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Chapitre 0

VARIÉTÉS DIFFÉRENTIELLES

§ 1. Définitions

On dit qu'un espace topologique est une variété topologique s'il est

séparé et si tout point possède un voisinage ouvert homéomorphe à un
ensemble ouvert d'un espace numérique.

Le lemme suivant est une conséquence immédiate de cette définition et
de quelques résultats classiques de topologie générale (que l'on trouve dans

[1], chap. I, par exemple).

Lemme 1. Toute variété topologique est un espace localement connexe,
localement compact et localement de type dénombrable. De plus, les conditions
suivantes sont équivalentes :

(1 Elle est paracompacte.

(2) Chacune de ses composantes connexes est de type dénombrable.

(3) Chacune de ses composantes connexes est dénombrable à l \infini.

Sauf mention explicite du contraire, toutes les variétés considérées sont

paracompactes.
Soit X une variété topologique.
On appelle carte de X tout homéomorphisme </> d'un ensemble ouvert

U de X (appelé le domaine de </>) sur un ensemble ouvert de Rn. Soient x
un point de U et r un nombre réel strictement positif. On appelle boule de

centre x et de rayon r dans 4> l'image réciproque de la boule B (0 (x), r)
de centre (j) (x) et de rayon r dans RM. On dit que (j) est centrée au point x
si 4> (x) est l'origine.

Soient </> et \j/ deux cartes de X de domaines respectifs U et V. On appelle

changement de cartes de </> dans \j/ l'homéomorphisme y de 4>(UnV)
dans \j/ (UnV) défini par

y (x) iAO_1(X>).

On dit que 0 et ^ sont compatibles si y est un difféomorphisme (i.e. si y et

y_1 sont indéfiniment dérivables).
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On appelle atlas de X tout ensemble de cartes deux à deux compatibles
dont les domaines recouvrent X. On dit que deux atlas sont compatibles si

leur réunion est un atlas. On vérifie aisément que cette relation est une

relation d'équivalence. Ses classes s'appellent les structures différentielles de X.
On appelle variété différentielle toute variété topologique munie d'une

structure différentielle.
Soit X une variété différentielle.
On appelle (abusivement) atlas de X tout atlas appartenant à la structure

différentielle de X et carte de X toute carte appartenant à un atlas

de X.
Soit x un point de X. Toutes les cartes de X dont le domaine contient x

prennent leurs valeurs dans le même espace numérique. La dimension de

cet espace s'appelle la dimension de X au point x et se désigne par dimx (X).
La fonction dim (X) est localement constante. On dit que X est de dimension

pure si elle est constante.
On appelle courbe différentielle (resp. surface différentielle) toute variété

différentielle de dimension pure 1 (resp. 2).
Soit E un espace vectoriel de dimension finie sur R et soit / une

application de X dans E. Pour toute carte 4> de domaine U dans X, l'application
ff de cj) (U) dans E définie par

<X) =/(<£-1<X>)

s'appelle Yexpression de f dans cj). Si \j/ est une deuxième carte de domaine V
et si y désigne le changement de cartes de </> dans \j/, on a

/*(*) =f*(y(x))
pour tout point x de cj) (UnV).

Soit kun entier naturel (ou le symbole oo). On dit que/est k-fois
continûment dérivable s'il en est ainsi de son expression dans toute carte de X
(ou ce qui revient au même dans toute carte d'un atlas de X). On désigne
par (k (X, E)l'ensemble de ces applications.

Remarquons que (X, R) est une sous-algèbre de (X, R) et <g* (X,
un sous-1?* X,R)-modulede (X, E), en désignant par 3F ,E)
l'ensemble de toutes les applications de X dans E.

Si Xestun ensemble ouvert de R", on munit l'ensemble (ßk (X, E)
de la topologie de la convergence uniforme sur les parties compactes des
dérivées jusqu'à l'ordre k. C'est un espace de Fréchet.

Dans le cas général, l'expression dans une carte (j> de domaine U induit
une application linéaire de %jk (X, E) dans rßk (([> (U), E) et l'on munit
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#k (X, F) de la topologie la moins fine rendant ces applications continues.
C'est un espace localement convexe et complet. C'est un espace de Fréchet
si X est dénombrable à l'infini.

Pour tout ensemble compact K de X, l'ensemble (X, E) des fonctions
dont le support est contenu dans K est un sous-espace fermé de k (X, E).

L'ensemble ^ (.X, F) des fonctions de (X, £) à support compact est

un espace localement convexe et complet pour la topologie vectorielle
limite inductive des espaces (X, F).

Soient X et Y deux variétés différentielles et soit u une application
continue de X dans Y.

