
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 21 (1975)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: NOMBRE DE CLASSES D'UN ORDRE D'EICHLER ET VALEUR AU
POINT -1 DE LA FONCTION ZÊTA D'UN CORPS QUADRATIQUE
RÉEL

Autor: Vigneras, Marie-France

DOI: https://doi.org/10.5169/seals-47331

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-47331
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en
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Introduction

On obtient dans cet article la partie fractionnaire de la valeur Çk (— 1)

au point — 1 de la fonction zêta d'un corps de nombres totalement réel /c,

en la déduisant de la formule du nombre de classes des idéaux à gauche
d'un ordre d'Eichler, donnée par Eichler en 1954. On étudie ensuite en
détail le cas particulier des corps quadratiques réels.

Dans le premier chapitre, on développe l'arithmétique des corps de

quaternions totalement définis dont la théorie est due à M. Eichler. Il est
nécessaire pour lire ce chapitre de connaître une partie de la théorie des

algèbres centrales simples sur des corps de nombres; le meilleur livre de

référence est celui de Deuring [2]. Nous étudions les ordres d'Eichler et
leurs idéaux localement libres; nous référons principalement à Eichler [4]

et à Pizer [9]. Notre but est de calculer le nombre H de classes des idéaux
à gauche d'un ordre d'Eichler [4], le nombre T de types des ordres
d'Eichler [9] et le nombre H + de classes des idéaux quasi-normaux [10].
Pour cela, nous avons introduits des nombres p (ri) analogues aux traces
des matrices de Brandt.

Nous remercions chaleureusement H. Cohen qui a calculé sur ordinateur
ces nombres pour les ordres d'Eichler sur le corps des nombres rationnels,
d'invariant (Du Z>2) avec < 47, D2 < 101 et 47 < Dl < 101,

D2 <31.
Le nombre de classes hk du corps k divise 2H. Dans le chapitre 2 nous

exprimons cette divisibilité par une congruence entre la valeur Çk (— 1) au

point — 1 de la fonction zêta de k et les nombres de classes relatifs de

certaines extensions quadratiques de k. Nous déterminons ainsi la partie
fractionnaire de Çk (— 1).

Soit Çp une racine d'ordre p de l'unité (sauf si p 2 où £2 el7t/1);

on note h'p hk^p)/hk, wp l'indice des unités de k dans celles de k (Çp) et

sp le nombre d'idéaux premiers p | p inertes dans k (£p). Si [k (Çp) : ri] > 2

ou s'il existe un idéal premier p | p de k décomposé dans k (£p), la valeur

au point -1 de la fonction zêta d'un corps de nombres totalement réel k
est entière en p. Sinon la /^-partie fractionnaire de 22~" — 1) est celle de

tip 2Sp

wp n (i
v\p
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S'il existe un idéal premier p 12 de k décomposé dans k(Ç2) alors

Ck(-l)/2n~3 est entier en 2, sinons sa partie fractionnaire est celle de

s +i
h', 2 2

w2 n (i ~nv)
p|2

Ce résultat est analogue à ceux de Brown [1] et de Greenberg [5] qui
viennent de paraître. Si k est le sous-corps réel maximal du ^m-ème corps
cyclotomique, l'exposant de p dans — 1) est égal k —m pour les nombres

premiers p réguliers impairs. Si p 2, l'exposant de 2 dans Cfe(-1) est
2m~2 — m — 1 et pour m > 5 le nombre de classes relatif de Q (£2m, f3)
est divisible par 3.

Enfin, dans le chapitre 3, nous reprenons les travaux des chapitres
précédents, en les améliorant, lorsque k est un corps quadratique.

Si k est un corps quadratique Q (v/m) on note Çm sa fonction zêta
et h {m) son nombre de classes. Le nombre de classes H m (D1, D2) d'un
ordre d'Eichler O sur Q {y/ni) d'invariant (D1, D2) est

r — ii h —
H (m) h(m) J] (1 -Np) (m)

v\Dl v\D2 "

h(-3m)(ri)
^ + c (m)

12
v 7

4

où a (m), b (m), c (m) sont des entiers bien définis. Si c (m) # 0, l'unité
fondamentale e de Q (y/m)estde norme 1 et 2 - Tre (modulo les

carrés), nn' m ou 4m.

L'expression suivante est un entier:

Cm(-l) h (-m)
+ a (m) + ß (m)+ y(m)

z Ö 6 4

où a (m), ß (m), y (m) sont des entiers bien définis. Elle représente, si

m p est un nombre premier, la caractéristique d'Euler-Poincaré du

groupe modulaire de Q (^Jp) calculée par Hirzebruch.

Je remercie vivement J. Martinet pour les conseils qu'il m'a donnés et
l'intérêt avec lequel il a suivi ce travail.
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Chapitre premier. Ordres d'eichler
ET IDÉAUX QUASI-NORMAUX

1. Corps de quaternions totalement définis [3]

Un corps de quaternions totalement défini est une algèbre centrale

simple A sur un corps de nombres totalement réel k telle que pour toute
place infinie v de k, l'algèbre Av — kv ® A soit isomorphe au corps des

k

quaternions réels. On note kv le complété de k pour la place v, vp la valuation
ultramétrique associée à un idéal premier p de k, Ap kvp 0 A l'algèbre
étendue. k

L'algèbre Ap est isomorphe à un corps gauche ou à M2 (kp) ; dans le

premier cas, l'idéal premier p est dit ramifié dans A. Le nombre d'idéaux
premiers ramifiés a même parité que le degré nk du corps k (théorème de

Hasse), leur produit Dx s'appelle le discriminant de A. On a une réciproque:
à tout produit Dl d'idéaux premiers dont le nombre a même parité que nk

correspond un unique corps de quaternions totalement défini, ramifié
exactement en ces idéaux premiers.

On notera Nrd et Trd la norme réduite et la trace réduite de A sur
k. On notera N la norme absolue de k, R son anneau d'entiers et Rp
celui de k Le groupe des unités d'un anneau X sera noté X*.

Les entiers de A ne forment pas un anneau; on définit la notion d'ordre
et on montre que tout ordre est contenu dans un ordre maximal. Si Ap est

un corps gauche, les entiers forment un anneau; on a donc un ordre maximal

unique. Si Ap est isomorphe à M2 (fcp), les ordres maximaux sont de la

forme a M2 (i?p) a~1, où a e M2 (i?p)*.

2. Ordres d'Eichler [4], [9], [10]

Soit D x un discriminant d'un corps de quaternions A totalement défini

sur un corps de nombres k et soit D2 un produit d'idéaux premiers de k
sans facteurs carrés et premier à Dv On appelle ordre d'Eichler sur k
d'invariant (Dx, D2) un ordre de A localement maximal aux places p ne

(a b\
divisant pas D2 et sinon isomorphe à l'ensemble des matrices e M2 (RA

\c d) f

avec c e p Rp.
Les ordres maximaux de A sont les ordres d'invariant (Du 1).
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On dit que deux ordres sont du même genre lorsqu'ils sont localement

isomorphes. Le genre d'un ordre est l'ensemble des ordres qui lui sont localement

isomorphes. L'ensemble des ordres d'Eichler d'invariant (Du D2)
donné forme un genre.

