
ON COMMON ZEROS OF EXPONENTIAL
POLYNOMIALS

Autor(en): van der Poorten, A. J. / Tijdeman, R.

Objekttyp: Article

Zeitschrift: L'Enseignement Mathématique

Band (Jahr): 21 (1975)

Heft 1: L'ENSEIGNEMENT MATHÉMATIQUE

Persistenter Link: https://doi.org/10.5169/seals-47330

PDF erstellt am: 21.09.2024

Nutzungsbedingungen
Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an
den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in
Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder
Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den
korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung
der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots
auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss
Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung
übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder
durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot
zugänglich sind.

Ein Dienst der ETH-Bibliothek
ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch

http://www.e-periodica.ch

https://doi.org/10.5169/seals-47330


ON COMMON ZEROS OF EXPONENTIAL POLYNOMIALS

by A. J. van der Poorten and R. Tijdeman

1. Introduction

At the 1974 Bolyai Janos Society Colloquium on Number Theory,

H. L. Montgomery mentioned the following problem, which he attributed

to H. S. Shapiro [13]:
Denote by E the collection of all exponential polynomials

(1) E {aleaiZ+ a2e«2Z+ ...+ aneCCnZ :a1, au ..,aneC,rceN}

Suppose /, g e E have infinitely many zeros in common. Then is it the case

that there exists an h in E, such that h has infinitely many zeros, and h is a

common factor off and g in the ring E
As we see below, it is equivalent to ask whether there exists an h in E,

such that h has infinitely many zeros, and such that all the zeros of h are

common zeros of / and g. Henceforth in this note we refer to Shapiro's

problem simply as "the problem".
The problem is mentioned by H. S. Shapiro [13] in the context of his

study of mean-periodic functions satisfying a certain functional equation.
There, [13], p. 18 the problem appears in the form of a conjecture:

If two exponential polynomials have infinitely many zeros in common they

are both multiples ofsome third entire transcendental exponentialpolynomial.
In this note we survey those ideas that appear relevant to settling this

conjecture. Many of the ideas we mention here independently in response
to Montgomery's question, are already alluded to in [13]. In particular we
should remark that the conjecture arises as a generalisation of the Skolem-
Mahler-Lech theorem which we describe in Section 4.

In the sequel we refer to the quantities at, an in (1) as the frequencies
of the exponential polynomial, and the quantities au an as the coefficients.
Unless otherwise indicated we shall always suppose given frequencies to
be distinct and given coefficients to be non-zero. Similarly we shall suppose
an exponential polynomial to have at least two distinct terms, hence to
have a zero, and indeed hence to have infinitely many zeros. We mention
some results on zeros of exponential polynomials in section 2.
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As Professor Turân pointed out to us, one source of information on the

problem is the papers of J. F. Ritt. Ritt provides a factorisation theory for
exponential polynomials [10], and shows inter alia that if a quotient of
exponential polynomials is an entire function then it is an exponential
polynomial [11]. We describe these results in section 3.

In the case where all the frequencies of one of the exponential
polynomials are rational we confirm that there is indeed a common factor. Even
this special case seems to require a non-trivial argument; we employ the
theorem of Skolem-Mahler-Lech on recurrence sequences with infinitely
many vanishing terms (Lech [4], Mahler [6]). Conversely we observe in
section 4 that an affirmative answer to the problem implies a generalised
form of the Skolem-Mahler-Lech theorem. For a similar application of
this theorem to zeros of exponential polynomials see Jager [3].

It follows from the results mentioned in sections 3 and 4 that one can
define the greatest common divisor h e E of two exponential polynomials
/, g eE. An affirmative answer to the problem then implies that the set of
zeros of the gcd h is all but at most finitely many of the common zeros of/
and g. We make these and other remarks in section 5. We conclude this
section with an example due to Montgomery which shows that "approximate

methods" in the obvious manner are doomed to failure.

2. Zeros of Exponential Polynomials

Given an exponential polynomial,

f(z) lajé*iz — a1e<XlZ + + ane"nZ

denote by Cf the convex polygon in the complex plane defined by the

complex conjugates of the frequencies; that is, the convex hull of the points
ä1? ä2> än. Then the zeros off lie in half-strips in the directions of the

exterior normals to Cf. More quantitively, suppose an edge of the polygon

Cf has length I. Then the number of zeros off (z) in the half-strip perpendicular

to that edge and of absolute value less than R is

IR
(2) 1- O (1) ; see Pölya [8], D. G. Dickson [2].

2n

It can also be shown that near every line in and parallel to the sides of a

strip of zeros lie infinitely many zeros of the exponential polynomial, see

Moreno [7], van der Poorten [9]. From a different point of view, one can
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obtain upper bounds for the number of zeros off(z) in any circle of radius R

in the complex plane; if A — max | a k |, then such a bound is
k

3 (n — 1) + 4 R A ; see Tijdeman [17].