Désignons par </> une carte de domaine U dans X et par \j/ une carte de

domaine V dans Y. On appelle expression de u dans (0, ip) l'application

définie par

"wW (*))) •

On dit que u est k-fois continûment dérivable s'il en est ainsi de son expression

dans tout couple de cartes. On désigne par
k (X, F) l'ensemble de

ces applications.
On dit que l'application u est un isomorphisme (ou un difféomorphisme)

si elle est bijective et si wet m-1 sont indéfiniment dérivables.
Les variétés différentielles, les applications indéfiniment dérivables et

leur composition usuelle forment une catégorie.

Lemme 2. Soient X et Y deux variétés différentielles. Pour qu'une
application continue u de X dans Y soit indéfiniment dérivable, ilfaut et il
suffit que l'application u* de 3F Y, R) dans 3F (X, R) définie par

"*(/) =/•«
envoie <T/J Y, R) dans <^c0 (X,R).La condition est évidemment nécessaire. Montrons qu'elle est suffisante.

Soient 0 une carte de domaine U dans X et \j/ une carte de domaine V
contenant u (U) dans Y. On désigne par ij/u ij/m les fonctions coordonnées

de \J/ et par vu vm les fonctions coordonnées de u^. Pour tout point x
de (j) ([/), il existe une fonction a de (V, R) égale à 1 au voisinage de

u((j)~1(x)) (appendice I, lemme 3). Les fonctions w* (ai/^J, w;:< (ai/rm)

appartiennent à ^°° (X, R). On conclut en remarquant que leur expression
dans (j) coïncide avec vu vm au voisinage de x.
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Exemple 1.

Soit E un espace vectoriel réel de dimension n. Tout isomorphisme R-

linéaire de E sur Rn est une carte et deux telles cartes sont évidemment

compatibles. Nous munirons toujours E de la structure différentielle

correspondante.

Exemple 2.

On dit qu'un sous-espace 7 d'une variété différentielle est une sous-

variété s'il vérifie la condition suivante:

(SV) Pour tout point x de F, il existe une carte (j) de X centrée en x, de

domaine U et à valeurs dans R", et un entier naturel m au plus égal à n

tels que
(j) (Un Y) (j) (U) n (Rm© 0).

Les cartes de la forme </> | UnY définissent une structure différentielle sur Y

que l'on dit induite par X. Nous munirons toujours une sous-variété de la

structure différentielle induite.
Notons que l'injection canonique de Y dans X est indéfiniment déri-

vable et que Y est un sous-espace localement fermé de X. Enfin tout
ensemble ouvert de X est une sous-variété.

Exemple 3.

Soient X et Y deux variétés différentielles. Pour toute carte 0 de X et

toute carte \jf de Y, l'application (j) x \j/ est une carte du produit X x Y.

Deux telles cartes sont évidemment compatibles. On munit toujours X x Y
de la structure différentielle correspondante.

Les projections canoniques de X x Y dans chacun de ses facteurs sont
indéfiniment dérivables. L'application diagonale induit un difféomor-
phisme de X sur une sous-variété fermée de I x I
Exemple 4.

Soient I et 7 deux espaces topologiques séparés et soit u un homéo-
morphisme local de X dans Y.

Si Y est une variété topologique, il en est de même de chacune des

composantes connexes de X (appendice II, théorème 1). De plus, pour
toute structure différentielle de Y, il existe une structure différentielle de X
et une seule faisant de u un difféomorphisme local.

Si u est surjective et si X est une variété topologique, il en est de même
de 7. De plus, pour toute structure différentielle de 7, il existe une structure
différentielle de 7 et une seule faisant de u un difféomorphisme local.
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Exemple 5.

Pour tout entier naturel n, on désigne par P" (R) l'ensemble des droites
issues de l'origine dans Rn+1 et par n la projection de R"+1\0 dans P" (R)
associant à tout point (x0, xn) la droite (x0: : xn) qu'il définit. Muni
de la topologie quotient, l'espace Pn (R) est compact et connexe.

Pour tout entier j compris entre 0 et n, on pose

Uj —{(xo:••• :xn)eP"(R)| Xj- ^ 0}
L'application </>7- de Uj dans RM définie par

A

Ar.\ - fx° XJ x"\
4*j Oo ^n) •>'"•> • • •

\XJ XJ XjJ

est une carte de P" (R). On vérifie aisément que ces cartes sont deux à deux

compatibles. Muni de la structure différentielle correspondante, l'ensemble
P" (R) s'appelle Yespace projectif réel de dimension n.

Soient X et Y deux variétés différentielles de dimension pure n et m
respectivement et soit u une application indéfiniment dérivable de X dans Y.

Pour tout point x de X, le rang à l'origine de l'application uM est

indépendant de la carte <fi centrée en x et de la carte ij/ centrée en u (x). On

l'appelle le rang de u au point x et on le désigne par rgx (u).
On dit que x est un point régulier (resp. un point critique) de u si rgx (u)

est égal à m (resp. strictement inférieur à m). On dit qu'un point y de Y est

une valeur régulière (resp. une valeur critique) de u si tous les points de

u~1 (y) sont réguliers (resp. s'il existe un point critique dans w-1 (y)).
Les deux théorèmes suivants sont des conséquences immédiates des

versions locales correspondantes (appendice I, théorèmes 1 et 4).