Le discriminant d'un ordre d'Eichler d'invariant (Z)1? D2) est égal à

D\ Dl

3. Idéaux quasi-normaux [3], [4], [9], [10]

Un idéal quasi-normal I est un idéal de A localement principal dont
l'ordre à gauche > est un ordre d'Eichler. Il existe donc pour tout p un
élément ap e A* tel que:

^p ap

L'ordre à droite de 3p est £)' a~ 1 £) ap et l'ordre à droite £)' de 3 est

donc un ordre d'Eichler appartenant au genre de O.
Un idéal normal est un idéal quasi-normal dont les ordres sont maximaux.
Un idéal est entier s'il est contenu dans son ordre à gauche. Il est bilatère

si son ordre à gauche est égal à son ordre à droite.
Les idéaux entiers principaux à gauche de Dp se mettent de façon

unique sous la forme £) ap, avec :

Si P | Du V
où n est une uniformisante de l'ordre maximal D c'est-à-dire un élément
entier de Ap, dont la norme réduite est égale à une uniformisante n de

Si p | D2, apC^m ^ ou bien

où n et m sont des entiers positifs ou nuls, où c e Rp est réduit modulo pm
et où d g Rp est réduit modulo p" +1.

Si VtD.D,, ',)
où n et m sont des entiers positifs et où c 6 Rp est réduit modulo pm.

Les idéaux bilatères de Dp sont les puissances de l'idéal ^p bilatère
de £) égal à :

Si P | Dt,^Op7tv
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si p I D*

Si VXD^D2%=Dpnp

4. Idéaux bilatères [4], [6], [9], [10]

Soit O un ordre d'Eichler de A. Un idéal premier ^3 de D est un idéal
bilatère de £) qui ne se factorise pas de façon non triviale en produit de

deux idéaux bilatères de D. L'idéal p R n ^3 est un idéal premier de k.
On a deux cas :

Si p | D1 D2, alors Dp ^32 et Nrd (^3) p

Si vJfD1 D2, alors Cp ^3 et Nrd (^3) p2

Les idéaux bilatères de £) forment un groupe abélien et tout idéal bilatère
de £) se factorise de façon unique en produit d'idéaux premiers de O. La
factorisation de l'idéal £)p que nous venons de rappeler montre qu'un idéal
bilatère de D s'écrit de façon unique sous la forme X/ où X est un idéal
bilatère de D dont la norme divise D1 D2 et où / est un idéal du centre.

Un idéal bilatère S est déterminé par sa norme et par son ordre. Il
est pratique d'utiliser le même symbole S pour tous les idéaux bilatères de

norme donnée 93. Si 3 est un idéal quasi normal, on a alors l'égalité

3© ©3 ;

dans le membre de gauche, © représente l'idéal bilatère de norme B de

l'ordre à droite de 3 et dans le membre de droite, © représente l'idéal
bilatère de l'ordre à gauche de 3 de même norme.

L 'idéal principal Da est entier et bilatère si et seulement s'il existe deux

idéaux / et D de k où D | D1 D2 tels que:

— a eO

(1) - (Nrd (a)) DI2

— a n~Sp e Xp si sp vp(I) pour tout p

— T rd (a) e DI

5. Sous-corps commutatifs maximaux [4], [5], [9]

Soit L une extension quadratique de k totalement imaginaire. Soit
O' l'ordre maximal de L et O un ordre de L. Le conducteur de O est le
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plus grand idéal de O' contenu dans O. Il est engendré par un idéal de k,

noté f(O):
f (o) {a e k | a O Ç 0}

A tout idéal entierf de k correspond un ordre unique de L de conducteur /.
Le nombre de classes des idéaux inversibles de O est [2] :

—»ja-«
où hL, R*, désignent respectivement le nombre de classes de L, le groupe
des unités de L, et où 0* est le groupe des unités de 0. Le symbole L)
est égal à:

<3)
-,

0 si p est ramifié dans L
1 si p est décomposé dans L

- 1 si p est inerte dans L

Soit W (0) le groupe des racines de l'unité contenues dans 0. L'indice
des unités de 0 c'est-à-dire l'indice [7] :

(4) Q(0) [O* : W (0)R*]
est égal à 1 ou 2.

On a aussi:

Q(0) [NrdO*\R*2]
Pour que l'indice des unités Q (O) soit égal à 2 il faut et il suffit qu'il existe

une unité s e O* telle que s s' ne soit pas un carré dans k (on note L le

conjugué de s sur k). L'indice des unités de L est l'indice des unités de son
ordre maximal.

Les sous corps commutatifs maximaux du corps de quaternions totalement

défini A de discriminant D1 sont les extensions quadratiques L de k
totalement imaginaires telles que les idéaux premiers p | Dx ne se décomposent

pas dans L.
Soit O un ordre de conducteur / (O) (confondu avec / (O) O') d'une

extension quadratique de k totalement imaginaire. Pour qu'il existe un
ordre d'Eichler £) sur k d'invariant (D1? D2) tel que Ö On k (O) il
faut et il suffit que

Si p | Du alors p ne se décompose pas dans k (O)

(5) (/ (O), D^)1

Si p | Z>2, alors p | / (O) ou bien p ne reste pas inerte dans k (O).
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On note {
o

le « symbole d'Eichler ». Par définition:

1 sip |/(0)
(6)

sinon
V /

On pose :

pi /->i

On peut mettre les conditions (5) sous la forme équivalente :

e (di,d2) (o) - n
V\D1

(5') E(Di,D2)(°) ^ ^

Si JO x et £)2 sont deux ordres d'Eichler sur k de même invariant contenant
O, il existe un idéal C inversible de O tel que £>1 C CC2-

6. Types d'ordres et classes d'idéaux

On dit que deux ordres J0 et £)' sont du même type lorsqu'ils sont R-

isomorphes. Pour cela, il faut et il suffit qu'il existe a e A* tel que:

car tout fc-automorphisme de A est intérieur.
Le nombre de classes dans un genre est fini. On note T (Dl>D2) ou T s'il

n'y a pas d'ambiguité, le nombre de types des ordres d'invariant (Du D2)•
On dit que deux idéaux / et I ' à gauche de £) appartiennent à la même

classe s'il existe a e A* tel que:

Le nombre de classes dans un genre est fini. On note H (d1?d2) ou H s'il
n'y a pas d'ambiguité le nombre de classes des idéaux quasi-normaux à

gauche d'un ordre d'Eichler d'invariant (D1? D2). Cette notation est justifiée
car le nombre de classes des idéaux quasi-normaux à gauche d'un ordre
d'Eichler O est le même pour tous les ordres ayant même invariant. Nous
allons le montrer:

Soit O et £>r deux ordres d'Eichler de même invariant.
Pour tout idéal premier p de k tel que £)'p / £>p choisissons ape A*

; tel que

(7) £>' a O a
1

(8) 3' 3a.
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L'idéal quasi-normal 3 défini par

3,v

est à gauche de D et à droite de £>'. La bijection entre les idéaux à gauche

de D' et ceux à gauche de D: $ - 3 g définit par passage aux classes une

bijection entre les classes à gauche de D et les classes à gauche de £)'.

