP dont le domaine contient x et un entier naturel r au plus
égal a p tel que

D(p~'(U)) = U x (K®0).

Les cartes de la forme (1, %X pr,) - @ définissent une structure vectorielle sur
p que ’on dit induite par m. Nous munirons toujours un sous-fibré de la
structure vectorielle induite.

Notons que 7 (p) est une sous-variété fermée de 7 () et que I'injection
canonique est un morphisme.

La relation

« n(y) =n@) et Yy —yet(p)»
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est une relation d’équivalence sur 7 (m). On désigne par o Iapplication
déduite de m par passage au quotient. On vérifie aisément que les applica-

tions de la forme
(Iyxpry) @ :n” Y (U)—->Ux k?™"

ou @ vérifie (SF) induisent par passage au quotient des cartes de o deux a
deux compatibles. Munie de la structure vectorielle correspondante, ’appli-
cation ¢ s’appelle le fibré quotient de m= par p. Notons que la projection
canonique de 7 (n) dans 7 (¢) est un morphisme.

Soient 7w et p deux fibrés vectoriels sur X.

On désigne par @ et @' (resp. ¥ et ¥’) des cartes de © (resp. p) de do-
maines respectifs U et U’ et par g (resp. A) la transition de @ dans @’ (resp.
de ¥ dans V).

Nous allons munir la projection canonique de || =, @ p, dans X
xeX

d’une structure vectorielle. On définit des cartes A et A’ de domaines res-
pectifs U et U’ en posant

A(x,)) = (%, (P, ®P) () et A(x,y) = (x, (P DY) ().

La transition de A dans A" est donnée par la formule

J(X) =gx) @h(x).

Ces cartes sont donc compatibles. Le fibré vectoriel correspondant s’appelle
la somme directe de m et p et se désigne par = @ p.

En particulier, pour tout entier naturel g, on désigne par n? le fibré
vectoriel somme directe de ¢ exemplaires de 7.

Nous allons munir la projection canonique de [| 7, ® p, dans X
xeX

d’une structure vectorielle. On définit des cartes A4 et A’ de domaines res-
pectifs U et U’ en posant

A, y) = (x,(2,07)() et  A(x,p) = (x, (P, @) ().

La transition de A dans A’ est donnée par la formule

J(x) =g9(x) ®h(x).

Ces cartes sont donc compatibles. Le fibré vectoriel correspondant s’appelle
le produit tensoriel de m et p et se désigne par 7 ® p.
Supposons 7 de rang p. Pour tout entier j compris entre 1 et p, on

désigne par ¢; le j¢ vecteur de base dans k? et par ¢ ; (resp. t}) la section de
sur U (resp. U’) définie par
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ti(x) = D" (e)) (resp. t;(x) = @, " (e)).

Pour tout point x de Un U’, on a

tj(x)= Z gkj(x)tlé(x)

1=k=p
ou les g, ; désignent les coeflicients de la matrice g. D’autre part, la restric-
tion a U (resp. U’) de toute section s de = ® p s’écrit d’une maniére et
d’une seule

sly = Y 4;0u (rsp slg = Y £0u)

1=j=p 1=j=<p

ou les u; (resp. u;) sont des sections de p sur U (resp. U’). Un calcul élé-
mentaire montre que ces sections sont liées par les relations

4

uy =, Gy -

1<=k=p

Désignons par ¢ un troisieme fibré vectoriel sur X et par 0 un mor-
phisme de = ® p dans . Pour toute section u de 7 et toute section v de p,
on définit une section ¢ (1, v) de ¢ en posant

d(u,v)(x) = 6(ux) @v(x)).

On définit ainsi une application bilinéaire de F (X, n) X & (X, p) dans
F (X, ¢). De plus, on vérifie aisément que si u est une section de €* (X, n)
et v une section de %" (X, p), alors & (u, v) est une section de %* (X, o).

On dit que ¢ est une dualité si pour tout point x de X, Papplication
bilinéaire de n, X p, dans o, déduite de J, induit des isomorphismes de
n, sur Hom (p,, o,) et de p, sur Hom (%, o,).

Nous allons munir la projection canonique de || n¥ 1) dans X d’une
xeX

structure vectorielle. On définit des cartes A et A" de domaines respectifs U
et U’ en posant

A(x,y) = (x,y DY) et A(x,y) =(x,y D).
La transition de A dans A’ est donnée par la formule
f(x) ='gx)~".
Ces cartes sont donc compatibles. Le fibré vectoriel correspondant s’appelle

le dual de w et se désigne par m*.
On construit de la méme maniére des fibrés vectoriels A%n et Amn.