Théorème 1 (Fonctions réciproques). Supposons n égal à m. Si l'application

u est de rang n en un point x de X, elle induit un isomorphisme
d'un voisinage de x sur un voisinage de u (x).

Théorème 2 (Sard). Si X est dénombrable à l'infini, l'ensemble des

valeurs critiques de u n'a pas de point intérieur. Si y est une valeur régulière

de u, alors u~1 (y) est une sous-variété de dimension n~m dans X.

Remarque 1.

En fait, l'ensemble des valeurs critiques de u est de mesure nulle. C'est

une conséquence immédiate de la définition donnée au paragraphe 4 et du

théorème de Sard donné dans l'appendice I.
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Lemme 3. Soit X une variété différentielle et soient x et y des points
de X. Pour tout voisinage connexe V de {x, y}, il existe un difféomor-

phisme u de X sur elle-même tel que

u(x) y et u \x\y lx\v •

En particulier, si X est connexe, le groupe des difféomorphismes opère

transitivement sur X.

Il existe une famille (4>f)0de cartes de X vérifiant les conditions

suivantes :

(1) Pour tout entier j compris entre 0 et la carte cpj est centrée au

point Xp son domaine Uj est contenu dans V et l'ensemble (ßj (Uj) est un
cube de R".

(2) Le point x0 coïncide avec x, le point xk coïncide avec y et pour tout
entier j compris entre 0 et k — 1, le point xj+ x appartient à Uj.

Il existe alors un difféomorphisme Uj de X sur elle-même tel que

Uj(Xj) Xj+i uj\x\v ^x\v

(appendice I, lemme 4). Il suffit de poser

U —— Uk — i ' UQ

Soit X une variété différentielle et soit (Ut)ieI un recouvrement ouvert
de X. On appelle partition de l'unité subordonnée à (UXei toute famille
(°0iei fonctions indéfiniment dérivables à valeurs réelles positives sur X
vérifiant les conditions suivantes:

(1) Pour tout indice i9 le support de oq est contenu dans Uv

(2) La famille des supports des a, est localement finie.

(3) Pour tout point x de X, la somme des a, (x) (qui existe d'après (2))
est égale à 1.

Proposition 1. Pour tout recouvrement ouvert (UfeI de X, il existe
une partition de l'unité (ocXei subordonnée à (C/,)l6j x).

Il existe deux recouvrements ouverts (Vk)kgK et (WK)KeK localement
finis et plus fins que (C/,)I6/ tels que VK soit un domaine de carte relativement
compact dans X et WK un ensemble relativement compact dans VK ([1],
chap. IX, § 4, théorème 3).

x) C'est ici la première fois que nous utilisons l'hypothèse de paracompacité que
nous avons faite sur les variétés.
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Désignons par ßK une fonction indéfiniment dérivable à valeurs réelles

positives sur X dont le support est contenu dans VK et égale à 1 sur WK

(appendice I, lemme 3).

Il suffit alors de poser

où t désigne une application de raffinement de K dans /.

Corollaire. Pour tout ensemble compact K de X et tout voisinage U
de K, il existe une fonction a de ^® (X, R) dont le support est contenu dans

U et égale à 1 sur K.

On dit qu'un atlas d'une variété différentielle est orienté si le jacobien
des changements de cartes est positif. Deux atlas orientés sont dits compatibles

si leur réunion est un atlas orienté. On vérifie aisément que cette
relation est une relation d'équivalence. Ses classes s'appellent les orientations
de X.

On dit qu'une variété différentielle est orientable si elle possède un
atlas orienté. On dit qu'une variété différentielle est orientée si elle est

orientable et munie d'une orientation.
Soit X une variété différentielle orientée. On appelle (abusivement)

atlas orienté de X tout atlas appartenant à l'orientation de X et carte
orientée de X toute carte appartenant à un atlas orienté de X.

Lemme 4. Toute variété différentielle X orientable, connexe de dimension

strictement positive possède exactement deux orientations.

Soient sé et & deux atlas orientés de X. Désignons par 0 une carte de

sé et par i\t une carte de Le signe du jacobien du changement de cartes

de (j) dans \j/ est indépendant de ces cartes. Comme c'est une fonction
localement constante, on voit que X possède au plus deux orientations.

D'autre part, l'ensemble des cartes de la forme — <j)l9 (j)2,..-,</>„) où <£

parcourt sé est un atlas orienté de X non compatible avec sé ce qui démontre

l'assertion.

Remarque 2.

Toute variété différentielle connexe de dimension 0 est réduite à un
point. Elle est évidemment orientable. Par convention, on dit qu'elle possède

deux orientations notées 1 et —1.
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