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SUR L’EQUIVALENCE FINIE DES POLYEDRES

par

F. CHATELET

Henri Lebesgue s’est intéressé & de nombreuses questions de géométrie
et de topologie. Mais ses mémoires sont dispersés dans des périodiques
dont plusieurs sont peu accessibles. L’édition de ses Fuvres scientifiques
permet maintenant de les étudier plus facilement.

Je me propose d’exposer quelques aspects du probléme de I’équivalence
finie des polyédres, en espérant que ce bref exposé donnera I’envie de lire
ou de relire les mémoires de Lebesgue sur ce sujet.

Henri Lebesgue a consacré une partie importante de son cours au
Collége de France pendant ’année 1937-1938 a ce sujet. Une conférence,
faite & Cracovie en 1938, a été publiée aux Annales de la Société polonaise
de mathématiques (Euvres, tome V, pp. 65 et 99). Une note aux comptes
rendus de I’Académie des sciences (Fuvres, tome V, p. 61) avait auparavant
résumeé les résultats. Sur un sujet voisin, une conférence, faite a Belgrade
en 1937, avait paru aux Publications de I’Université de Belgrade (Euvres,
tome V, p. 55).

Les travaux d’Henri Lebesgue, et ceux de ses prédécesseurs dans cette
question (Bricard, Sforza, Dehn) utilisent la conjonction de méthodes
originales géométriques, algébriques et méme arithmétiques. En outre
Lebesgue signale plusieurs questions ouvertes. Hadwiger, par des méthodes
toutes différentes, a étendu, en 1957, les résultats obtenus aux polyédres
d’un espace euclidien de dimension supérieure & 3; mais il n’a pas résolu
les questions laissées ouvertes par Lebesgue. D’ailleurs, les méthodes de
Lebesgue peuvent peut-€tre €tre utiles pour d’autres problémes.

Deux polyedres D et D’ sont dits équivalents de facon finie au sens
simple s’il est possible de partager I’intérieur de D en la réunion d’un nombre
fini de polyédres d; (extérieurs les uns aux autres) et de partager 'intérieur
de D’ en la réunion d’un méme nombre de polyédres d; de telle maniére
que chaque polyédre d; soit égal & un polyédre d; (c’est-a-dire s’en déduise
par un déplacement euclidien).
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Deux polyedres D et D’ sont dits équivalents de fagon finie par différence
s’il est possible de construire deux polyédres 4 et 4’, équivalents de fagon
finie au sens simple, tels que les réunions D U 4 et D’ U A" soient équi-
valents de fagon finie au sens simple.

Deux polyédres D et D’ sont dits équivalents de fagon finie par multi-
plication s’il est possible de construire un polyeédre comme réunion de
n polyédres égaux a D équivalent de fagon finie au sens simple a un polyedre
construit comme réunion de n polyédres égaux a D’.

Deux polyédres D et D’ sont équivalents de fagon finie au sens large s’il
est possible de combiner une suite d’équivalences précédentes entre D et D'.

L’équivalence finie des polygones plans se définit de fagon analogue.

Ces définitions nécessitent toutefois de se limiter a des polyédres (ou
a des polygones) dont 'intérieur est bien défini, d’un seul tenant (connexe
par ligne polygonale) et décomposable en la réunion d’un nombre fini de
tétraédres (ou de triangles). Ces polyedres (ou polygones), appelés simples,
peuvent aussi étre caractérisés par des conditions ne portant que sur leurs
surfaces (ou sur leurs bords).

Une ligne polygonale fermée (bord d’un polygone) est une succession
de segments (ses cotés) tels que 'extrémité de chaque segment soit confondue
avec 'origine du suivant: I’extrémité du dernier segment étant confondue
avec l'origine du premier. Les extrémités des différents segments sont
appelés les vrais sommets de la ligne. Si deux segments non consécutifs
ont un point commun, ce point est appelé « faux sommet » de la ligne.

Une ligne polygonale fermée définit un polygone simple si et seulement si
elle ne contient pas de faux sommet.

Une surface polyédrale est un arrangement des intérieurs de polygones
(ses faces) de I’espace euclidien, extérieurs les uns aux autres, mais dont
chaque coté est commun a deux faces, de manieére que la réunion des inté-
rieurs de ces polygones soit d’un seul tenant (connexe par ligne polygonale)
et que la section de cette surface par tout plan soit formée par des lignes
polygonales fermées (cette section pouvant €tre vide). Si deux faces ont en
commun un segment intérieur & chacune d’elles, ce segment est appelé
« fausse aréte ».

Une surface polyédrale définit un polyedre simple si et seulement si
elle ne contient pas de fausse aréte.

Hilbert a démontré que deux polygones plans simples de méme aire
sont équivalents de fagon finie au sens large. On peut trouver la démonstra-
tion de cette propriété dans certains traités de géométrie élémentaire ainsi
que dans I’article de H. Lebesque de Cracovie.
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Les essais pour démontrer que deux polyédres simples de méme volume
sont équivalents de fagon finie ont échoué; il était indiqué de chercher
des invariants de I’équivalence finie autres que le volume. Bricard, en s’inspi-
rant du fait que P'aire d’un polygone sphérique ne dépend que de ses angles,
a cherché un invariant de I’équivalence finie qui dépende des angles diédres
des polyédres considérés. Pour cela, il a étudié le comportement des angles
diédres d’un polyédre dans une équivalence finie.

