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SUR L'ÉQUIVALENCE FINIE DES POLYÈDRES

par

F. Châtelet

Henri Lebesgue s'est intéressé à de nombreuses questions de géométrie
et de topologie. Mais ses mémoires sont dispersés dans des périodiques
dont plusieurs sont peu accessibles. L'édition de ses Œuvres scientifiques

permet maintenant de les étudier plus facilement.
Je me propose d'exposer quelques aspects du problème de l'équivalence

finie des polyèdres, en espérant que ce bref exposé donnera l'envie de lire
ou de relire les mémoires de Lebesgue sur ce sujet.

Henri Lebesgue a consacré une partie importante de son cours au

Collège de France pendant l'année 1937-1938 à ce sujet. Une conférence,
faite à Cracovie en 1938, a été publiée aux Annales de la Société polonaise
de mathématiques (Œuvres, tome V, pp. 65 et 99). Une note aux comptes
rendus de l'Académie des sciences (Œuvres, tome V, p. 61) avait auparavant
résumé les résultats. Sur un sujet voisin, une conférence, faite à Belgrade
en 1937, avait paru aux Publications de l'Université de Belgrade (Œuvres,
tome V, p. 55).

Les travaux d'Henri Lebesgue, et ceux de ses prédécesseurs dans cette

question (Bricard, Sforza, Dehn) utilisent la conjonction de méthodes

originales géométriques, algébriques et même arithmétiques. En outre
Lebesgue signale plusieurs questions ouvertes. Hadwiger, par des méthodes
toutes différentes, a étendu, en 1957, les résultats obtenus aux polyèdres
d'un espace euclidien de dimension supérieure à 3; mais il n'a pas résolu
les questions laissées ouvertes par Lebesgue. D'ailleurs, les méthodes de

Lebesgue peuvent peut-être être utiles pour d'autres problèmes.
Deux polyèdres D et D' sont dits équivalents de façon finie au sens

simple s'il est possible de partager l'intérieur de D en la réunion d'un nombre
fini de polyèdres dt (extérieurs les uns aux autres) et de partager l'intérieur
de Df en la réunion d'un même nombre de polyèdres d\ de telle manière
que chaque polyèdre d\ soit égal à un polyèdre dt (c'est-à-dire s'en déduise

par un déplacement euclidien).
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Deux polyèdres D et D' sont dits équivalents de façon finie par différence
s'il est possible de construire deux polyèdres A et A', équivalents de façon
finie au sens simple, tels que les réunions D u A et D' u A' soient
équivalents de façon finie au sens simple.

Deux polyèdres D et D' sont dits équivalents de façon finie par
multiplication s'il est possible de construire un polyèdre comme réunion de

n polyèdres égaux à D équivalent de façon finie au sens simple à un polyèdre
construit comme réunion de n polyèdres égaux à D'.

Deux polyèdres D et D' sont équivalents de façon finie au sens large s'il
est possible de combiner une suite d'équivalences précédentes entre D et D'.

L'équivalence finie des polygones plans se définit de façon analogue.
Ces définitions nécessitent toutefois de se limiter à des polyèdres (ou

à des polygones) dont l'intérieur est bien défini, d'un seul tenant (connexe

par ligne polygonale) et décomposable en la réunion d'un nombre fini de

tétraèdres (ou de triangles). Ces polyèdres (ou polygones), appelés simples,

peuvent aussi être caractérisés par des conditions ne portant que sur leurs

surfaces (ou sur leurs bords).
Une ligne polygonale fermée (bord d'un polygone) est une succession

de segments (ses côtés) tels que l'extrémité de chaque segment soit confondue

avec l'origine du suivant: l'extrémité du dernier segment étant confondue

avec l'origine du premier. Les extrémités des différents segments sont

appelés les vrais sommets de la ligne. Si deux segments non consécutifs

ont un point commun, ce point est appelé « faux sommet » de la ligne.
Une ligne polygonale fermée définit un polygone simple si et seulement si

elle ne contient pas de faux sommet.

Une surface polyèdrale est un arrangement des intérieurs de polygones
(ses faces) de l'espace euclidien, extérieurs les uns aux autres, mais dont

chaque côté est commun à deux faces, de manière que la réunion des

intérieurs de ces polygones soit d'un seul tenant (connexe par ligne polygonale)
et que la section de cette surface par tout plan soit formée par des lignes

polygonales fermées (cette section pouvant être vide). Si deux faces ont en

commun un segment intérieur à chacune d'elles, ce segment est appelé

« fausse arête ».

Une surface polyèdrale définit un polyèdre simple si et seulement si

elle ne contient pas de fausse arête.

