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CHAPITRE 2. PARTIE FRACTIONNAIRE DE {; (—1)

1. Théoreme général

La relation 2H/h, € Z du corollaire 1.1 nous donne une formule pour
la partie fractionnaire de {, (—1) dans laquelle ne subsiste apparemment
aucun lien avec les quaternions. Cette formule est la base de ce chapitre et
nous la redonnons avec suffisamment de détails pour qu’il ne soit pas utile
de se référer au chapitre précédent.

D’aprés la proposition 1.3 démontrée dans le chapitre précédent, la
relation 2H/h, € Z. s’écrit:

((—1) @, (Dy, D) 227"k + Y
o

ou encore

w(0) — 1

v (0) Ep, p, (O)h (0)eZ

ProroSITION 2.1. On a pour tout corps de nombres k totalement réel

W (0
21)  (—1)®(Dy, D) 2" = Y Eyp p, (0)@% mod 1.

Dans cette relation,
n est le degré absolu de k et (, (.) sa fonction zéta,

D, est un produit d’idéaux premiers de k, sans facteurs carrés, dont le
nombre a méme parité que le degré n du corps k

D, est aussi un produit d’idéaux premiers de k, sans facteurs carrés et
(D, D,) = L

La somme X porte sur tous les ordres O des extensions quadratiques
0

de k totalement imaginaires tels que w(0O) = [O* : R*] soit supérieur
strictement a 1. Cette somme est donc finie. Si h (O) est le nombre de classes
des idéaux inversibles de O, on pose k' (O) = h (O)/h,.
Enfin,ona
@ (Dy,Dy) = [] (1—=Np) [] (1+Np)

plD1 p|D2

om0 = 1 (-2 1+

0]
ol {—~} = 1 si p divise le conducteur f (O) de O, sinon
D |
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] 0 si p est ramifié dans k (O)

{_O_} l 1 si p est décomposé dans k& (O)

) —1 si p est inerte dans k (O)

Soit p un nombre premier. Tout nombre rationnel x peut s’¢crire de

a . : ...
fagon unique sous la forme — + b ol n est un entier positif ou nul, @ un
p

entier premier a p, compris entre 1 et p” — 1 (si » = 0, on prend a = 0)
a : : :

et b un nombre rationnel p-entier, — s’appelle la p-partie fractionnaire
p

de x.

Pour p impair (resp. p = 2) on note &, une racine de I'unité d’ordre p
(resp. d’ordre 4).

On note w, 'indice des unités de k dans celles de k (£,) et s, le nombre
d’idéaux premiers p ] p inertes dans k (£,). Si hk(ép , est le nombre de classes
de k (£,) on pose h', = Iy (fp)/hk‘

THEOREME 1I.1. Soit p un nombre premier impair ; la valeur au point
—1 de la fonction zéta d’un corps de nombres totalement réel k est entiére
en p si [k (&) : k] > 2 ou s’il existe un idéal premier p [ p de k décomposé
dans k (£,). Sinon, la p-partie fractionnaire de 2°7" {, (—1) est celle de

B, 2
w, [[ (1=Np)
plp

S’il existe un idéal premier P | 2 de k décomposé dans k (¢,) alors
{, (—1)/2"73 est entier en 2, sinon sa partie fractionnaire est celle de

& 82+1
)

W, H (1“NP).
pl2

La partie fractionnaire de {, (—1) a été également calculée par Brown [1]
et Greenberg [5]. Le théoréme ne donne que la 2-partie fractionnaire de
(i (—1)/2"73; nous avons étudié des cas particuliers: corps quadratiques
réels, corps cyclotomiques et obtenus la 2-partie fractionnaire de

Cr (_ 1)/2;:—1_

Démonstration du théoreme I1.1.

Premier cas: p est un nombre premier impair. On choisit D, = (1),
D; un produit d’idéaux premiers p | p (en nombre convenable). Alors
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d, (D, 1) = H (1 —Np)

plD1

est premier a p, la p-partie fractionnaire de {, (—1) 227" est celle de:

h(0)

P, (Dy, 1) ¢Z 21,1(0) w (0)

PEO

1
car st £, ¢ O, alors ——— est entier en p.
» ¢ v (0) p
La condition sur le degré [k (£,) : k] = 2 pour qu’il existe une p-partie
fractionnaire est claire puisque la somme porte sur des ordres O d’extensions
quadratiques de k. S’il existe p | D; décomposé dans k (), alors

R
pl Dy p

et {, (—1)2%7" est entier en p. Si p, lp est décomposé€ dans k (¢,), il est
toujours possible de choisir D, divisible par p,, en tenant compte de la
parité de n, sauf si n est pair et si p, est I'unique idéal premier de k£ au-dessus
de p. Dans ce cas, en choisissant D; = (1) nous allons montrer que la
contribution de la somme qui détermine la p-partie fractionnaire de {, (—1)