Considérons un polyédre simple D décomposé en polyédres simples d..
Chaque polyédre d; est extérieur aux autres polyedres d;; mais deux poly-
édres d; et d; peuvent avoir une partie commune formée par des polygones
intérieurs a une ou plusieurs faces de d; et d;.

Soit s un segment situé sur une seule aréte d’un polyédre d; ou commun
a plusieurs arétes ¢, de plusieurs polyédres d;; choisissons s de telle maniere
qu’il soit le plus grand segment commun a ces arétes ¢,

Ce segment peut appartenir a une aréte C, de D, ou appartenir a une
face de D, ou étre complétement intérieur & D. Dans le premier cas, la
somme des diédres «;, dont ’aréte ¢, contient s est égale au diedre 4, de D
d’aréte C;; dans le second cas, cette somme est égale a n radians; dans
le troisiéme cas, cette somme est égale a 2n radians. Ce que nous écri-
rons

2oy, = A, moulm.

Bricard ajoutait toutes les relations ainsi obtenues pour obtenir une
somme invariante dans une équivalence finie. Mais une difficulté provient
du fait qu’un méme diédre o, peut intervenir plusieurs fois dans cette somme
et que nous ne savons pas a priori le nombre de fois ou il apparait.

Pour remédier a cette difficulté¢, Dehn multiplie la relation de Bricard
par la longueur s, du segment considéré:

Sp 20y, = S,A;, S,m ou 25,7
et il ajoute toutes les relations obtenues; ce qui donne
(1) Zlhah = ELkAk + annSn

ou /, est la longueur de I'aréte du diédre «,, L, est la longueur de I’aréte
du diedre 4, et ou &, est égal a 0, 1 ou 2 suivant le cas de Bricard.

Si un polyédre simple D’ est équivalent de fagon finie au sens simple
a D, I’ensemble des longueurs /, est le méme que celui des longueurs ,
des arétes des polyedres de la décomposition de D’; de méme, ’ensemble
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des diédres «, est le méme que celui des diédres «;,. D’ou une relation
analogue a (1)

(1" Yo, = XL, A, + nX&s,

et par différence
SLi A, — XL A, = Nm,
avece
N = X&s, — Z&,s, .

Mais on espérait une relation (homogéne) a ceefficients entiers (ou rationnels)
entre les diédres 4,, A4; et n. Il s’agit de montrer qu’on peut déduire de la
relation a ccefficients réels obtenue une relation a ccefficients rationnels.

Un raisonnement approximatif utilise la densité du corps des nombres
rationnels dans celui des nombres réels. On modifie 1égérement les polyédres
D, d;, D', d; de maniére que les longueurs L, L, s,, s, deviennent ration-
nelles, sans que les angles 4 ,, 4,, «,, o, ne changent et sans que les confi-
gurations des polyédres d; et d; ne se modifient. Alors les relations (1)
et (1) entre les 4, A4, et w conservent la méme forme, mais leurs ccefficients
deviennent rationnels. Toutefois, il est difficile de rendre rigoureux ce
raisonnement, en raison du grand nombre de longueurs qu’il faut faire
varier simultanément.

H. Lebesgue utilise alors un raisonnement plus algébrique. Il remarque
que les longueurs s, sont liées par les relations linéaires

Lk - 21’]"8,,, lh = Z‘Gnsn,

ou les ceefficients 7, 6, sont égaux a 1 ou O suivant que le segment s, est
contenu ou n’est pas contenu dans 'aréte C, de D ou dans l'aréte ¢, de d,.
Nous pouvons considérer ce systetme de relations comme un systéme
linéaire en les variables s,. H. Lebesgue démontre que ce systéme est déter-
miné par un raisonnement géométrique qu’il qualifie lui-méme de minutieux
et sur lequel il est revenu plusieurs fois. C’est-a-dire que les longueurs s,
s’expriment linéairement en fonction des longueurs L, et /,:

(2) Sp = 2&l, + 2Ly,

ou les ccefficients &, et 7, sont des entiers rationnels. Les longueurs L,
I, sont assujetties & vérifier un systéme linéaire homogeéne (%) a ceefficients
rationnels.

-~ En utilisant les expressions (2) dans la relation (1), nous obtenons

une relation
Zlhah = ZLkAk + T (ZLkEk “‘Zlheh) ’
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ot les ceefficients E,, e, sont des nombres rationnels. De méme, pour le
polyédre D', décomposé en polyedres d; égaux aux polyédres d;, nous
obtenons un systéme linéaire et homogéne (%) entre les longueurs Ly, I,
a ceefficients rationnels et une relation

o, = ZL A, 4+ n(ZLE, —Xl,e),

ou les ceefficients E;, e, sont des nombres rationnels. Par différence, nous
obtenons

(3) SL,A, — ZL A, + n[ZEL,—XE L+ 2 (e,—ep) 1] = 0.

