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CHAPITRE 0

VARIETES DIFFERENTIELLES

§ 1. DEFINITIONS

On dit qu’un espace topologique est une variété topologique s’il est
séparé et si tout point posséde un voisinage ouvert homéomorphe a un
ensemble ouvert d’un espace numérique.

Le lemme suivant est une conséquence immédiate de cette définition et
de quelques résultats classiques de topologie générale (que 1’on trouve dans
[1], chap. I, par exemple).

LeMME 1. Toute variété topologique est un espace localement connexe,
localement compact et localement de type dénombrable. De plus, les conditions
suivantes sont équivalentes :

(1) Elle est paracompacte.
(2) Chacune de ses composantes connexes est de type dénombrable.

(3) Chacune de ses composantes connexes est dénombrable a l’infini.

Sauf mention explicite du contraire, toutes les vari¢tés considérées sont
paracompactes.

Soit X une variété topologique.

On appelle carte de X tout homéomorphisme ¢ d’un ensemble ouvert
U de X (appelé le domaine de ¢) sur un ensemble ouvert de R”". Soient x
un point de U et r un nombre réel strictement positif. On appelle boule de
centre x et de rayon r dans ¢ I'image réciproque de la boule B (¢ (x), r)
de centre ¢ (x) et de rayon r dans R". On dit que ¢ est centrée au point x
si ¢ (x) est ’origine.

Soient ¢ et  deux cartes de X de domaines respectifs U et V. On appelle
changement de cartes de ¢ dans Y T’homéomorphisme y de ¢ (UnV)
dans  (UnV) défini par

y(x) =¥ (¢ ().

On dit que ¢ et Y sont compatibles si y est un difféomorphisme (i.e. si y et
y~1 sont indéfiniment dérivables).
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On appelle atlas de X tout ensemble de cartes deux a deux compatibles
dont les domaines recouvrent X. On dit que deux atlas sont compatibles si
leur réunion est un atlas. On vérifie aisément que cette relation est une
relation d’équivalence. Ses classes s’appellent les structures différentielles de X.

On appelle variété différentielle toute variété topologique munie d’une
structure différentielle.

Soit X une variété différentielle.

On appelle (abusivement) atlas de X tout atlas appartenant a la struc-
ture différentielle de X et carte de X toute carte appartenant a un atlas
de X.

Soit x un point de X. Toutes les cartes de X dont le domaine contient x
prennent leurs valeurs dans le méme espace numérique. La dimension de
cet espace s’appelle la dimension de X au point x et se désigne par dim, (X).
La fonction dim (X) est localement constante. On dit que X est de dimension
pure si elle est constante.

On appelle courbe différentielle (resp. surface différentielle) toute variété
différentielle de dimension pure 1 (resp. 2).

Soit E un espace vectoriel de dimension finie sur R et soit £ une appli-
cation de X dans E. Pour toute carte ¢p de domaine U dans X, I’application
f» de ¢ (U) dans E définie par

fo(x) =f(67' ()

s’appelle I’expression de f dans ¢. Si  est une deuxiéme carte de domaine V'
et si y désigne le changement de cartes de ¢ dans ¥, on a

fox) =fy(»(x)

pour tout point x de ¢ (UNV).

Soit k£ un entier naturel (ou le symbole 00). On dit que f est k-fois conti-
niiment dérivable s’il en est ainsi de son expression dans toute carte de X
(ou ce qui revient au méme dans toute carte d’un atlas de X). On désigne
par * (X, E) '’ensemble de ces applications.

Remarquons que * (X, R) est une sous-algébre de # (X, R) et %* (X, E)
un sous-%* (X, R)-module de & (X, E), en désignant par & (X, E) l'en-
semble de toutes les applications de X dans E.

Si X est un ensemble ouvert de R”, on munit Pensemble %* (X, E)
de la topologie de la convergence uniforme sur les parties compactes des
dérivées jusqu’a ’ordre k. C’est un espace de Fréchet.

Dans le cas général, 'expression dans une carte ¢ de domaine U induit
une application linéaire de %* (X, E) dans %* (¢ (U), E) et 'on munit
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%* (X, E) de la topologie la moins fine rendant ces applications continues.
C’est un espace localement convexe et complet. C’est un espace de Fréchet
si X est dénombrable 2 I’infini.

Pour tout ensemble compact K de X, I’ensemble €} (X, E) des fonctions
dont le support est contenu dans K est un sous-espace fermé de ¢* (X, E).

L’ensemble %* (X, E) des fonctions de %* (X, E) a support compact est
un espace localement convexe et complet pour la topologie vectorielle
limite inductive des espaces €5 (X, E).

Soient X et Y deux variétés différentielles et soit # une application
continue de X dans Y.

Désignons par ¢ une carte de domaine U dans X et par y une carte de
domaine V' dans Y. On appelle expression de u dans (¢, ) Dapplication

gyt @ (Uou™t (V) = ¢ (V)

définie par

gy () = Y (u (™" ().

