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As Professor Turdn pointed out to us, one source of information on the
problem is the papers of J. F. Ritt. Ritt provides a factorisation theory for
exponential polynomials [10], and shows inter alia that if a quotient of
exponential polynomials is an entire function then it is an exponential
polynomial [11]. We describe these results in section 3.

In the case where all the frequencies of one of the exponential poly-
nomials are rational we confirm that there is indeed a common factor. Even
this special case seems to require a non-trivial argument; we employ the
theorem of Skolem-Mahler-Lech on recurrence sequences with infinitely
many vanishing terms (Lech [4], Mahler [6]). Conversely we observe in
section 4 that an affirmative answer to the problem implies a generalised
form of the Skolem-Mahler-Lech theorem. For a similar application of
this theorem to zeros of exponential polynomials see Jager [3].

It follows from the results mentioned in sections 3 and 4 that one can
define the greatest common divisor /4 € E of two exponential polynomials
/, g € E. An affirmative answer to the problem then implies that the set of
zeros of the ged 4 is all but at most finitely many of the common zeros of f
and g. We make these and other remarks in section 5. We conclude this
section with an example due to Montgomery which shows that “approxi-
mate methods” in the obvious manner are doomed to failure.

2. ZEROS OF EXPONENTIAL POLYNOMIALS

Given an exponential polynomial,
f(z) = Za;e" = a, e + ... + a,e"”

denote by C, the convex polygon in the complex plane defined by the
complex conjugates of the frequencies; that is, the convex hull of the points
Oys Xy oons Ay Then the zeros of f lie in half-strips in the directions of the
exterior normals to C;. More quantitively, suppose an edge of the polygon
C, has length 1. Then the number of zeros of f (z) in the half-strip perpen-
~ dicular to that edge and of absolute value less than R is \

IR
(2) > +0(1) ; see Pdlya [§8], D. G. Dickson [2].
T

It can also be shown that near every line in and parallel to the sides of a
~ strip of zeros lie infinitely many zeros of the exponential polynomial, see
~ Moreno [7], van der Poorten [9]. From a different point of view, one can
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obtain upper bounds for the number of zeros of f(z) in any circle of radius R
in the complex plane; if 4 = max I o |, then such a bound is
k

3(n—1) +4R 4 : see Tijdeman [17].

For further details the reader is referred to the cited articles and the appro-
priate references mentioned therein.

3. FACTORISATION OF EXPONENTIAL POLYNOMIALS

We describe the results of J. F. Ritt [10], [11].

Define an ordering on the set of complex numbers by: o < g if
Fea < Ref, and if Reo = Ref then Ima < Smf. We will suppose in
the sequel, that, unless indicated otherwise, any exponential polynomial

Ya; e = a e + ...+ a,en”

is so normalised that a;, = 1 and 0 = o; < o, < ... < «,. Of course the
normalisation is effected by multiplying by some unit be?*, b # 0 thus not
affecting the zeros of the exponential polynomial. Many of the remarks
below are invalid if the normalisation is not assumed.

Ritt [10] firstly shows that if the exponential polynomial ) b jeﬂfz divides
the exponential polynomial Y a;e®* (in the ring E of exponential poly-
nomials ) then the frequencies 1, ..., B,, are linear combinations with rational
coefficients of the frequencies o4, ..., o,. Now, following Ritt, call an expo-
nential polynomial ) a;e** simple if its frequencies are commensurable,
that is, there is a minimal (in the sense of the ordering on C) number « such
that each o; is a non-negative integer multiple of «. So such a simple expo-
nential polynomial f(z) is a polynomial in e** and factorises into a finite
product of functions of the shape 1 + ae®, acC. Of course, 1 + ae** has
factors of the shape 1 + a’e(*/™? for each m = 1,2, 3, ... but it follows
from Ritt’s lemma mentioned above that every factor of f (z) is a product
of such factors. Similarly, call an exponential polynomial irreducible if it
has no non-trivial (that is, other than units and associates) factors in the
ring E. Then Ritt’s principal result is that an exponential polynomial can be
factorised uniquely as a finite product of simple exponential polynomials
such that their sets of frequencies are pairwise incommensurable, and a
Jinite product of irreducible exponential polynomials.

We outline the structure of the proof. Firstly one shows that there
exist complex numbers py, s, ..., u, linearly independent over the field of
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