On définit aussi une autre relation d'équivalence sur l'ensemble des

idéaux quasi-normaux des ordres d'Eichler sur k d'invariant {Dl5 D2) donné,

à savoir:
Deux idéaux 3 et 3' sont équivalents si et seulement s'il existe a, 6 e ^4*

tels que

Le nombre de classes des idéaux quasi-normaux des ordres d'Eichler sur k
d'invariant (Dl9 D2) pour cette relation d'équivalence est fini et on le note

H (Di,d2) ou H + s'^ n'y a Pas d'ambiguité.

7. Les nombres p (n)

Soit N un idéal entier de k et £) un ordre d'Eichler sur k d'invariant
(Z)l5 D2). Nous notons n* (N) le nombre d'idéaux principaux bilatères
entiers de D de norme réduite N; 7i* (N) est égal à 0 ou à 1, et est toujours
nul si N n'est pas principal ou si N ^ D I 2 où D et I sont deux idéaux de

k tels que D | D1 D2.
Notons (n^), (nt) un système de représentants des idéaux principaux

de k de la forme D / 2? modulo les carrés des idéaux principaux de k. On a

7i* (AO 0 si N # (nm2) avec rae&etl < / < f
(10) 3

71* (Uj-m 71* (fty)

Nous choisissons un système 3t 3H de répresentants des classes des

idéaux à gauche de O. Nous notons n* (n) le nombre d'idéaux entiers
principaux de norme (n), bilatères de l'ordre à droite de l'idéal 3Nous
posons

(9) 3' - aZb'1

H

(11) p(n) £ n*(n)

Proposition 1.2. SozY («j), (wt) wrc système de représentants des

idéaux DI 2 principaux, avec Z> | Z>2 modulo les carrés des idéaux
principaux de k. Soit H, T, H + respectivement:
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— le nombre de classes des idéaux 3 à gauche d'un ordre d'Eichler 0
d'invariant (Dt, D2) pour la relation 3' 3 a, ae A*;

— le nombre de types des ordres d'Eichler d'invariant (D1, D2) /
— le nombre de classes des idéaux quasi-normaux des ordres d'Eichler

d'invariant (Z>l5 D2) pour la relation 3' a 3 b~i, a, b e A*.

On a :

H =p(l)

(12) T É pK)
"/tZ J=1

»•4É f-w2
"/cZ J=1

où hk est le nombre de classes des idéaux de k et Is le nombre de diviseurs
de D± D2.

h
Preuve. On a 7i* 1 pour 1 < i < H, donc H Yjn*i (1) P (!)•

i=i
Deux idéaux 3 et 3r vérifiant 3' 3 a, a e A* ont leurs ordres à droite du
même type, ce qui implique :

T

H I H,
1=1

où Hi désigne le nombre de classes des idéaux à gauche de £), dont l'ordre
à droite est du type de £)f et (Of), 1 < / < T est un système de représentants
des types d'ordres.

Fixons un idéal 3 à gauche de D à droite de Dt. Alors Ht est le nombre
de classes des idéaux 3 S a où a e A* et où © est un idéal bilatère de

Deux idéaux 3© a et 3©'a' sont équivalents si et seulement si © est

équivalent à ©r; donc Ht est égal au nombre de classes des idéaux bilatères
de £);.

Lemme 1.2. Le nombre de classes des idéaux bilatères d'un ordre

d'Eichler £)f d'invariant (D1, D2) est égal à

h 28

(13)
Hi ~ ELLL '

L 711 \nj)
j= i

Preuve. Un idéal bilatère de £)f s'écrit de façon unique î) I où T) est un
idéal bilatère de dont la norme réduite D divisé D1 D2 et où I est un
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idéal de k. Lorsque /„ 1 </ < hk parcourt un système de représentants

des classes des idéaux de k, les classes des idéaux X) if où D\DïD2,
modulo les carrés des idéaux principaux sont distinctes. Le nombre

t

Y 71t 0b") es^ nombre des idéaux bilatères X) It qui sont principaux. On
j= i
note 2S le nombre d'idéaux X), c'est-à-dire le nombre de diviseurs de D± D2

et on a (13).
Le nombre n* (n) est le même pour tous les ordres du type de £h,ce

qui implique :

p(n) Y Hi71*! (w)
i 1

On a: X P(ni>È E (nj) E Hi E
j—1 7=1 i =1 i-1 j~ 1

X K r t
d'où:

1

T 77-^ E P (";) •

y=1

Deux idéaux 3' et 3 vérifiant 3' a3ù_1, a et b e A* ont leurs

ordres à droite et leurs ordres à gauche du même type, ce qui implique:

H+E HÙi= 1 T
j=l T

où j désigne le nombre de classes pour la relation (9) des idéaux dont
l'ordre à gauche est du type de Df et l'ordre à droite du type de Dj.

Lemme 1.2. Le nombre de classes H est égal à :

(14) Htj=Ijr^r E (n,).
k 1=1

Preuve. On introduit les nombres n qui désignent le nombre
d'idéaux entiers à gauche de £)f à droite de J0y de norme réduite (n) Nrd (3)
et de la forme a 3 b~1 où 3 est un idéal fixé à gauche de JD; à droite de O,-.
On a 7r*j («) 1 ou 0. Si 71;

*
j (n) 1, il existe a et b tels que les idéaux

et Djb soient bilatères et ([n(ab)) (n). Le symbole « y » signifie
l'égalité modulo le carré d'un idéal principal. Si (n) y (m) alors n* (n)
~ 7t* (m) et 71 * j (n)
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On démontre de façon tout à fait analogue que dans le lemme précédent
l'égalité

hk2s
TT + _ K

(15) iJ '

1=1

Le nombre n ' tj (/7Z) n'est pas nul si et seulement s'il existe u0 et v0 tels que :

(«i) 71 î ("J 71 * K„) 1 •

Dans ce cas:

Z 71
* ("»)71 * M71 * (»J71 * ("»„) Z 71 î hJ 77

* "J •

') ;

On a

("« »J T

(nvnv0)z î* w^w z "i
i <«>

On en déduit que

("u"») OO (nunv) ("/)
2 2

d'où:

("»»»"„«»J T 0?) T

Ou"v) («/) W 1
2

Z
(nunv) (ni)

nljM r
Z "î (O7** (O

W=1

En reportant la valeur de 7i* ^ («,) dans la formule (15), on obtient

Z ni(nw)n*}(nw)

r/+ _ h2» "'=lnlJ — nk L t t

Z Z n* (njn'i (nv)
1=1 (nunv) («/)

Le dénominateur est le développement du produit

Z n*(nu)- Z n*(nv).
u=l V=1

Nous faisons apparaître les nombres Ht et Hj

Hi
h«2'

Hj y
Z n1(nu) Z * (n„)
u=l 0=1



en écrivant H j j sous la forme

1 '
*

2S

Hïj=7-r. E n* (njn* M -r•

h«2 W=1 Z **("„) Z </(».)
M= 1 ü= 1

et nous obtenons l'égalité (14).

Nous sommons sur i,j pour obtenir H +
:

"k ^ i,j,w= i r

# + ---- Z Z Hjn*j(nw) Z (nw)
w= 1 J 1 Ï 1

Z ZO2-
nk Z W=1

8. Calcul de p (n)

L'objet de ce paragraphe est le calcul des nombres p (n) qui nous permet
avec la proposition 1.2 d'obtenir une formule pour les nombres H, T et H +.