1) Pour tout espace vectoriel E sur k, on désigne par E* I’espace dual de E, i.e.
I’espace des applications linéaires de E dans k.
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Soit £ un espace vectoriel de dimension p sur k. On appelle forme
hermitienne sur E toute application « de E X E dans k vérifiant les condi-
tions suivantes:

(1) Pour tout vecteur ¢ de E, application partielle o ( , ¢) est k-linéaire.

(2) Pour tout couple (¢/,¢") de vecteurs de E, on a

a(t',t) = a(t’, 1),

Si k est égal & R, une forme hermitienne est donc une forme bilinéaire symé-
trique. On désigne par Herm (E) I'espace vectoriel (réel) des formes hermi-

p(p+1)

tiennes sur E. Sa dimension est égale a — sik est égal A R, a p* sik

est égal a C. Les formes hermitiennes sur k? s’identifient de maniére natu-
relle & des matrices de M (p; k).

On dit qu’une forme hermitienne est positive (resp. positive non dégénérée)
si le nombre réel « (7, 7) est positif (resp. strictement positif) pour tout
vecteur ¢ non nul.

Reprenons le cours de notre histoire. Nous allons munir la projection

canonique de || Herm (n,) dans X d’une structure vectorielle. On définit
xeX

deux cartes 4 et A" de domaines respectifs U et U’ en posant
A, 0) = (x, 0 (D7 x D) et A'(x,0) = (x, 00 (P X o).
La transition de A dans A’ est donnée par le produit de matrices

f&) ="gx) ag ()

pour tout point x de U n U’ et toute forme hermitienne « sur k?. En par-
ticulier, ces cartes sont compatibles. Le fibré vectoriel réel correspondant se
désigne par Herm (7).
On appelle métrique hermitienne sur m toute section de ¢ (X, Herm (m))
qui induit une forme hermitienne positive non dégénérée sur toutes les fibres.
Désignons par o une métrique hermitienne sur 7.

Pour toute section s de 7, on définit une fonction |s| a valeurs réelles posi-
tives sur X en posant

510 = (20 (s (), s ()
On définit aussi une application u de 7 () dans 7 (7*) en posant
u(x,y) = (x,2( ,y).

On vérifie aisément que u est un isomorphisme de fibrés vectoriels réels qui
permet d’identifier = 4 son dual 7*.
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LEMME 3. Tout fibré vectoriel n sur X posséde une métrique hermitienne.

L’assertion est évidente si @ est trivial. Sinon, on désigne par (U,),.
un recouvrement ouvert de X formé de domaines de cartes de n et par
(4,).er vne partition de I'unité subordonnée a ce recouvrement. Pour tout
indice 1, il existe une métrique hermitienne o, sur = |U, et ’on pose

=y Ao,

el

On vérifie aisément que a est une métrique hermitienne sur 7.

Désignons par X une variété différentielle, par p un entier naturel et par
U = (U,), un recouvrement ouvert de X. On appelle cocycle réel (resp.
complexe) de rang p subordonné a % toute famille (g,,) cerx» OU Gy,
est une application indéfiniment dérivable de U, n U, dans G (p; R) (resp.
G (p; ©)) vérifiant la relation

g/lz = ghcht

en tout point de U, n U, n U,.

On dit que deux tels cocycles (g,,) et (h,,) sont cobordants s’il existe
une famille (f,), ou f, est une application indéfiniment dérivable de U, dans
G (p; k) vérifiant la relation

fIC = thl'fl glK

en tout point de U, n U,.

Cette relation est une relation d’équivalence sur I’ensemble des cocy-
cles de rang p subordonnés a %. L’ensemble quotient se désigne par
Pic (%, G (p; k)).

Soit ¥~ = (V,),x un second recouvrement ouvert de X plus fin que % et
soit 7 une application de raffinement de K dans /. Pour tout cocycle
g = (g,,) de rang p subordonné a %, on définit un cocycle t*(g) de rang p
subordonné a ¥~ en posant

(@), = 9ex)e() | VAV,

L’application 7* est compatible avec la relation de cobordance. De plus,
si 7’ est une autre application de raffinement, on a

g‘t'(K)‘C(K) = gt’(x)'c’(t) gr'(l)r(t) gr(z)r(rc) .

Ceci montre que l’application de Pic (%, G (p; k)) dans Pic (¥", G (p; k))
déduite de ©* par passage aux quotients est indépendante de 7. On la désigne
par o (¥, U).
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Si ¥ est un recouvrement ouvert de X plus fin que ¥7, on a
oW, V) oa(V, U =c(W,U).