Cette derniére relation est donc une conséquence du systéme

Yo, = A, nouln, Yo, = A, ,moun,
Lk = Z‘77nsna lh = Egnsna
Li = In,s,, I = 205, -

Mais la relation (3) ne contient ni les diédres o, ni les longueurs s,; c’est
donc une conséquence du systéme (¥,), formé par les systemes (&) et
(&), ou obtenu en éliminant les «, et les s, dans le systéme précédent.

Nous pouvons encore résoudre le systéme (¥,) par rapport aux lon-
gueurs /,; ce systéme est en effet possible, puisqu’il a pour solution 1’en-
semble des longueurs effectives L,, L., /, des polyédres D, D', d,, d; consi-
dérés. Mais il peut ne pas €tre déterminé. Les longueurs /, s’expriment
donc en fonctions linéaires et homogénes des longueurs L, L, et, éventuelle-
ment de paramétres arbitraires. Les longueurs L,, L, sont assujetties a
vérifier un systéme linéaire et homogeéne (&) a ceefficients rationnels.

En utilisant les expressions précédentes des longueurs /, dans la rela-
tion (3) et en identifiant les ccefficients des différents paramétres, nous
obtenons notamment une relation de la forme

4) XL (A —mr) = ZL; (A; —7””1:) s

ol les r,, r, sont des nombres rationnels.

La relation (4) est une conséquence du systéme linéaire (&) entre les
L, Ly; elle est encore vérifiée par toute solution L,, L, du systéme linéaire
(£). Comme ce systtme a ses ceefficients rationnels, on peut construire
une base du module des solutions, formée par des systémes de nombres
rationnels L,, L;. Chacune de ces solutions rationnelles donne lieu 2 une
relation linéaire, homogéne, a ccefficients rationnels entre les diedres 4 ks
A, et 7:

ZI—Jk (Ak—TCrk) = EE,: (A,,c—-TL'I”,I() ¥
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Si N estle nombre d’arétes de D et D’ et si le systéme () contient p relations
indépendantes, la base du module des solutions contient N — p éléments.
Ce qui donne N — p relations linéaires, homogénes, a ceeflicients rationnels
entre les diédres A,, A, et .

D’ol le résultat:

Pour que deux polyédres simples D et D’ soient équivalents de fagon
finie simple, il faut qu’il existe N — p relations linéaires, homogénes,
indépendantes, a ceefficients rationnels entre les diédres 4,, A, de D et D’
et m et p relations linéaires, homogénes, indépendantes, a ccefficients
rationnels entre les longueurs L,, L, des arétes de D et D', ou N est le
nombre d’arétes de D et D’.

Ce résultat, ainsi établi pour 1’équivalence finie au sens simple, peut étre
complété par un raisonnement simple pour étre étendu au cas de 1’équi-
valence finie au sens large.

H. Lebesgue a utilisé ces résultats pour montrer qu’il existe des polyédres
de méme volume qui ne sont pas équivalents de fagon finie. Ainsi, il re-
marque qu’il n’y a aucune relation (&) entre les arétes, ni aucune relation
(o) entre les diédres du tétraédre le plus général. D’ou il déduit que:

« Le tétraedre le plus général n’est pas équivalent de fagon finic a un
prisme.» '

Il précise méme que:

« Il faut écrire au moins trois relations (&) et (/) entre les longueurs
d’arétes et les grandeurs des diédres du tétraédre le plus général pour
qu’il puisse €tre équivalent de fagon finie & un prisme.»

D’autre part, il calcule les diédres des cinq polyédres réguliers conca-
ves et montre qu’ils sont incommensurables deux a deux. D’ou il déduit
que:

« Deux polyedres réguliers ne peuvent étre équivalents de fagon finie
que s’ils sont égaux.» |

Inversement, je vais montrer, sur un exemple simple, I’existence de rela-
tions entre les longueurs des arétes et entre les diédres de deux polyédres
équivalents de fagon finie. Je choisis deux prismes droits, a bases triangu-
laires, de méme hauteur, soit D et D’. D’aprés le résultat de Hilbert,
D et D’ sont équivalents de fagon finie s’ils ont méme volume. Ces prismes
ont 18 arétes au total. On trouve facilement 10 relations entre leurs arétes
et 14 relations entre leurs diédres. Le total 10 + 14 = 24 est bien supérieur
au nombre N = 18 des arétes.

Enfin, je cite 'opinion de Lebesgue sur l'intérét de poursuivre ces
recherches sur I’équivalence finie:



— 121 —

« Nous sommes entiérement dépourvus de moyens ayant quelque géné-
ralit¢ pour décider si les équivalences que nos conditions nécessaires ne
nous ont pas permis de déclarer impossibles, existent ou non. On ne connait
en effet, aucune condition suffisante d’équivalence, si restrictive soit-elle;
on ne connait que des exemples d’équivalence. C’est 1a une grave lacune
de la théorie actuelle de I’équivalence finie, sur laquelle j’appelle I’attention
‘[ des jeunes chercheurs.»
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