Proposition 1.3. On a

A* Ç*(-l) **(J>i,.D2) v w(O)-1H p(1) — + > £Dl ni(0)h(0)
2"fe~ o 2 w(O) 1; 2

(16)
V '

P(n)=~Z£di,b2 (°)Ä (°) si (") ^
Z o 2

la somme £ porte sur les ordres O des extensions quadratiques de k totale-
o

ment imaginaires contenant un élément a tel que

— (Nrd(a)) DI2 (n)

z — T rd (a) e DI
— a7i~SpeOp si sp vp(/) pour tout p.

h Une conséquence importante de cette proposition est le corollaire
z suivant :

Z

|l Corollaire 1.1. Le nombre de classes du centre hk divise 2H.

Preuve. D'après la proposition 1.2., on a:
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H p(1)

1 ' 1
T iTWsZ p(nj)

Ä» 2»,fi w' At2'
p(i) + Z

J 2

si on suppose que (wj) (1).
Le nombre de classes du centre hk divise h (O) car O est un ordre d'une

extension quadratique totalement imaginaire de k, donc hk divise 2p (nj)
pour 2 </ < t.

On a:

H T hk 2S - £ P (nj)
j 2

donc hk divise 2H.

Remarque. Si n est pair, on peut choisir D2) (1, 1) alors

Hi,i K TltX et HltJhk est un entier.

Démonstration de la proposition 1.3. On a p (n) 0 si (n) ^ (nj)
2

1 <j < t. Nous supposons que (n) j (nj). Soit (Of), 1 < i < T, un système
de représentants des ordres d'Eichler de A d'invariant (Du D2). On note

Di(ri) l'ensemble des éléments aeOj engendrant un idéal bilatère de

de norme (ri). Pour que (n) ne soit pas vide il faut et il suffit que l'idéal
bilatère de Dt de norme (n) soit principal et alors :

Dt(n) D*a.
Comme le corps de quaternions A est totalement défini, le groupe Rk des

unités de k est d'indice fini et dans le groupe £)* des unités de O/ et nous
avons alors:

1=71,- (n)

où on note | R*\£); (n)\lenombre de classes d'équivalences définies sur
A

Di(n) par la relation y' u y, ueR*. On fixe une clôture algébrique k
de k. A tout oc e (n), oc $ k correspond une extension quadratique de k,

A
contenue dans k, totalement imaginaire et isomorphe à k (a). On considère

l'ordre O de cette extension isomorphe à k (a) n Dt. On pose

O (n) {oc£k I oceO n £)i (n)}

c'est-à-dire, O (n) est égal à l'ensemble des éléments a de O vérifiant:
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— Nrd(a) (n) D I2

— Trd (ci) e DI
(17) _

— a 7Tp
Sp e Op si sp ^p (/) pour tout p

— a £k

On remarque que si (n) ^ (1) alors (n) n k — 0 dans ce cas:
2

O (w) — Di(«)nO.
Si («) y (1) alors (ri) n k i?* et dans ce cas:

O(w) Df(n) nO - R*

Soit gi(O) le nombre d'ordres isomorphes à O contenus dans On a

Jtî (1) =-[1 +Zg,(0)\R*\0(n)\-]
ei O

n*i(n)- Tdi(°)IR*\0(n)|si (n) # (1).
ei O 2

A
La somme porte sur les ordres O £)f n k (a) les éléments a e k étant

o
astreints aux conditions (17).

Ces conditions impliquent que les idéaux premiers p | D sont ramifiés
dans k (a). L'idéal O a est égal à I) / où D est l'unique idéal de O de norme
D. On a:

O (ri) O*oe si («) ^ (1)

O (1) O* — R*.2On note w (O) l'indice du groupe iî* des unités de dans le groupe O*
des unités de O et nous avons

n* - [1 + X0i(O)(w(O) - 1)]
o

t ÎO) w(0) si (n) # (1)
C O 2

Nous en déduisons pour les nombres h (n) les formules

p(D x n.Ttîd) x - + x x—!1)(is) '•/ ßi i=1 0

p(n) X X X^^wCO)
/= 1 1=1 O C
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Nous avons la relation [4]:

(19) £ — hkÇk( — l) <Pk(D1, D2) 21~"k
i= i et

où hk, C]c (•)? w désignent le nombre de classes, la fonction zêta et le degré
du corps k et

$k(DuD2) n n a +nv).
p\Dl p I d2

Nous intervertissons dans les formules (18) la sommation sur les types
d'ordres et la sommation sur les ordres quadratiques :

h(i) =hCAzW!,Di) + z (w(Q) _ 1} £ ^0,(0)
(20)

O i=l

M«) 2>(0) I si(n) #(1).
O i=l 2

LEMME 1.3. O/îfl

' H,„,(0) 1,(0)

Ce lemme et les relations (20) nous donnent la proposition 1.3.

Démonstration da lemme 1.3. On fixe un ordre d'Eichler £) d'invariant
(D1, D2) tel que Ont (O) O. Pour qu'un tel ordre £) existe il faut et il
suffit que EDlfL>2 (O) soit non nul (§.4). Un idéal à gauche de D dont l'ordre
à droite £)' vérifie £)' n k (O) — (9 s'écrit de façon unique sous la forme
T)I où î) est un idéal bilatère de 5D dont la norme réduite est un produit
d'idéaux premiers non ramifiés dans k (O) et divisant D1 D2 et / un idéal
inversible de O. On remarque que EDlD2 (O) s'il n'est pas nul est égal au
nombre des idéaux 2) car

On note ht le nombre de classes des idéaux I inversibles dans O engendrant

un idéal £)/ dont l'ordre à droite est du type de £)f et I± Ih. un système
de représentants de ces idéaux; on note h (O) le nombre de classes des idéaux
inversibles de O. On a:

h(0) £ ht.
i 1
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Si h{ # 0, le nombre Ht qui est égal au nombre de classes des idéaux

bilatères de Db donc des idéaux à gauche de £) dont l'ordre à droite est du

type de £)f est aussi égal au nombre de classes des hiEDl>D2{0) idéaux

T)Ij 1 <y < h-, pour la relation:

Pour qu'un idéal £)f a soit de la forme X)/ il faut et il suffit que O a
1

cr Db
On pose

il faut et il suffit que a g D* k (O)*. Le nombre d'idéaux à gauche de £)f
de la forme X)Ij (où X) représente ici l'idéal bilatère de Dt de norme réduite
D) qui sont principaux est égal à | O* k {OY \ |.

On note £)'/ le sous-groupe de O\ formé des a e A* tels que a O a'1 O.

Pour a g D7 et x g O on a:

axa"1 xouf, x' — le conjugué de x sur k.

On choisit a e A tel que axa~1 x' pour x ek {O). On a:

X)'= X)/a a eA*

0\ — {a e A* j a O a
1 c £).}

pour que:
Oid fDtx x ek{0)

donc
£)'/ {flGi^/ßoua 1

a commute avec les éléments de k (O)}

D7 k (O)* u a k (O)*
On a:

I \ D'il 0,(0)
|fc(0)*\OÎ| 20,(0)

I k
id*/c(O)*\O;I A-

I k (O)* \ O'; I 2 0,(0) w(0)
1 o*\ on c,.

