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divisor of exponential polynomialsf and g, then the set of zeros of h is all but
at most finitely many of the common zeros off and g. We have shown this to
be the case if at least one of/ and g is a simple exponential sum.

We see that a natural formulation of the Shapiro problem is: Iff and g
are exponential polynomials, is it the case that there exists an exponential
polynomial h, the set of zeros of which is exactly the set of common zeros

off and g
We recall that it is not, without qualification, the case that if every

zero offeE 7 is a zero of geE ' then/ divides g in the ring E 7

; for example
(1 — ez)/z is not an element of E7 (its set of integer zeros in not a finite union
of arithmetic progressions). Equivalently, it follows that if nln=1 (ez/2,1 + 1)

divides an exponential polynomial g (z) in the ring E7 for all m 1, 2,

then 1 — ez divides g (z) in E '.

The ideas we have mentioned attack an apparently analytic problem by
essentially algebraic methods. Indeed, in a sense, "approximate" methods

appear doomed to failure by virtue of the following proposition mentioned
to the authors by H. L. Montgomery :

Proposition 3. Let g (r) be any positive-real-valued function decreasing
to 0 as r —> go. Then there exist exponential polynomials j\ g such that for
every r0 > 0 there is an r > r0 and a zeC with r0 < | z | < r such that
0 < I / (z) - g (z) I < n(r).

Proof Define an increasing sequence {nz} of integers by n0 0 and

nl+1 - nt > - log (g (2n/)/27i)/log 2 and write a ^°10(-1)I2 ~ nh

Let / (z) 1 — e2nlz and g (z) 1 — e2nmz, and write zx — T\
1 0,1, 2, Then f(zt) 0 and 0 < | g (zt) \ | 1 - e2ni**i \

2 I sin noizl I < g (Tl), as required. One notices that / (z), g (z) have

the property that there are infinitely many pairs zhz\ with f(zt) 0,

g (z',> 0 and I z, - z\ | < 2/i (| z, |).
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