S Epy 0

n w (0)
est entiére. Les ordres O contenant £, sont les ordres de conducteur
1, P,y ...y Py OU P, est le conducteur de Pordre R[1,£,] dans lordre
maximal de k (&,). Si p"? est la plus grande puissance de p divisant w,,
on a m > p"®~ 1 D’autre part si O est un ordre de conducteur p,, on a

W) K, ( 1 )
=—Np,|1——
w(O) w Np,

Pour tous les ordres O,

E;1(0) =1
d’ou
vo v (- )
E,,(0)— 2 =-2l14[1——)(Np,+..Np"
gg,“ w(0) W, Ny,
.
____BNpZ'
w

11 est clair puisque m > p"»~1 que cette somme est entiére en p.
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Dans les autres cas, nous cherchons la p-partie fractionnaire de {, (—1).
Si le nombre d’idéaux premiers de k divisant p a méme parité que le degré

n, on choisit D; = JTp. Ce choix a l'avantage de réduire la somme
plp
2 a l'unique terme correspondant a I’ordre maximal de k (£,), tout ordre
&fpeO
non maximal O contenant £, ayant un conducteur non premier & Dy, on a

0 : :
Ep 1 (0) = ] <1 — {—}) = {) si O n’est pas maximal,

piD1 P
Ep 1(0) = 2°F si O est maximal,

ou s, est le nombre d’idéaux premiers au-dessus de p qui sont inertes dans
k (£,). La p-partie fractionnaire de {, (—1) 227" est donc celle de
1 2P R,
[l A=Np) w,

plp

Si la parité de n ne nous permet pas de choisir D, = [T nous isolons
plp

P, [ p et nous prenons D; = []p. Ce choix a I'avantage de réduire la
plp
P#Po

somme X aux ordres contenant £, dont le conducteur est une puissance

fpeo
de p,. Si p, est la plus grande puissance de p, divisant le conducteur de
Pordre R[1, &), la somme X est effectuée sur les ordres de conducteur

ngO
m
1, p,..p,.
On a
sl
ED1,1 (0) =27
ous’, = s, — ¢ avec:

. = 1 si p, est inerte dans & (&)
0 st p, est ramifié dans k ()

On a
W (0) W 2%p e
(0) — g [1+<1+——— Np, + ...Np"
épZeo D1,1 w©)  w, Ny, (Np, + Po)
( ' s’
W 2%
(1-=Npl'*H)ysie =0
— Wp(]-_Npo) )
227 (+2—Npy —Npi*Hsie =1
Wp(l —Npo) ° .
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est celle de

Dans les 2 cas la p-partie fractionnaire de ) E D1 (O)

§p€50
hp 27 do . > E (O)h(O) tie fracti
nc ———— a comme p-partie fraction-
,,<1 =Np,) (D, 1) 2 M w(0)
naire celle de ’
h, 2°P
plp

Deuxiéme cas: p = 2. Contrairement au cas ou p est impair, la somme

K (0)
S = D>
2, Fonn O 0

n’est pas 2-entiére, mais
w(0) = [0*:R{] = [0*: W (O) RI][W (0) R} : R}]

#(0) = 0(0) 2

ol o (0), Q(0 ) désignent I'ordre du groupe des racines de I'unité contenues
dans O et ou Q (O) est I'indice des unités de O (I.5). On a Q (0) =
ou 2 et w(0) £ 0 (mod 4) si £, ¢0, donc 2/w (O) est 2-entier. Nous
obtenons que la 2-partie fractionnaire de {, (—1)2>7" est celle de

5 Epyy ()9
- Dot g il
®(Dy, 1) g0 w(0)
Les calculs se poursuivent alors de facon analogue au cas p impair.
Si toute unité totalement positive de k est un carré, la somme S est
2-entiére, et on obtient en fait la 2-partie fractionnaire de & (—1) 227"

2. Corps cyclotomique

Nous supposons que k est le sous-corps réel maximal d’un corps cyclo-
tomique. La structure arithmétique de ces corps étant mieux connue, nous
pouvons ameéliorer le théoréme général.

Si k est le sous-corps réel maximal du 2™-iéme corps cyclotomique,
m > 2, toute unité totalement positive étant un carré (théoréme de Weber)
et le nombre de classes relatif 4, étant impair, la 2-partie fractionnaire de
((—1)227" est celle de —h, 21~ ™ et I’exposant de 2 dans (, (—1) est
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n—m-—1=2"2—m—1. On peut retrouver ce résultat a l'aide des
nombres de Bernoulli [6]. On montre que pour m > 5, {, (—1) est entier
en 3, donc le nombre de classes relatif de Q (&,m, £3) est divisible par 3.