Nous obtenons donc pour //, lorsque /q # 0

d'où:

Nous obtenons donc le lemme 1.3.
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Chapitre 2. Partie fractionnaire de £fe(-1)

1. Théorème général

La relation 2Hjhke Z du corollaire 1.1 nous donne une formule pour
la partie fractionnaire de C/c(-l) dans laquelle ne subsiste apparemment
aucun lien avec les quaternions. Cette formule est la base de ce chapitre et

nous la redonnons avec suffisamment de détails pour qu'il ne soit pas utile
de se référer au chapitre précédent.

D'après la proposition 1.3 démontrée dans le chapitre précédent, la

relation 2H\hk e Z s'écrit:
w(O) - 1

Ck -1) $k(d,,D2)22~n*+ £ D2 (0) h' (O) 6 z

ou encore

Proposition 2.1. On a pour tout corps de nombres k totalement réel

(21) Ct(-1)^(D1;D2)22-" EE £Emod1.

Dans cette relation,

n est le degré absolu de k et Çk sa fonction zêta,

D1 est un produit d'idéaux premiers de k, sans facteurs carrés, dont le

nombre a même parité que le degré n du corps k

D2 est aussi un produit d'idéaux premiers de k, sans facteurs carrés et

(Du D2) 1.

La somme I porte sur tous les ordres O des extensions quadratiques
o

de k totalement imaginaires tels que w (O) [O* : i£*] soit supérieur
strictement à 1. Cette somme est donc finie. Si h (O) est le nombre de classes

des idéaux inversibles de O, on pose h' {O) h (0)1hk.

Enfin, on a

$k{DuD2) n (i -n(i+tfp)
p|r>i v\D2

ro]
où < — > 1 si p divise le conducteurf (O) de O, sinon

IpJ
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0 si p est ramifié dans k (O)
1 si p est décomposé dans k (O)

-1 si p est inerte dans k (O)

Soit p un nombre premier. Tout nombre rationnel x peut s'écrire de

a
façon unique sous la forme — + b où n est un entier positif ou nul, a un

pn

entier premier à p, compris entre 1 et pn — 1 (si n — 0, on prend a — 0)

a
et b un nombre rationnel /»-entier, — s'appelle la j?-partie fractionnairef
de x.

Pour p impair (resp. p 2) on note Çp une racine de l'unité d'ordre p
(resp. d'ordre 4).

On note wp l'indice des unités de k dans celles de k (Çp) et sp le nombre
d'idéaux premiers p | p inertes dans k (<^). Si hk^p) est le nombre de classes

de k (Q on pose h'phk ^p)/hk.

Theoreme II.l. Soit p un nombre premier impair ; la valeur au point
— 1 de la fonction zêta d'un corps de nombres totalement réel k est entière
en p si \k (J;p) : k~\ > 2 ou s'il existe un idéal premier p | p de k décomposé
dans k(Çp). Sinon, la p-partie fractionnaire de 22~n Çk(— 1) est celle de

h^2y
n (i
ç\p

S'il existe un idéal premier p | 2 de k décomposé dans k (ç2) alors
Ct ~ l)/2"-3 est entier en 2, sinon sa partie fractionnaire est celle de

if22S2+ 1

w2 n (i-jvp) '

p|2 *

La partie fractionnaire de Çk (- I) a été également calculée par Brown [1]
et Greenberg [5], Le théorème ne donne que la 2-partie fractionnaire de

Ck( ~ l)/2" 3
; nous avons étudié des cas particuliers : corps quadratiques

réels, corps cyclotomiques et obtenus la 2-partie fractionnaire de
Ck(-l)/2"-K

Démonstration du théorème IIA.
Premier cas: p est un nombre premier impair. On choisit D2 (1),

L>! un produit d'idéaux premiers p | p (en nombre convenable). Alors
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$k(Du i) n ci -Afp)
plßl

est premier à p,la p-partie fractionnaire de (k (— 1) 22~" est celle de:

1
v-,

h' (O)
Z EDlA{0)

0k(Du l)^o w (O)
Vp(

car si £ £ O, alors est entier en p.
w (O)

La condition sur le degré \_k (Çp) : Je] 2 pour qu'il existe une /»-partie
fractionnaire est claire puisque la somme porte sur des ordres O d'extensions

quadratiques de k. S'il existe p | D1 décomposé dans k (Çp), alors

£-(o)'»ß.H?})-0
et Ck(— 1) 22_n est entier en p. Si p0 | p est décomposé dans k (Çp), il est

toujours possible de choisir divisible par p0, en tenant compte de la

parité de n, sauf si n est pair et si p0 est l'unique idéal premier de k au-dessus

de p. Dans ce cas, en choisissant (1) nous allons montrer que la

contribution de la somme qui détermine la ^-partie fractionnaire de Çk (— 1)

^ h' (O)
V Ed, (O) —^

4pto
01,1 w(O)

est entière. Les ordres O contenant Çp sont les ordres de conducteur
1, p0, p où p est le conducteur de l'ordre R[l,Çp] dans l'ordre
maximal de k (Çp). Si pn(p) est la plus grande puissance de p divisant wp,

on a m > /?n(p)_1. D'autre part si O est un ordre de conducteur p£, on a

t,(0>-îWi 1

»(O) », "V
Pour tous les ordres O,

ÊM(0) 1

d'où

^ h\0) h'.
£ E1X(0) -7^ —

spSo w(O) wp

h'
—Np.
wp

Il est clair puisque m > pn(p)~1 que cette somme est entière en p.

1+l1-^)(^Po+-^
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Dans les autres cas, nous cherchons la /»-partie fractionnaire de Çk !)•
Si le nombre d'idéaux premiers de k divisant p a même parité que le degré

n, on choisit D1 Y\V- Ce choix a l'avantage de réduire la somme
p\p

1 à l'unique terme correspondant à l'ordre maximal de k (Çp), tout ordre

non maximal O contenant Çp ayant un conducteur non premier à Z)1? on a

EDi i (O) J! f 1 — 1—iJ 0 si O n'est pas maximal,
V\D1 \ IfJ/

Edisi (O) 2Sp si O est maximal,

où sp est le nombre d'idéaux premiers au-dessus de p qui sont inertes dans
k (£p). La p-partie fractionnaire de Çfc (- 1) 22~n est donc celle de

1 2Sph'p

n (1--N» wp
pi p

Si la parité de n ne nous permet pas de choisir \\ p nous isolons
i

p|p
Vo\P nous prenons Dx ]~[ p. Ce choix a l'avantage de réduire la

pI p
P*Po

somme 1 aux ordres contenant £ dont le conducteur est une puissance
ïpeO

de p0. Si p est la plus grande puissance de p0 divisant le conducteur de
l'ordre R [1, Çp], la somme I est effectuée sur les ordres de conducteur

tpeO
1 ,Po-P?.

On a

ou s sp — e, avec:

s

On a

EDi,i(0) 2S'P

1 si p0 est inerte dans k (Çp)

0 si p0 est ramifié dans k (Çp).

