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obtain upper bounds for the number of zeros off(z) in any circle of radius R

in the complex plane; if A — max | a k |, then such a bound is
k

3 (n — 1) + 4 R A ; see Tijdeman [17].

For further details the reader is referred to the cited articles and the appropriate

references mentioned therein.

3. Factorisation of Exponential Polynomials

We describe the results of J. F. Ritt [10], [11].

Define an ordering on the set of complex numbers by: a < ß if
Mea < Meß, and if Me a Meß then Mma < Jmß. We will suppose in

the sequel, that, unless indicated otherwise, any exponential polynomial

Zcij-eaiz a1eaiZ + + an eanZ

is so normalised that a1 1 and 0 a1<a2<...< an. Of course the

normalisation is effected by multiplying by some unit beßz, b ^ 0 thus not
affecting the zeros of the exponential polynomial. Many of the remarks

below are invalid if the normalisation is not assumed.

Ritt [10] firstly shows that if the exponential polynomial Ypje^z divides

the exponential polynomial Yßje^z (^n ^ °f exponential
polynomials) then the frequencies ßl9 ßm are linear combinations with rational
coefficients of the frequencies au an. Now, following Ritt, call an
exponential polynomial slmP^e if its frequencies are commensurable,
that is, there is a minimal (in the sense of the ordering on C) number a such

that each aj is a non-negative integer multiple of a. So such a simple
exponential polynomial f(z) is a polynomial in eaz and factorises into a finite
product of functions of the shape 1 + aeaz, aeC. Of course, 1 + aeaz has

factors of the shape 1 + a'ei<x/m)z for each m 1, 2, 3, but it follows
from Ritt's lemma mentioned above that every factor of/ (z) is a product
of such factors. Similarly, call an exponential polynomial irreducible if it
has no non-trivial (that is, other than units and associates) factors in the
ring E. Then Ritt's principal result is that an exponential polynomial can be

factorised uniquely as a finite product of simple exponential polynomials
such that their sets of frequencies are pairwise incommensurable, and a
finite product of irreducible exponential polynomials.

We outline the structure of the proof. Firstly one shows that there
exist complex numbers jiu p2-> •••> Pp linearly independent over the field of
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rational numbers Q such that each frequency of/ is a linear combination
of the /i1? jip with non-negative integer coefficients. It follows that any
normalised factor (in the ring E) of/ similarly has frequencies which are
linear combinations of the gl, gp with non-negative rational coefficients.
Now write yt e^z, yp e^z. Then / (z) becomes a polynomial
<7 Oh» •••> yP) 4 00- Moreover, it is clear that for each finite factorisation
of/ (z) in the ring E there is, for some set of positive integers tu tp a
factorisation of q(/*,y'pq(y')inthe ring C[yu...,yp] C [y] ;

conversely to each such factorisation in C [y] into polynomials with constant
term 1, there is a factorisation inE. We suppose henceforth that polynomials
have constant term 1. To make the correspondence, observed above,

one-one, Ritt defines q(y)e C [y] to be primary if for each i 1, 2,

the exponents of yt in the monomials comprising q (y) have greatest common
divisor 1. One sees that if q (j) is primary then of the irreducible factors of
q (/) in C [y] either all or none are again primary. Then if / (z) is
represented by a primary polynomial q (y) each finite factorisation of / (z)
in E corresponds one-one to a minimal choice of t (tu tp) and a

factorisation of q (j/). Ritt now shows that if q (y) is primary and has more
than two terms (including constant term 1) then there are only finitely
many sets t (tu tp) of positive integers such that the irreducible
factors of q (/) are primary. This settles the finiteness of the factorisation
and the remainder of the proof is straightforward.

In [11] Ritt proves that if a quotient of exponential polynomials is an

entire function then it is an exponential polynomial ; in [12] it is shown inter
alia that it is sufficient that the quotient be regular in a sector of opening

greater than n. We remark on generalisations of Ritt's result in section 5.

An equivalent assertion to Ritt's theorem is if every zero off (z)
is a zero ofg (z) Yfijeß^z t^ienf (z) divides g (z) in the ring E. The principle
of the proof is as follows: denote by | Cf | the maximal real cross-section,
that is, parallel to the real axis, of the polygon Cf defined in section 2.

Then one shows there exist exponential polynomials q and r such that

g qf + r and | Cr | < | Cf |. It follows that r has less zeros than does /
in sufficiently large rectangles, whence r 0 as required.

We should remark that by a different method Allen Shields [14] has

shown that a quotient of exponential polynomials is an exponential
polynomial already provided that the number of poles of the quotient in
I z I < R is o (R). This result follows from the proof outlined above. We

further note that H. N. Shapiro [19, §5] has given a division theorem
related to Ritt's theorem.
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The factorisation theory implies that we need consider only two cases

of the Shapiro problem. Namely, firstly the case where at least one of the

exponential polynomials/, g is simple. We settle this case, in the affirmative
in section 4. Secondly one must take the case where at least one of the

exponential polynomials is irreducible. Then an affirmative answer to the

problem is equivalent to the truth of the following conjecture:
Let f, g be exponential polynomials and let f be irreducible. Then iff and

g have infinitely many zeros in common,f divides g in the ring E (equivalently,

gjf is an entire function).
Equivalent to this conjecture is: if/, g are distinct irreducible exponential

polynomials then f and g have at most finitely many common zeros. This last

formulation can be rephrased in terms of polynomials (with constant term 1) :

Letf (y) /(y l9..., y p), g (y) be distinct polynomials irreducible in C [y] in
the strong sense that for all sets tl9 tp ofpositive integers, the polynomials

f (/) "/ (fî1* 9 (/) are so irreducible. Denote by F cC p the

set of common zeros off (y) and g (y). Let /q,..., gp be numbers linearly
independent over Q. Then the curve {(eßlz, e^pZ) : zeC} meets V in at
most finitely many points.

4. The Theorem of Skolem-Mahler-Lech

The following result was proved by Skolem [15] for the field of rational
numbers, by Mahler [5] for the field of algebraic numbers, and by Lech [4]
and Mahler [6] for arbitrary fields of characteristic zero (the assertion is
false in fields of characteristic p):

Let {cv} be a sequence whose elements lie in a field of characteristic zero
and satisfy a linear homogeneous recurrence relation

(3) cv cv_i + b2 cv-2 T ••• -f bn cv-n-> v n,n + 1,

Denote by M c N the set of indices v such that cv 0. Then M is a
finite union of arithmetic progressions (the progressions may have common
difference 0 and so consist of a single point). Hence those cv equal to zero
occur periodically in the sequence from a certain index on.

It is well-known that there exist elements ßl9 ßm9 namely the distinct
zeros of the polynomial

(4) z" -Zqz"-1 - b2zn~2 - -6b,
and polynomials pt9 ...9pm where 1 + deg p} is the multiplicity of ßj as a
zero of (4), j 1, 2, m9 such that for all v - 0, 1, 2,
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