Si k est le sous-corps réel maximal du p™-éme corps cyclotomique
(p premier impair), 'indice des unités de £ = Q (afpm + f;,,l,) dans Q (fp,,,)
est égal & p™ (théoréme de Hasse: Q = 1) donc la p-partie fractionnaire de
£ (—1) 227" est celle de

h, B
p"(1-p)
Si p est un nombre premier regulier, on sait que /', est premier a p (théoréme
d’Iwasawa), donc I’exposant de p dans {, (—1) est —m.

Si k est le sous-corps réel maximal de N-éme corps cyclotomique ou N
est un nombre composé, I'indice des unités de k = Q (éy+Ex') dans
Q (&y) est égal & N ou 2N selon que N est pair ou impair (théoréme de
Hasse, QO = 2). On obtient des résultats explicites analogues.

3. Corps quadratique

Nous donnerons dans le chapitre 3 le calcul de I’expression:

Zw(O)—l

. —é—w(—é)—EDl,Dz (0) h(0)

de la proposition 1.3 pour les corps quadratiques réels et nous obtiendrons
une formule du nombre de classes d’idéaux

b G(=1D) @Dy, D)) | o w(0) — 1
oo = z RETION

0
dont nous déduirons la partie fractionnaire de {, (—1)/2 en écrivant que
Hy {/h; est un entier. Nous obtiendrons les résultats suivants:

EDl, Do (0) h (O)

ProrosITION 2.2. Soit k = Q ( \/ n_a) un corps quadratique réel et {,, (— 1)
la valeur au point —1 de sa fonction zéta. On note h (d) le nombre de classes

d’idéaux du corps Q ( \/ aT) On a

(=1 h(— - '
4 (2 )+a(m) (8m)+B(M)h( 63Wt) +y(m)h(n)4h(n)ez

avece




[ -3 m = —2(4) ]
2 m= 3@ }tsiQ, =2
0 m = —1(8) | |
M= = 1)
3 m = 24  sio, =1
2 m = 3(8)
| 4 m = —1(8) |
[ —1 m' = —-13) m = —1,2(4)
0 m=—-13)m = 14
(22) 1 m: = 13)m = 1(8)
2 m= 13 m = 5(8)
Bem)y {1 3 m=-13m = 1,2(8) "
1 m = 003
3 m = 3m m = —-1(03) si Q3 = 1
5 m = 3m 9 m = —1,2(4
[ 0 n =1(08) oun=n =58
1 n=n#£14
y(m) = 5 n = .
n = 5(8) maisn £ 1,5(8)
| 3 n=-1(14) n = 2(4)

ot Q, et Qj; désignent [’indice des unités de Q (\/jm—, \/?1 ) et
Q (\/—Bm, \/—3 ), ott y (m) est défini lorsque ¢ > Q et alorsn = 2 — Tre
(modulo les carrés) et nn’" = m ou 4m.

Cas particulier: m = p est un nombre premier. La formule précédente,
dans ce cas particulier, est

{,(—1) N h(—3p) +h(—p)e

p = 1(4) 5 e 2 Z

B {,(=1) h(=3p) h(—=p) h(—2p)
r = 3(8 7 + z + 3 + 1 eZ
=1 =D R R(=29)

F; 6 4
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Les congruences suivantes sont bien connues:

h(=2p) h(-p)
4 2

h(—2p)

— "€
4

e”Z

3(8) h(—2p) = 2(4) donc

et
If

p=—1(8) h(-2p) =0(4 donc Z

et nous obtenons:

COROLLAIRE 2.1. Soit p un nombre premier. Les quantités suivantes
sont des entiers :

{p(=1) N h(—3p) . h(—-p)

p = 1(4) 5 ¢ 2
_ (=1  h(=3p 3
(23) p= 3(3 . + +4h( p)
B {,(=1)  h(—3p)
p=—1( 3 +

Ces nombres représentent la caractéristique d’Euler-Poincaré du groupe
modulaire de £k = Q (\/17) calculée par Hirzebruch [8].

CHAPITRE 3. NOMBRE DE CLASSES D’UN ORDRE D’EICHLER
SUR UN CORPS QUADRATIQUE

On explicite la formule (16) du nombre de classes d’idéaux d’un ordre
d’Eichler sur un corps quadratique.

Soit m un entier positif et £k = Q (\/;1—); on note respectivement R,,,
h(m), (,(—1), N, (.), 'anneau des entiers, le nombre de classes, la valeur

au point —1 de la fonction zéta, la norme absolue du corps QQ (\/ ;71_); soit
D, un produit d’un nombre pair d’idéaux premiers distincts de Q (\/ m)
et soit D, un autre produit d’idéaux premiers distincts de Q (\/ m), premier

a D,. Le nombre de classes des ordres d’Eichler sur Q (ﬂ) d’invariant
(D4, D,) est égal a

h(m) (pm(—1>Cm(D1’D2) 4

HZHm(DlaDZ): 5
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