For further details the reader is referred to the cited articles and the appropriate

references mentioned therein.

3. Factorisation of Exponential Polynomials

We describe the results of J. F. Ritt [10], [11].

Define an ordering on the set of complex numbers by: a < ß if
Mea < Meß, and if Me a Meß then Mma < Jmß. We will suppose in

the sequel, that, unless indicated otherwise, any exponential polynomial

Zcij-eaiz a1eaiZ + + an eanZ

is so normalised that a1 1 and 0 a1<a2<...< an. Of course the

normalisation is effected by multiplying by some unit beßz, b ^ 0 thus not
affecting the zeros of the exponential polynomial. Many of the remarks

below are invalid if the normalisation is not assumed.

Ritt [10] firstly shows that if the exponential polynomial Ypje^z divides

the exponential polynomial Yßje^z (^n ^ °f exponential
polynomials) then the frequencies ßl9 ßm are linear combinations with rational
coefficients of the frequencies au an. Now, following Ritt, call an
exponential polynomial slmP^e if its frequencies are commensurable,
that is, there is a minimal (in the sense of the ordering on C) number a such

that each aj is a non-negative integer multiple of a. So such a simple
exponential polynomial f(z) is a polynomial in eaz and factorises into a finite
product of functions of the shape 1 + aeaz, aeC. Of course, 1 + aeaz has

factors of the shape 1 + a'ei<x/m)z for each m 1, 2, 3, but it follows
from Ritt's lemma mentioned above that every factor of/ (z) is a product
of such factors. Similarly, call an exponential polynomial irreducible if it
has no non-trivial (that is, other than units and associates) factors in the
ring E. Then Ritt's principal result is that an exponential polynomial can be

factorised uniquely as a finite product of simple exponential polynomials
such that their sets of frequencies are pairwise incommensurable, and a
finite product of irreducible exponential polynomials.

We outline the structure of the proof. Firstly one shows that there
exist complex numbers jiu p2-> •••> Pp linearly independent over the field of
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rational numbers Q such that each frequency of/ is a linear combination
of the /i1? jip with non-negative integer coefficients. It follows that any
normalised factor (in the ring E) of/ similarly has frequencies which are
linear combinations of the gl, gp with non-negative rational coefficients.
Now write yt e^z, yp e^z. Then / (z) becomes a polynomial
<7 Oh» •••> yP) 4 00- Moreover, it is clear that for each finite factorisation
of/ (z) in the ring E there is, for some set of positive integers tu tp a
factorisation of q(/*,y'pq(y')inthe ring C[yu...,yp] C [y] ;

conversely to each such factorisation in C [y] into polynomials with constant
term 1, there is a factorisation inE. We suppose henceforth that polynomials
have constant term 1. To make the correspondence, observed above,

one-one, Ritt defines q(y)e C [y] to be primary if for each i 1, 2,

the exponents of yt in the monomials comprising q (y) have greatest common
divisor 1. One sees that if q (j) is primary then of the irreducible factors of
q (/) in C [y] either all or none are again primary. Then if / (z) is
represented by a primary polynomial q (y) each finite factorisation of / (z)
in E corresponds one-one to a minimal choice of t (tu tp) and a

factorisation of q (j/). Ritt now shows that if q (y) is primary and has more
than two terms (including constant term 1) then there are only finitely
many sets t (tu tp) of positive integers such that the irreducible
factors of q (/) are primary. This settles the finiteness of the factorisation
and the remainder of the proof is straightforward.

In [11] Ritt proves that if a quotient of exponential polynomials is an

entire function then it is an exponential polynomial ; in [12] it is shown inter
alia that it is sufficient that the quotient be regular in a sector of opening

greater than n. We remark on generalisations of Ritt's result in section 5.

An equivalent assertion to Ritt's theorem is if every zero off (z)
is a zero ofg (z) Yfijeß^z t^ienf (z) divides g (z) in the ring E. The principle
of the proof is as follows: denote by | Cf | the maximal real cross-section,
that is, parallel to the real axis, of the polygon Cf defined in section 2.

Then one shows there exist exponential polynomials q and r such that

g qf + r and | Cr | < | Cf |. It follows that r has less zeros than does /
in sufficiently large rectangles, whence r 0 as required.