X EDhl(0)
«pS0 W (O)

A'(O) A'-2'

/i' 2S'P

(l-JVp0m+1) si e 0
w/l -iVp0)

-^^<+2«.-I
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Dans les 2 cas la /»-partie fractionnaire de £ £D|1 est celle de

SpeO VV (O)
h

p
2Sp 1

donc —— 2j (Ö) —,— a comme /»-partie fraction-
wp(l —NPo) 0(Dltl)£0 w (O)
naire celle de

h
p

2

n (i-Np) '

pl/>

Deuxième cas : p 2. Contrairement au cas où p est impair, la somme

ç _ v Ï7 rn\h^ Dl> D2 ^ Twvr*
ÇpeO W (O)

n'est pas 2-entière, mais

w(O) [0*:£*] [0*:^(0)ÄJ][^(0)Ä*:Ä*]
6(0)

w (O) co (O) —-—

où co (O), Q(0 désignent l'ordre du groupe des racines de l'unité contenues
dans O et où Q (O) est l'indice des unités de O (1.5). On a Q (O) 1

ou 2 et co (O) =j= 0 (mod 4) si £2 ^ 0, donc 2/w (O) est 2-entier. Nous
obtenons que la 2-partie fractionnaire de Çk (— 1) 23~" est celle de

2 ^ Ä# (O)I Ed, i (O) )âo1 w(o)

Les calculs se poursuivent alors de façon analogue au cas p impair.
Si toute unité totalement positive de k est un carré, la somme S est

2-entière, et on obtient en fait la 2-partie fractionnaire de <^(-l)22~n.

2. Corps cyclotomique

Nous supposons que k est le sous-corps réel maximal d'un corps
cyclotomique. La structure arithmétique de ces corps étant mieux connue, nous

pouvons améliorer le théorème général.
Si k est le sous-corps réel maximal du 2m-ièrne corps cyclotomique,

m > 2, toute unité totalement positive étant un carré (théorème de Weber)
et le nombre de classes relatif h'2 étant impair, la 2-partie fractionnaire de

Cfc(—l)22_n est celle de — 21 — m et l'exposant de 2 dans Çk(~ 1) est



— 91 —

n - m - 1 2m~2 - m — 1. On peut retrouver ce résultat à l'aide des

nombres de Bernoulli [6]. On montre que pour m > 5, Çfc(-1) est entier

en 3, donc le nombre de classes relatif de Q (Ç2m, £3) est divisible par 3.

Si k est le sous-corps réel maximal du pm-ème corps cyclotomique

(p premier impair), l'indice des unités de k Q (Çptn + dans Q (Çpm)

est égal à pm (théorème de Hasse: Q 1) donc lap-partie fractionnaire de

Ck (- 1) 22-" e.st ce/fe

p-(l-p)
"

5"/ p est un nombre premier regulier, on sait que h'p est premier à p (théorème

d'Iwasawa), donc l'exposant de p dans Çk —1) est —m.

Si k est le sous-corps réel maximal de iV-ème corps cyclotomique où N
est un nombre composé, l'indice des unités de k Q (ÇN + ^ans

Q (ÇN) est égal à N ou 2N selon que N est pair ou impair (théorème de

Hasse, Q 2). On obtient des résultats explicites analogues.

3. Corps quadratique

Nous donnerons dans le chapitre 3 le calcul de l'expression:

_ w (O) - 1

de la proposition 1.3 pour les corps quadratiques réels et nous obtiendrons
une formule du nombre de classes d'idéaux

- 2 2.(0) E»..-(0)'l(0)

dont nous déduirons la partie fractionnaire de C/c(-l)/2 en écrivant que
Hifl/hk est un entier. Nous obtiendrons les résultats suivants:

Proposition 2.2. Soit k Q (y/m) un corps quadratique réel et Çm (-1)
la valeur au point - 1 de sa fonction zêta. On note h (d) le nombre de classes

d'idéaux du corps Q {y/d). On a

£m(-l) h (-m) h (-3m) h(n)h(n)+ a(m) + ß (m) + y (m) g Z
L ö o 4

avec



a (m)

(22)

ß(m)

y (m) —
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-3 m s -2(4)
'

2 m 3(8) • si ô2 2

0 m -1(8) ]1

1 m 1(4)
3

2

4

-1

m

m

7H

m

2(4)

3(8)

-1(8)

si g2 1

0 m

1 (3) m m

1(3) m

1(3) m

1 (3) m

• 1 (3) m

-1,2(4)
1(4)

1(8)

5(8)

1,2(8)

1 m 0 (3)

3 m — 3 m m — 1 (3) si Q3 1

5 m 3 m m — 1,2 (4)

0 72 1 (8) ou n ri m 5 (8)

1 72 n' # 1 (4)

2 72 5 (8) mais n ^ 1,5(8)
3 72 - 1 (4) 72' SE 2(4)

022ù Q2 et Qs désignent l'indice des unités de Q {+J~ m, J~\) et

Q — 2m, y/ — 3 où y (m) est défini lorsque s 0 et alors n 2 — Tr s

(modulo les carrés) et nn' — m ou Am.

Cas particulier: m — p est un nombre premier. La formule précédente,
dans ce cas particulier, est

P= 1(4)

P 3(8)

P -1(8)

Cp( —1) h(-3p) h(-p)
e /2 6 8

Cp( — 1) Ä(«3p) h(-p) h(-2p)
+ + + eZ

C,(-l) /2(-3p) h(-2p)
+ + eZ
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Les congruences suivantes sont bien connues:

p= 3(8) h(-2p)=2(4) donc — e Z

p -1 (8) h - 2p)0 (4) donc 6 Z

et nous obtenons :

Corollaire 2.1. Soit p un nombre premier. Les quantités suivantes

sont des entiers :

1(4) +^
(23) 3(8) Wzi) + *i=W+^(_,)

CP(-1) Ä(-3p)
P -1(8) +

Ces nombres représentent la caractéristique d'Euler-Poincaré du groupe

modulaire de k Q(y/p) calculée par Hirzebruch [8].

Chapitre 3. Nombre de classes d'un ordre d'eichler
SUR UN CORPS QUADRATIQUE

On explicite la formule (16) du nombre de classes d'idéaux d'un ordre
d'Eichler sur un corps quadratique.

Soit m un entier positif et k Q (y/m); on note respectivement Rm,

h (m), C,71 (— 1), Nm l'anneau des entiers, le nombre de classes, la valeur

au point -1 de la fonction zêta, la norme absolue du corps Q (AJm) \ soit

D1 un produit d'un nombre pair d'idéaux premiers distincts de Q (y/m)
et soit D2 un autre produit d'idéaux premiers distincts de Q (y/m), premier
k Dx. Le nombre de classes des ordres d'Eichler sur Q (y/m) d'invariant
(Du D2) est égal à

H t. +
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w (O) — 1

(24) I 7—
o 2 w(0)

où on a posé

$m(DUD2)n M»-*) n (-VP+1);
p\Di p\D2

la sommation porte sur les ordres O des extensions quadratiques totalement

imaginaires de Q (AJm) telles que l'indice w (O) [O* : JR*] soit supérieur

à 1. Si m ^ 2, 3, 5 l'ordre O est contenu dans k2 — Q (s/m, y/—l)9

k3 QCy m, y/~~3) ou ke Q(y/m, y/ —s) si l'unité fondamentale £

est totalement positive, c'est-à-dire de norme +1; les corps /c3 et kc sont
confondus si l'indice des unités Q2 de k3 est égal à 2. Nous posons

r - 1 +
i y — 1, p ^ et nous notons ß2 l'indice des unités

de k2.
Nous rappelons d'abord quelques résultats sur l'indice des unités et

sur le nombre de classes des corps biquadratiques imaginaires qui sont
démontrés par H. Hasse [7].