Hilbert a démontré que deux polygones plans simples de même aire

sont équivalents de façon finie au sens large. On peut trouver la démonstration

de cette propriété dans certains traités de géométrie élémentaire ainsi

que dans l'article de H. Lebesque de Cracovie.
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Les essais pour démontrer que deux polyèdres simples de même volume

sont équivalents de façon finie ont échoué; il était indiqué de chercher

des invariants de l'équivalence finie autres que le volume. Bricard, en s'inspi-

rant du fait que l'aire d'un polygone sphérique ne dépend que de ses angles,

a cherché un invariant de l'équivalence finie qui dépende des angles dièdres

des polyèdres considérés. Pour cela, il a étudié le comportement des angles

dièdres d'un polyèdre dans une équivalence finie.
Considérons un polyèdre simple D décomposé en polyèdres simples d-v

Chaque polyèdre dt est extérieur aux autres polyèdres dj\ mais deux polyèdres

dt et dj peuvent avoir une partie commune formée par des polygones
intérieurs à une ou plusieurs faces de dt et dj.

Soit un segment situé sur une seule arête d'un polyèdre dt ou commun
a plusieurs arêtes ch de plusieurs polyèdres dt; choisissons s de telle manière

qu'il soit le plus grand segment commun à ces arêtes ch.

Ce segment peut appartenir à une arête Ck de D, ou appartenir à une
face de Z), ou être complètement intérieur à D. Dans le premier cas, la

somme des dièdres ah dont l'arête ch contient s est égale au dièdre A k de D
d'arête Ck; dans le second cas, cette somme est égale à n radians; dans
le troisième cas, cette somme est égale à 2n radians. Ce que nous écrirons

Zcch Ak 7i ou 2n

Bricard ajoutait toutes les relations ainsi obtenues pour obtenir une
somme invariante dans une équivalence finie. Mais une difficulté provient
du fait qu'un même dièdre och peut intervenir plusieurs fois dans cette somme
et que nous ne savons pas à priori le nombre de fois où il apparaît.

Pour remédier à cette difficulté, Dehn multiplie la relation de Bricard
par la longueur sn du segment considéré:

snIcch SnAk Sn7l ou 2sn7l

et il ajoute toutes les relations obtenues; ce qui donne

(1) ~ ELkAk + 7lIÇnSn

où 4 est la longueur de l'arête du dièdre afc, Lk est la longueur de l'arête
du dièdre A k et où est égal à 0, 1 ou 2 suivant le cas de Bricard.

Si un polyèdre simple D' est équivalent de façon finie au sens simple
à D, l'ensemble des longueurs lh est le même que celui des longueurs l'h

des arêtes des polyèdres de la décomposition de D' ; de même, l'ensemble
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des dièdres a,, est le même que celui des dièdres oc'h. D'où une relation
analogue à (1)

(1 27/, cch ZLkAk + 7i2£„s„

et par différence

ILhAk - ZLkAk NTC

avec

N ZtX - 2£„s„.

Mais on espérait une relation (homogène) à coefficients entiers (ou rationnels)
entre les dièdres A k,, A'k et n. Il s'agit de montrer qu'on peut déduire de la
relation à coefficients réels obtenue une relation à coefficients rationnels.

Un raisonnement approximatif utilise la densité du corps des nombres
rationnels dans celui des nombres réels. On modifie légèrement les polyèdres
D, dh D\ d'i de manière que les longueurs L1o L'k, sm s'n deviennent rationnelles,

sans que les angles A /c, Ä]0 ah9 oc'h ne changent et sans que les

configurations des polyèdres dt et d\ ne se modifient. Alors les relations (1)
et (1') entre les A k, A'k et n conservent la même forme, mais leurs coefficients

deviennent rationnels. Toutefois, il est difficile de rendre rigoureux ce

raisonnement, en raison du grand nombre de longueurs qu'il faut faire
varier simultanément.

H. Lebesgue utilise alors un raisonnement plus algébrique. Il remarque
que les longueurs sn sont liées par les relations linéaires

Lk — Lfjnsn //, Z9nsn,

où les coefficients rj„, 6n sont égaux à 1 ou 0 suivant que le segment sn est

contenu ou n'est pas contenu dans l'arête Ck de D ou dans l'arête ch de dt.
Nous pouvons considérer ce système de relations comme un système

linéaire en les variables sn. H. Lebesgue démontre que ce système est déterminé

par un raisonnement géométrique qu'il qualifie lui-même de minutieux
et sur lequel il est revenu plusieurs fois. C'est-à-dire que les longueurs s„

s'expriment linéairement en fonction des longueurs Lk et lh\

(2) sn ZÇhlh + 2tkLk

où les coefficients et xk sont des entiers rationnels. Les longueurs Lk,
lh sont assujetties à vérifier un système linéaire homogène (J^) à coefficients

rationnels.
En utilisant les expressions (2) dans la relation (1), nous obtenons

une relation
Llhah LLkAk + tc (ZLkEk —Zlheh)
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où les coefficients Ek, eh sont des nombres rationnels. De même, pour le

polyèdre D', décomposé en polyèdres d\ égaux aux polyèdres db nous

obtenons un système linéaire et homogène (if entre les longueurs Lk, lh,

à coefficients rationnels et une relation

Ilhah ZLkAk + n(Sl'kE'k-Zlhe'h),

où les coefficients Ek, e'h sont des nombres rationnels. Par différence, nous

obtenons

(3) ZLkAk- IL'kA'k+ ri \lEkLk-+ Z(eh- e'h) /„] 0

Cette dernière relation est donc une conséquence du système

lah Ak n ou 2n Zoc'h — Ak n ou 2tc

Lk Lrjnsn, //, ZOnsn,

Lk Zrjnsn, lfi ZOnsn.