On dit que u est k-fois contintiment dérivable s’il en est ainsi de son expres-
sion dans tout couple de cartes. On désigne par €* (X, Y) ’ensemble de
ces applications.

On dit que I'application u est un isomorphisme (ou un difféomorphisme)
si elle est bijective et si u et u~* sont indéfiniment dérivables.

Les variétés différentielles, les applications indéfiniment dérivables et
leur composition usuelle forment une catégorie.

LeEMME 2. Soient X et Y deux variétés différentielles. Pour qu’une
application continue u de X dans Y soit indéfiniment dérivable, il faut et il
suffit que [’application u* de % (Y,R) dans & (X, R) définie par

wt (f) = fru

envoie €% (Y,R) dans €~ (X, R).

La condition est évidemment nécessaire. Montrons qu’elle est suffisante.
Soient ¢ une carte de domaine U dans X et y une carte de domaine V
contenant # (U) dans Y. On désigne par /4, ..., ¥, les fonctions coordonnées
de Y et par vy, ..., v, les fonctions coordonnées de u,,. Pour tout point x
de ¢ (U), il existe une fonction o de €%, (V, R) €gale a 1 au voisinage de
u (¢~ (x)) (appendice I, lemme 3). Les fonctions u* (aty), ..., u* (aif,,)
appartiennent a ¥ (X, R). On conclut en remarquant que leur expression
dans ¢ coincide avec vy, ..., v,, au voisinage de x.
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Exemple 1.

Soit E un espace vectoriel réel de dimension n. Tout isomorphisme R-
linéaire de E sur R" est une carte et deux telles cartes sont évidemment
compatibles. Nous munirons toujours E de la structure différentielle corres-
pondante.

Exemple 2.

On dit qu’un sous-espace Y d’une variété différentielle est une sous-
variété s’il vérifie la condition suivante:

(SV) Pour tout point x de Y, il existe une carte ¢ de X centrée en x, de
domaine U et & valeurs dans R”, et un entier naturel m au plus égal a n
tels que

¢ (UnY) = ¢ (U)n (R"DO0).

Les cartes de la forme ¢ IUnY définissent une structure différentielle sur Y
que ’on dit induite par X. Nous munirons toujours une sous-variété de la
structure différentielle induite.

Notons que l'injection canonique de Y dans X est indéfiniment déri-
vable et que Y est un sous-espace localement fermé de X. Enfin tout en-
semble ouvert de X est une sous-variété.

Exemple 3.

Soient X et Y deux variétés différentielles. Pour toute carte ¢ de X et
toute carte Y de Y, I'application ¢ X  est une carte du produit X X Y.
Deux telles cartes sont évidemment compatibles. On munit toujours X X Y
de la structure différentielle correspondante.

Les projections canoniques de X X Y dans chacun de ses facteurs sont
indéfiniment dérivables. L’application diagonale induit un difféomor-
phisme de X sur une sous-variété fermée de X x X.

Exemple 4.

Soient X et Y deux espaces topologiques séparés et soit # un homéo-
morphisme local de X dans Y.

Si Y est une variété topologique, il en est de méme de chacune des
composantes connexes de X (appendice II, théoréme 1). De plus, pour
toute structure différentielle de Y, il existe une structure différentielle de X
et une seule faisant de u un diff€omorphisme local.

Si u est surjective et si X est une variété topologique, il en est de méme
de Y. De plus, pour toute structure différentielle de X, il existe une structure
différentielle de Y et une seule faisant de » un difféomorphisme local.
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Exemple 5.

Pour tout entier naturel n, on désigne par P” (R) ’ensemble des droites
issues de I'origine dans R"*! et par = la projection de R"*!\0 dans P" (R)
associant a tout point (x,, ..., x,) la droite (x,: ... : x,) qu’il définit. Muni
de la topologie quotient, ’espace P" (R) est compact et connexe. |

Pour tout entier j compris entre 0 et #, on pose

Uj = {(xp:...:x)eP"(R) |x; #0}.
L’application ¢; de U; dans R" définie par

A
Xo X; X
¢;(xp:...1x,) = (—— ,...,-’,...,—'1)
Xj

Xj Xj

est une carte de P” (R). On vérifie aisément que ces cartes sont deux a deux
compatibles. Muni de la structure différentielle correspondante, I’ensemble
P" (R) s’appelle 'espace projectif réel de dimension n.

Soient X et Y deux variétés différentielles de dimension pure n et m
respectivement et soit # une application indéfiniment dérivable de X dans Y.

Pour tout point x de X, le rang a I’origine de I'application u,,, est indé-
pendant de la carte ¢ centrée en x et de la carte Y centrée en u (x). On
lappelle le rang de u au point x et on le désigne par rg, (u).

On dit que x est un point régulier (resp. un point critique) de u sirg, (1)
est égal & m (resp. strictement inférieur & m). On dit qu’un point y de Y est
une valeur réguliére (resp. une valeur critique) de u si tous les points de
u~1 (y) sont réguliers (resp. s’il existe un point critique dans u~* (y)).