1. Corps biquadratiques

Proposition 3.1. Si l'unité fondamentale s de Q -Jm) est totalement

positive, le corps Q (y/m9y/ — s) est un corps biquadratique imaginaire

Q(Vm, d~n) où n. Tre — 2 modulo les carrés. Le nombre de classes

h
s

de Q {y/m, y/ —n) est

(25) hs h(m)h( — n)h(—n)

où nn' m ou 4m.

Proposition 3.2. Les corps biquadratiques imaginaires suivants ont un

indice d'unités égal à 2 ;

Q(v/-1>\/~?)> Q(\/_1'\/~29)'Q(\/~2'\/_^)'
Q (x/-^ q).

où les nombres q, qu q2 sont premiers et congrus à 3 modulo 4.
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(26)

Proposition 3.3. Le nombre de classes de Q V - 1 est

h2 — — h (m) h{ — m)

Pour que g 2 soit égal à 2, il faut et il suffit qu'il existe une unité rj vérifiant

t]2 yj ~ 1 e. Alors le conducteur de l'ordre Rm (1, rj) est

fn 1 si m 2(4)

fn P2 si m -1 (4)

On note un idéal premier de (Q^/rn) au-dessus de

Si m 1 (4) l'indice des unités 02 est égal à 1. Le discriminant relatif

d2 de Q {sjm, J - 1) sur Q {y/ni) est

1 si m -1(4)
d2 — < 2 si m 2(4)

4 si m 1 (4)

Le conducteur de l'ordre Rm (15X/ — 1) est

1 si m 1 (4)

(27) fi ' P2 si m 2(4)
2 si m EE — 1 (4)

Proposition 3.4. Le nombre de classes de Q (y/m, — 3) est

(28) h3 y/î(m)iî(-3m).
Pour que Q3 soit égal à 2, il faut et il suffit que e appartienne à

Q(\Al \/~3)5 II est nécessaire que m 0 (3); le conducteur de l'ordre

7?m(W~£) est

(29) fs 2

Le discriminant relatif d3 de Q (y/m, y/-3) sur Q (y/m) est

3 si m ^ 0(3)
d3 —

1 si m 0(3)

Le conducteur de l'ordre Rm (1, p) est
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(30) /3
1 si m # 0(3)

p3 si m 0(3)

Nous supposons que m ^ 2, 3, 5. Nous calculons la somme £ de la
relation (16) en la décomposant en 2 ou 3 parties suivant le cas: 0

(31) Z Z + Z + Z
O 0<=/c2 Oczk3 O^ke

le troisième terme de la somme pouvant disparaître éventuellement. Nous
notons respectivement S2, S3, S

£ ces trois sommes.

2. Calcul de S2

Par définition, on a

Ce nombre dépend de m, Du D2, du corps O) et des idéaux premiers
divisant le conducteur f f (O) de l'ordre O dans ce corps. Nous le

noterons

£(ÂW/)
l'indice i étant égal à 2, 3 ou s.

a) L'indice des unités Q2 est égal à 1.

Nous avons

_ w(0) - 1 1

S2= Z o fm h(0)EDhD2(0)=- £ Ä(0)£fll>D2(0)
Oct2 Z W tCVJ 4 ie0

Nous avons caclulé dans le paragraphe précédent le conducteur de l'ordre
jRm(l,î) et nous avons donné dans le premier chapitre la formule du
nombre de classes h (0) qui s'écrit avec nos hypothèses

h (m) h — m) _—lNf(0) n \1 ~

Si m 1 (4), l'ordre (1, z) est maximal donc on a:

h (m) h — m)
(32) EJ>i,D2'(1)
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Si m 2 (4), l'ordre i?m (1, i) a pour conducteur l'idéal premier p2 qui
est ramifié dans &2; il a pour nombre de classes h {m) h { — m) et on a:

(33) Sj s
t (m) t - m>

[E'iUW +2 Eg,, (2)]

Si m — 1 (8), l'idéal premier p2 est décomposé dans k2, l'ordre (1, z)

a pour conducteur 2 et pour nombre de classes h {m) h { — m), l'ordre de

h (m) h — m).
conducteur p2 a pour nombre de classes On a :

h (m) h — m) ^(34) S2 -±-L± 2 [£<*>D2 (1) + 3 £^D2 (2)]

Si m 3 (8), l'idéal premier p2 est inerte dans k2; les ordres de conducteur
3

2 et p2 ont pour nombre de classes 3 h (m) h (-m) et - h (m) h — m)

respectivement. On a

(35)

b) L'indice des unités Q2 est égal à 2.

Comme i e Rm (1, rj) nous avons:

^ w (O) - 1 1 _ h (O)
Sl= o?k22 w(O) h(0)EDhD2(0)=£h.(0)E0|.02(0,

VtO

+ 5,S ^ojE»"»=<0)-
3 /z (O)

-h

On a

/z (O) /z (m) h — m)

»«» 4 "/<0),in„>\1" «»

Nous obtenons facilement les formules suivantes:

Si m 2 (4)

^ (m) /z — m) r(36) S2 t [3 E(D2>D2 (1) + 2 EDhD2 (2)]
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Si m — 1 (8)

(37)

Si m ssü 3 (8)

h (m) h — m) _
(38) S2

g
[3 E(D\]D2 1) + 15 £<*>D2 (2)]

3. Calcul de S 3

a) L'indice des unités Q3 est égal à 1.

Si O est un ordre contenu dans k3, il vérifie:

/
tgO)_ft (m) ft (-3m)

1 J
"(O) 6 'JLV

Nous avons

^ h O
s3- E

Oc=/c3 W (M)

Si m e^é 0 (3), l'ordre i?m (1, p) est maximal donc on a:

h(m)h( — 3m)
(39) S3 E(B\[ D2 (1)

Si m 6 (9), l'ordre i?m (1, p) a pour conducteur l'idéal p 3 qui est décomposé
dans k3. On a

h (m) h — 3m) _
(40) S3 [E(dI(1)+ 2 E\^jh (3)]

Si m 3 (9), l'ordre i?m (1, p) a pour conducteur l'idéal p3 qui est inerte
dans ^3. On a

(41) S3
h(m) ^( ~3m)

[£^D2 (l) + 4 (3)]

b) L'indice des unités Q3 est égal à 2.

C'est le cas où k3 ks. Les ordres Rm (1, p) et Rm (15 y/ — s) ont pour
conducteur p3 et 2.



— 99 —

La somme sur les ordres O<=k3s'écrit
s/ — eeO V ~ £$0

1 /MO)
+

2 r?
0

wTÖ)
£fl1'02 (0)

v - 86 O

n$0

On peut écrire cette formule sous la forme suivante:

(42) S3 [5 EdÏ(1) + 2 b D2 (3) + c D2 (2)]

OU

b=Nv3\l-^-j et c=X^/n \ 1 ~
Nv3 J 12 \ NV

f ^ 1

On calcule facilement b et c. On a

f 4 si m 3(9)
(43) 6 } 2 si m * 6(9)

\ 9 si m ^ 1 (4)

c | 15 si m 1(8)
3 si m 5(8)

4. Calcul de SE

Si ks ^ il nous reste à calculer un terme pour avoir la valeur H du
nombre de classes. On a

w(0)-i h(m)h(-n)h(-n)s- ß„oTtt(ôr (0) °",>=<0) " 4
'(m)

où c (m) est un entier que l'on déterminera dans chaque cas. Il est défini

par la formule suivante :

(K
vP,

(44) c(m)£dj,d2(1) + £ £ z>2 COw / fi U
/I/3 »1/ iVp
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5. Cas particuliers : m 2, 3, 5.