Mais la relation (3) ne contient ni les dièdres ah, ni les longueurs sn ; c'est

donc une conséquence du système (if2)> formé par les systèmes (if^ et

(ifi), ou obtenu en éliminant les oth et les sn dans le système précédent.
Nous pouvons encore résoudre le système (if2) par rapport aux

longueurs 4; ce système est en effet possible, puisqu'il a pour solution
l'ensemble des longueurs effectives Lk, L'k, lh des polyèdres D, D\ db d\ considérés.

Mais il peut ne pas être déterminé. Les longueurs lh s'expriment
donc en fonctions linéaires et homogènes des longueurs Lh, Lk et, éventuellement

de paramètres arbitraires. Les longueurs Lk, Lk sont assujetties à

vérifier un système linéaire et homogène (Jâf) à coefficients rationnels.
En utilisant les expressions précédentes des longueurs lh dans la relation

(3) et en identifiant les coefficients des différents paramètres, nous
obtenons notamment une relation de la forme

(4) ELk(Ak-nrk) IL'k(A'k-nr'k)

où les rfc, rk sont des nombres rationnels.
La relation (4) est une conséquence du système linéaire (if) entre les

Lk, Lk; elle est encore vérifiée par toute solution Lk, Lk du système linéaire
(if). Comme ce système a ses coefficients rationnels, on peut construire
une base du module des solutions, formée par des systèmes de nombres
rationnels Lk, Lk. Chacune de ces solutions rationnelles donne lieu à une
relation linéaire, homogène, à coefficients rationnels entre les dièdres Ak,
Ak et n :

ZLk(Ak-nrk) - ZL'k(Ak-nr'k).
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Si N est le nombre d'arêtes de D et D' et si le système (if) contientp relations
indépendantes, la base du module des solutions contient N — p éléments.
Ce qui donne N - p relations linéaires, homogènes, à coefficients rationnels
entre les dièdres A k, Ak et n.

D'où le résultat:
Pour que deux polyèdres simples D et D' soient équivalents de façon

finie simple, il faut qu'il existe N - p relations linéaires, homogènes,
indépendantes, à coefficients rationnels entre les dièdres A k, Ak de D et D'
et n et p relations linéaires, homogènes, indépendantes, à coefficients

rationnels entre les longueurs Lk, Lk des arêtes de D et D\ où N est le

nombre d'arêtes de D et D'.
Ce résultat, ainsi établi pour l'équivalence finie au sens simple, peut être

complété par un raisonnement simple pour être étendu au cas de
l'équivalence finie au sens large.

H. Lebesgue a utilisé ces résultats pour montrer qu'il existe des polyèdres
de même volume qui ne sont pas équivalents de façon finie. Ainsi, il
remarque qu'il n'y a aucune relation (if) entre les arêtes, ni aucune relation

(j/) entre les dièdres du tétraèdre le plus général. D'où il déduit que:
« Le tétraèdre le plus général n'est pas équivalent de façon finie à un

prisme.»
Il précise même que:
« Il faut écrire au moins trois relations (if) et entre les longueurs

d'arêtes et les grandeurs des dièdres du tétraèdre le plus général pour
qu'il puisse être équivalent de façon finie à un prisme.»

D'autre part, il calcule les dièdres des cinq polyèdres réguliers concaves

et montre qu'ils sont incommensurables deux à deux. D'où il déduit

que:
« Deux polyèdres réguliers ne peuvent être équivalents de façon finie

que s'ils sont égaux.»

Inversement, je vais montrer, sur un exemple simple, l'existence de

relations entre les longueurs des arêtes et entre les dièdres de deux polyèdres
équivalents de façon finie. Je choisis deux prismes droits, à bases triangulaires,

de même hauteur, soit D et D'. D'après le résultat de Hilbert,
D et D' sont équivalents de façon finie s'ils ont même volume. Ces prismes

ont 18 arêtes au total. On trouve facilement 10 relations entre leurs arêtes

et 14 relations entre leurs dièdres. Le total 10 + 14 24 est bien supérieur

au nombre N 18 des arêtes.

Enfin, je cite l'opinion de Lebesgue sur l'intérêt de poursuivre ces

recherches sur l'équivalence finie:
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« Nous sommes entièrement dépourvus de moyens ayant quelque généralité

pour décider si les équivalences que nos conditions nécessaires ne

nous ont pas permis de déclarer impossibles, existent ou non. On ne connaît
en effet, aucune condition suffisante d'équivalence, si restrictive soit-elle;
on ne connaît que des exemples d'équivalence. C'est là une grave lacune
de la théorie actuelle de l'équivalence finie, sur laquelle j'appelle l'attention
des jeunes chercheurs.»

(Reçu le 4 avril 1975)

F. Châtelet

Mathématiques
Université de Besançon
Route de Gray
F-25030 — Besançon




	SUR L'ÉQUIVALENCE FINIE DES POLYÈDRES