We should remark that by a different method Allen Shields [14] has

shown that a quotient of exponential polynomials is an exponential
polynomial already provided that the number of poles of the quotient in
I z I < R is o (R). This result follows from the proof outlined above. We

further note that H. N. Shapiro [19, §5] has given a division theorem
related to Ritt's theorem.
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The factorisation theory implies that we need consider only two cases

of the Shapiro problem. Namely, firstly the case where at least one of the

exponential polynomials/, g is simple. We settle this case, in the affirmative
in section 4. Secondly one must take the case where at least one of the

exponential polynomials is irreducible. Then an affirmative answer to the

problem is equivalent to the truth of the following conjecture:
Let f, g be exponential polynomials and let f be irreducible. Then iff and

g have infinitely many zeros in common,f divides g in the ring E (equivalently,

gjf is an entire function).
Equivalent to this conjecture is: if/, g are distinct irreducible exponential

polynomials then f and g have at most finitely many common zeros. This last

formulation can be rephrased in terms of polynomials (with constant term 1) :

Letf (y) /(y l9..., y p), g (y) be distinct polynomials irreducible in C [y] in
the strong sense that for all sets tl9 tp ofpositive integers, the polynomials

f (/) "/ (fî1* 9 (/) are so irreducible. Denote by F cC p the

set of common zeros off (y) and g (y). Let /q,..., gp be numbers linearly
independent over Q. Then the curve {(eßlz, e^pZ) : zeC} meets V in at
most finitely many points.

4. The Theorem of Skolem-Mahler-Lech

The following result was proved by Skolem [15] for the field of rational
numbers, by Mahler [5] for the field of algebraic numbers, and by Lech [4]
and Mahler [6] for arbitrary fields of characteristic zero (the assertion is
false in fields of characteristic p):

Let {cv} be a sequence whose elements lie in a field of characteristic zero
and satisfy a linear homogeneous recurrence relation

(3) cv cv_i + b2 cv-2 T ••• -f bn cv-n-> v n,n + 1,

Denote by M c N the set of indices v such that cv 0. Then M is a
finite union of arithmetic progressions (the progressions may have common
difference 0 and so consist of a single point). Hence those cv equal to zero
occur periodically in the sequence from a certain index on.

It is well-known that there exist elements ßl9 ßm9 namely the distinct
zeros of the polynomial

(4) z" -Zqz"-1 - b2zn~2 - -6b,
and polynomials pt9 ...9pm where 1 + deg p} is the multiplicity of ßj as a
zero of (4), j 1, 2, m9 such that for all v - 0, 1, 2,
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(5) cv - I Pj(y)ßf
j i

Conversely any sequence {cv} where cv is given by (5) satisfies a relation
of the shape (3). Hence, after writing ßj eaJ a special case (namely, where
the zeros of (4) are distinct) of the Skolem-Mahler-Lech theorem is :

Lemma. Let f (z) be an exponential polynomial. Denote by
M c= Z the subset of the integers Z on which f vanishes. Then M is a finite
union of arithmetic progressions {d0 + nd : neZ) ; (and if M is infinite at
least one common difference d is non-zero).

Proof. The assertion seems broader than the Skolem-Mahler-Lech
theorem in that we claim that if/ (z) vanishes for all z d0 + nd, neN
then it vanishes for all z dQ + nd, neZ. This is not difficult to show

directly, see for example [16], theorem 2. However the broader assertion is

already implied by the proof of the Skolem-Mahler-Lech theorem which we
outline for its intrinsic interest: Let K be the field K Q (eal, ...,ean;

a1 an); then one shows there is a valuation | | of K such that | p |

1 jp for some rational prime p and

I e«Jd - 1 |p < p-1'^'^, j 1, 2, n

for some natural number d > 0. Now consider the p-adic functions

fi'.z\-+ J^ajQxp (aß) exp (dctjz), I — 0,1, d — 1. These functions are well-
defined by p-adic power series converging for zeZp, the p-adic integers.

Iff (z) vanishes at infinitely many integers then somef, say/ dQ, has infinitely
many zeros in the compact set Zp. Hence the p-adic power series f do

vanishes identically, so/ (z) vanishes on the set {d0 + nd : neZ} as asserted.

It follows from results mentioned in section 3 that if/ (z) vanishes for
z d0 + nd, neZ then the exponential polynomial

1 — exp (Ini/d) d0 exp (2ni/d) z

divides/ (z) in the ring E.

Theorem. Let f (z) Yjaje*jz be an exponential polynomial with pair-
wise commensurable frequencies (a simple exponential polynomial) and let

g (z) be an arbitrary exponential polynomial such that f (z) and g (z) have

infinitely many common zeros. Then there exists an exponential polynomial
h (z), with infinitely many zeros, such that h is a common factor off and g in

the ring of exponen tial polynomials, E.
Information on the frequencies of h can be deduced from [19].
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Proof. The commensurability of the frequencies implies there is a

number a such that all the frequencies al5 an are positive integer multiples

of a. Then/ (z) is a polynomial in eaz and can be factorised as a finite product
of factors of the shape 1 — aeaz. Since / (z), g (z) have infinitely many
common zeros, at least one of these factors, say 1 — aeaz, has- infinitely

many zeros in common with g (z). So g (z) has infinitely many zeros of the

shape z (2kni— log a)/a, keZ. Hence the exponential polynomial g* (z)

g (flniz-log d)la) vanishes on an infinite subset M of Z, and by the

lemma it follows that g* (z) vanishes on an arithmetic progression
{dQ + nd : neZ}, d ^ 0. Then, as remarked above, the exponential
polynomial IP (z) 1 - exp (Inijd) d0 exp (2ni/d) z divides g* (z) in the ring
E. It follows that the exponential polynomial h (z) 1 — exp (flni/d) d0