Il nous reste à examiner ces trois cas. Si m 2, la norme de l'unité
fondamentale étant — 1, les indices d'unités sont égaux à 1; il n'existe pas
de somme S e, la somme S3 est donnée par la formule (39), la somme S2

est exceptionelle car k2 Q(->/2, y/ — 1) contient une unité d'ordre 8.

On a:

(45) S2 — ^Di, D2 (1) + — E D2 (2)

Si m 3, l'unité fondamentale e est totalement positive et égale à

(1+ / 3)2 —

8 y Le corps ks est Q(y/3, y/~2); l'ordre R3 (1, yj-s) est

maximal, donc on a :

Ä (3) Ä — 2) A — 6) 1

(46) Ss-- 4; EZ (1) - £<•>
fl2 (1)

Les sommes S2 et S3 sont exceptionelles car k2 k3 Q (^/3, yj —l)

Q(^/3, yf—3). Les ordres O contenus dans k2 tels que w(O) # 0 sont
donnés dans le tableau suivant:

f(0) 1 P 2 2 Ps

w (0) 12 4 2 3

h(0) 1 1 1 1

Nous en déduisons facilement la valeur de S2 :

(47) S2
11

E(Z fl2(l) +
g
EZ D2 (2) +

1
D2 (3)

Si m 5, la norme de l'unité fondamentale est — 1 et les sommes S2, S3

sont données par les formules (32), (39). Mais Q (y/5) est le sous-corps réel
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maximal du 5-ème corps cyclotomique k5 et la formule (31) doit être

remplacée par:

(48) 1=1 + 1 + 1
O Oak 2 Oal(3 O^k5

Il est facile de calculer la somme S 5 ainsi introduite :

(49) S5=^U(1)

6. Théorèmes

Tous les calculs de ce chapitre ont été effectués pour obtenir les résultats
suivants :

Théorème 3.1. Le nombre de classes d'un ordre d'Eichler d'invariant
(Dj, D2) sur un corps quadratique Qoù m est un entier positif sans

facteur carré et différent de 2, 3. 5, est égal à

Hm(DuD2) h (m)

(50)

1) <!>„, (D,, D2)
+ a (m)

h — 3m)
"

5 — b (m) + c (m)

où les nombres entiers a (m),b(ni),c(m) sont déterminés par les relations

h (m) h (-m)
S2 a (m)

h (m) h (-3m)

12

h(m)h(~n)h(-n)
c (m)

Theoreme 3.2. Le nombre de classes des ordres d'Eichler d'invariant
(Dt, D2)surles corps Q(*J.2), Q (^/3), Q (x/5) est respectivement égal à

(51) H2 (Dy D2) + 2
02 O) £fl1),o2(1)

24 8 t
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h m n\ $3(DuD2)llfi^UCl) + 15£i,V.D2(2) + 8 ££>„, (3)
HAD„D1)= +

£ßf,(l)
2

//"CD D —
^2) Ep'i,D2 CO E (dI p2 (1)

5 '' 2
30 '43 5

Appendice:

Calcul des nombres de classes des ordres d'Eichler
SUR LE CORPS DES NOMBRES RATIONNELS

Nous avons calculé sur ordinateur les nombres HDlfD2, TDl D2, H ^1jD2

pour les ordres d'Eichler d'invariant (Du D2) sur le corps des nombres
rationnels. Nous avons utilisé les résultats théoriques du chapitre 1.

D1 désigne un produit d'un nombre impair de nombres premiers sans

facteur carré,
D 2 désigne un produit de nombres premier sans facteur carré tel que

(DUD2)=1.
s est le nombre de diviseurs premiers de D1 D2.
h (-m) est le nombre de classes du corps quadratique imaginaire

Q (yj — m), d { — m) est son discriminant:

— m si m — 1 (4)
d( — m)

— 4m si m ^ — 1 (4).

£&'=,s (• - (^)) £ (*+(-f2)es*ie symbo,e

EDi,Do (>0) correspondant à l'ordre maximal O de Q (y/ — m).

2 iï,(i-(^)),ii(' +C^))ea ie symbo,e

p± 2

correspondant à l'ordre de conducteur 2 de Q {y/ — ni) si D2 est pair et

m 3 (8).

On pose
1 si m — 1 (4)

X (m) 2 si m e 7(8) ou si m 3

4 si m e 3 (8) et m A 3
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K (m)
À (m) si m ^ 3 (8) ow si m — 3

3 si m 3(8) e£ m ^ 3

On calcule facilement les nombres /? (m) pour m | Z>x Z>2. On a

1

p(l)
12

2p(m)

n (p-dn (p+1 +3 £*v. «2 +4 ^2

_p|Di p\D2

E(Di,D2h(~m) si Di est pair

E^d2 - m) ^ (m) si Z»! f 2 est impair

Folios h (-m) k (m) si D2 est pair.

Nous obtenons les nombres HDltD2, TDltD2, H +
DliD.2 en utilisant les

formules (12) qui s'écrivent:

HDi,D-2

2s T Dl, D-2

P(l)
X p(m)

m | D\D2

2sH+DhDi X (P('"))2
w|DXD2

Les tables de Pizer [9] donnent HDltD2

Elles contiennent quelques erreurs

et Td. n, pour D2 <210.

D i D 2

5 23 H - 8 au lieu de 10

7 26 T 5 au lieu de 6

17 10 T 5 au lieu de 6

19 10 T 6 au lieu de 7

3 70 T 3 au lieu de 4

D, 1, D2 « 7 on trouve H1 7 64

T1 j 18 au lieu de 30. Si on calcule H 17 on a H 17 1040.

Nous possédons les nombres de classes des idéaux à gauche HDltD2,
le nombre de type d'ordres Tdi,d2 et le nombre de classes des idéaux quasi-

normaux H bi,d2 Pour ^es invariants (Dl5 D2), D1 < 47 et D2 <101,
47 <D1 < 101 et D2 <31.

Mes remerciements chaleureux vont à H. Cohen qui a programmé ces

opérations sur l'ordinateur du centre de calcul de Bordeaux.
Nous avons extrait des tables obtenues les ordres d'Eichler pour lesquels

les nombres HDlL>2, TDl>Dv H »lD2 sont égaux à 1.
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1. Ordres tels que H pl D
1

Il y en a 10 (à isomorphisme près)

D, D2 D, d2
2 1 5 1

3 2

5 7 1

11 ~13~ 1

3 1

2

2. Ordres tels que HD D2
1

Ce sont les mêmes

3. Ordres tels que Tdi,d2 1

Il faut rajouter les 10 invariants suivants:

Di D2 D, d2
2 1 7 3

15 30 1

23 M 1

3 5 70 1

11 78 1

Pour tous ces ordres, nous avons HDlL>2 H di,d2
Pour les autres ordres, les relations suivantes sont toujours vérifiées:

1 < TDI,D2 < HDhD2 < Hdi,E>2 < TDl D2HDi z,2
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