Les deux théorémes suivants sont des conséquences immédiates des
versions locales correspondantes (appendice I, théorémes 1 et 4).

THEOREME 1 (Fonctions réciproques). Supposons n égal a m. Sil’appli-
cation u est de rang n en un point x de X, elle induit un isomorphisme
d’un voisinage de x sur un voisinage de u (x).

TutorEME 2 (Sard). Si X est dénombrable a l'infini, 1’ensemble des i
valeurs critiques de u n’a pas de point intérieur. Si y est une valeur régu- ‘
liere de u, alors u~'(y) est une sous-variété de dimension n—m dans X.

Remarque 1.

En fait, I’ensemble des valeurs critiques de # est de mesure nulle. C’est
une conséquence immédiate de la définition donnée au paragraphe 4 et du
théoréme de Sard donné dans ’appendice I.
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LEMME 3. Soit X une variété différentielle et soient x et y des points
de X. Pour tout voisinage connexe V de {x,y}, il existe un difféomor-
phisme u de X sur elle-méme tel que

u(x) =y et ulxyy = lxw-

En particulier, si X est connexe, le groupe des difféomorphismes opére

transitivement sur X.
Il existe une famille (¢,),_—;—; de cartes de X vérifiant les conditions

suivantes:

(1) Pour tout entier j compris entre O et k, la carte ¢; est centrée au
point x, son domaine U; est contenu dans V et 'ensemble ¢; (U;) est un
cube de R".

(2) Le point x, coincide avec x, le point x, coincide avec y et pour tout
entier j compris entre 0 et k—1, le point x;, ; appartient a U;.

Il existe alors un difféomorphisme u; de X sur elle-méme tel que
u;(x;) = Xj41 u; lx\v = Ix\y
(appendice I, lemme 4). 11 suffit de poser
u = uk._l © ena 'uo.

Soit X une variété différentielle et soit (U,),.; un recouvrement ouvert
de X. On appelle partition de !’unité subordonnée a (U)),.; toute famille
(2,),o; de fonctions indéfiniment dérivables a valeurs réelles positives sur X
vérifiant les conditions suivantes:

(1) Pour tout indice 1, le support de «, est contenu dans U,.
(2) La famille des supports des «, est localement finie.

(3) Pour tout point x de X, la somme des o, (x) (qui existe d’aprés (2))
est égale a 1.

PROPOSITION 1. Pour tout recouvrement ouvert (U),; de X, il existe
une partition de l'unité (o,),; subordonnée a (U,),.; ).

Il existe deux recouvrements ouverts (V,)..x et (W,)..x localement
finis et plus fins que (U,) ; tels que V. soit un domaine de carte relativement
compact dans X et W, un ensemble relativement compact dans V, ([1],
chap. IX, §4, théoréme 3).

1) Clest jci la premiére fois que nous utilisons I’hypothése de paracompacité que
nous avons faite sur les variétés. '
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Désignons par 8, une fonction indéfiniment dérivable a valeurs réelles
positives sur X dont le support est contenu dans V, et égale a 1 sur W,
(appendice I, lemme 3).

Il suffit alors de poser

o, =< 2 ﬂ;:) <Zﬁx>‘1

T(K)=1 keK

ou 7 désigne une application de raffinement de K dans 1.

COROLLAIRE. Pour tout ensemble compact K de X et tout voisinage U
de K, il existe une fonction o de €% (X, R) dont le support est contenu dans
U et égale a I sur K.

On dit qu’un atlas d’une variété différentielle est orienté si le jacobien
des changements de cartes est positif. Deux atlas orientés sont dits compa-
tibles si leur réunion est un atlas orienté. On vérifie ais€ément que cette
relation est une relation d’équivalence. Ses classes s’appellent les orientations
de X.

On dit qu'une variété différenticlle est orientable si elle posseéde un
atlas orienté. On dit qu’une variété différentielle est orientée si elle est
orientable et munie d’une orientation.

Soit X une variété différentielle orientée. On appelle (abusivement)
atlas orienté de X tout atlas appartenant a Iorientation de X et carte
orientée de X toute carte appartenant & un atlas orienté de X.

LEMME 4. Toute variété différentielle X orientable, connexe de dimension
Strictement positive posséde exactement deux orientations.

Soient .7 et # deux atlas orientés de X. Désignons par ¢ une carte de
£ et par Y une carte de 4. Le signe du jacobien du changement de cartes
de ¢ dans Y est indépendant de ces cartes. Comme c’est une fonction
localement constante, on voit que X posséde au plus deux orientations.

D’autre part, ’ensemble des cartes de la forme (— ¢, ¢5, ..., §,) ol ¢
parcourt &/ est un atlas orienté de X non compatible avec o/ ce qui démon-
tre ’assertion.

Remarque 2.

Toute variété différentielle connexe de dimension O est réduite & un
point. Elle est évidemment orientable. Par convention, on dit qu’elle posséde
deux orientations notées 1 et —1.
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