En particulier, si % et ¥~ sont équivalents (i.e. si chacun d’eux est plus fin
que I’autre), les applications ¢ (%, ¥") et o (¥, %) sont des bijections réci-
proques ’'une de ’autre.

On fixe une fois pour toutes un systéme cofinal de recouvrements ouverts
de X et ’on désigne par Pic (X, G (p; k)) la limite inductive des ensembles
Pic (%, G (p; k)) et des applications o (", %) lorsque % et ¥" parcourent ce
systéme. Les éléments de Pic (X, G (p; k)) s’appellent les fibrés principaux
de groupe structural G (p;K) sur X.

Soit 7 (resp. p) un fibré vectoriel de rang pur p (resp. r) sur X et soit
(D), (resp. (¥,),.p) un atlas de = (resp. p). On suppose que @, et ¥, ont
méme domaine U, et 'on désigne par g,, (resp. 4,,) la transition de @,
dans @, (resp. de ¥, dans ¥,). L’expression dans (@,, ¥,) d’'un morphisme u
de © dans p est une application indéfiniment dérivable u, de U, dans
M (r,p; k) et ’on a

U, = h i, g,

En particulier, on voit que 7 et p sont isomorphes si et seulement si les
cocycles (g,,) et (%) sont cobordants. On en déduit que I'image 6 (%) de
(9,,) dans Pic (X, G (p; k)) ne dépend que de 7 (et non de I'atlas (&,)). On
I’appelle le fibré principal associé a .

Nous allons montrer que tout fibré principal de groupe structural
G (p; k) sur X est associé & un fibré vectoriel de rang pur p.

Soit (U)),.; un recouvrement ouvert de X et soit (g,,) un cocycle de
rang p subordonné a ce recouvrement. Pour tout couple d’indices (i, x),
on definit une bijection @, de (U,NU,) % k? sur lui-méme en posant

Dyi(x,0) = (%, 95, (%) (1)) .

En tout pointde U,n U N U,, on a
QD;“ = @lrc P

K1 °*

Désignons par Y I’ensemble obtenu par recollement des U, x k? au moyen
des applications &,, et par n ’application de Y dans X obtenue par recol-
lement des premiéres projections. Pour tout indice 1, I’application cano-
nique de U, x k? dans n~* (U,) est une bijection et la bijection réciproque
@, est une carte de 7. La transition de @, dans @, n’est autre que g,, ce qui
démontre I’assertion.

L’Enseignement mathém., t. XXI, fasc. 2-3-4, 10
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SCHOLIE. Les classes d’isomorphie de fibrés vectoriels réels (resp. com-
plexes) de rang pur p sur X sont en correspondance biunivoque avec les
fibrés principaux de groupe structural G (p;R) (resp. G(p;C)) sur X.

Le groupe G (1; k) étant commutatif, on vérifie aisément que la multi-
plication point par point des applications induit une structure de groupe
commutatif sur Pic (X, G (1; k)). Si 7 et p sont des fibrés en droites sur X,
on a

S(n®p) =(md(p) et (%) =d(m .

Soit £ un fibré principal de groupe structural C* sur X et soit (g,,) un
cocycle de rang 1 représentant ¢ et subordonné & un recouvrement (U,),;-

Il est clair que la classe de (g,,) dans Pic (X, C*) ne dépend que de £. On la
désigne par ¢.

LEMME 4. Le fibré principal ¢ est 1'inverse du fibré principal &.

Conservons les notations précédentes. Pour tout couple (1, k) d’indices,
on désigne par f,, le logarithme de la fonction | - |2. Il existe pour tout
indice 1 une fonction f, de €* (U,, R) telle que

le = fz —fK
sur U, n U, (lemme 1) et I’on pose

g, = exp(f).
On a alors la relation

g, = 19179 = 9" 9 G

ce qui démontre I’assertion.

Soit X une variété différentielle de dimension pure »n et soit 7 un fibré
vectoriel de rang pur p sur X.

Désignons par @ et ¥ deux cartes de n ayant pour domaine le méme
voisinage U d’un point x de X et par g la transition de ¢ dans ¥. Pour
toute section s de €* (X, ), on a

Sg = (" S¢ .

On dit que s est transverse (a la section nulle) au point x si s (x) est non nul
ou si 54 est de rang p au point x. En vertu de ce qui précéde, cette condition
est indépendante de @. On dit que s est transverse (a la section nulle) si elle
est transverse en tout point de X.
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LEMME 5. Les sections transverses de m forment une partie dense de
€” (X, n).

Supposons X connexe; I’espace € (X, n) est alors un espace de Fréchet.
Pour toute partie compacte K de X, on désigne par Wy I’ensemble des sec-
tions de € (X, ) qui sont transverses en tout point de K. En vertu du
théoréme de Baire ([1], chap. IX, § 5, n° 3, théoréme 1), il suffit de montrer
que Wy est ouvert et dense dans ¥~ (X, ©). Pour ce faire, on peut supposer
que X est un ensemble ouvert de R” et que = est le fibré produit R§. Les
sections de 7 s’identifient alors aux fonctions a valeurs dans R? et les sec-
tions transverses aux fonctions ayant ’origine pour valeur régulicre.

Soit f une fonction de ¥~ (X, R”). Posons

g0 = 1f@ |+ N 14,

ou les 4; (f) désignent le déterminant des mineurs d’ordre p extraits de la
matrice jacobienne de f. Pour que l'origine soit une valeur régulicre de f,
il faut et il suffit que g ne s’annule pas sur X. On en déduit aisément que
W est ouvert. D’autre part, le théoréme de Sard (appendice I, théoréme 4)
montre qu’en ajoutant a f un vecteur convenable, I’origine devient une
valeur réguliére, d’ou I’assertion.

Remarque 1.

Si p est strictement supérieur a n, la méme démonstration montre que le
fibré n posséde une section indéfiniment dérivable partout non nulle.

LEMME 6. Soient x, et x, deux points de X et soit s une section de
€® (X, ). On suppose que x, est l'unique zéro de s dans un voisinage
connexe V de {x,,x,}. Il existe alors une section t de ¥ (X, n) qui
coincide avec s sur X\V et dont xi estl'unique zéro dans V. Si de plus
s est transverse, on peut choisir t transverse.

On se ramene aisément au cas ol x, et x, sont contenus dans un en-
semble ouvert connexe U lui-méme relativement compact dans le domaine

d’une carte @ de n contenu dans V. Il existe un difféomorphisme u de X
tel que

u(xy) = xg ulyw = Ix\y
(§ 1, lemme 3). On vérifie aisément que la section ¢ définie par
t(x) = s(x) st xeX\U
t(x) = (D1 B, (s (u (%)) si xeU

a toutes les propriétés requises.
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THEOREME 1. Soit X une variété différentielle de dimension pure n et
soit w un fibré vectoriel de rang pur n sur X. On suppose que X est
ouverte ). 1l existe alors une section s de €% (X,n) partout non nulle.

On suppose X connexe et 'on désigne par (K;) ;.x une suite exhaustive
de parties compactes de X telles que X\K; n’ait aucune composante connexe
relativement compacte dans X (appendice II, lemme 6). On va construire
par récurrence sur j une section transverse s; de 7 qui coincide avec §;_
sur K;_ et qui ne s’annule pas sur K. Ceci établira I’assertion. On suppose
que K, est vide et ’on prend pour s, une section transverse quelconque de 7
(il en existe en vertu du lemme 5). Supposons s; construite; on désigne par 4
I’ensemble de ses z€ros (c’est un ensemble fermé et discret puisqu’elle est
transverse et puisque le rang de n est égal & la dimension de X) et par
{ x4, ..., x, } intersection de 4 et de K, ;. Il existe un ensemble de points
{¥1, ., y,} deux a deux distincts dans X\(K;,,;UA) tel que x, et y, se
trouvent dans la méme composante connexe de X\K ;.

Désignons par ¥; un voisinage connexe de { x;,y; } dans X\K; tel
que x; soit le seul zéro de 5; dans V;. Il existe une section transverse 7, de &
qui coincide avec s; sur X\V; et dont le seul zéro dans V4 soit y; (lemme 6).
On construit de la méme maniére et par récurrence sur K un voisinage
connexe ¥ de { x,, y,} dans X\K; tel que x, soit le seul zéro de 7,_4
dans V, et une section transverse ¢, de © qui coincide avec #,_, sur X\V,
et dont le seul zéro dans V; soit y,. Il suffit alors de prendre pour s;., la
section 7.

COROLLAIRE. Tout fibré vectoriel complexe de rang 1 sur une surface
différentielle ouverte est trivial.

Remarque 2.

Tout fibré vectoriel complexe 7 sur une surface différentielle ouverte est
trivial: la démonstration se fait par récurrence sur le rang de =. Elle est
laissée en exercice au lecteur (voir chap. V, § 4, théoréme 6).

§ 3. CALCUL DIFFERENTIEL

Dans tout ce paragraphe, on désigne par X une variété différentielle de
dimension pure .

1) On dit qu'une variété est ouverte si aucune de ses composantes connexes n’est
compacte.
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