+ (1 /d) log a) eia/d)z divides g (z) in E. Since h (z) divides 1 — ßeaz, and

a fortiori f (z), we have the assertion.
We shall show in section 5 that, conversely, the theorem implies the

Skolem-Mahler-Lech theorem for sequences {cv} where cv — YPjeßjZ>

coefficients bj being constants. This observation leads us to remark that,
more generally an affirmative answer to the problem implies the following:

Suppose that the exponential polynomials /, g have infinitely many zeros
in common. Then the common zeros are located in a finite number of half-
strips. Further for each such half-strip the common zeros are distributed
"almost periodically" in the sense that there is a constant c such that the

number of common zeros in the half-strip which are in absolute value less than
R is cR + O (1).

This remark, which follows immediately from (2) in section 2 can be

considered as a generalisation of the Skolem-Mahler-Lech theorem. Since,
in general, we do not know sufficient conditions for some infinite set of points
to be the zeros of an exponential polynomial this generalisation tells only part
of the conjectured truth.

5. Further Remarks

In this note we have considered the ring E, often called the ring of
exponential sums, though it is arguably more natural to consider the ring

É
{a1(z)eCIlZ + +a„(z)ea"z:a1(z),...,a„(z)eC[z],a1,...,a„eC,neN}
more properly called the ring of exponential polynomials. Indeed E ' has
the very natural description : feE ' if and only if/ satisfies a homogeneous
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linear differential equation with constant coefficients. The results mentioned
in section 2 generalise mutatis mutandis to apply to the ring E '. Similarly,
the factorisation theory of section 3 generalises to apply to the ring E '

;

one need only observe that if YßAz)eajz factorises non-trivially in E' then
Yjaj(ß)eaE must factorise in E for all ßeC ; or one applies Ritt's argument
in the polynomial ring C [z] [yu yfi\ rather than C [yu yp]. Furthermore,

it is known that if g/f is an entire function, where g,feE' then

g/f h[a where heE ' and, if / (z) YjaAz)eajz> ^en a a polynomial
such that a divides gcd (<a1 (z), an (z)); indeed this result is valid in the

ring of general exponential polynomials in several complex variables, see

Berenstein and Dostal [1] for details and references. Finally, we note that
the Skolem-Mahler-Lech theorem applies to elements of E' so that the
theorem of section 4 generalises to state that if a simple exponential sum
(necessarily in E) and any general exponential polynomial (in E') have

infinitely many common zeros than they have a common divisor (which, by
the proof, lies in E). Below we refer to elements of E ' as exponential
polynomials and refer to elements of the subring E as exponential sums.

Proposition 1. The assertion that, if a simple exponential sum and an

exponential polynomial have infinitely many zeros in common then they have

a non-trivial common divisor in the ring E\ is equivalent to the Skolem-
Mahler-Lech theorem.

Proof. In one direction the implication is the content of the theorem of
section 4 and the remarks above. Conversely, take, without loss of generality,
the exponential sum to be 1 - ez and consider the exponential polynomial
as the product of its Ritt factors, that is, a polynomial, a finite number of
simple exponential sums whose sets of frequencies are pairwise
incommensurable, and a finite number of irreducible exponential polynomials.
Firstly, 1 — ez and an irreducible exponential polynomial can have at most

finitely many common zeros because otherwise the irreducible exponential
polynomial has a non-trivial divisor in E. Secondly, 1 - ez and a

polynomial, obviously have at most finitely many common zeros. Thirdly, a

simple exponential sum is a finite product of terms of the shape 1 — aeaz ;

if a is irrational so that 1 and a are incommensurable, then 1 — ez and
1 - aeaz have at most one common zero. On the other hand, if a is rational,
say a r/d, then the common zeros of 1 — ez and 1 - ae"z are the zeros

of finitely many functions of the shape 1 — exp {Inidfid) exp zjd and so

occur in arithmetic progressions. Hence the common zeros are a finite union
of arithmetic progressions (which may have common difference zero). In
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particular, if an exponential polynomial has infinitely many integer zeros,

and so, infinitely many zeros in common with 1 — e2niz then these integer

zeros are a finite union of arithmetic progressions, and this is the content

of the Skolem-Mahler-Lech theorem.

Proposition 2. Every pair f, g of exponential polynomials has a greatest

common divisor (gcd) h in the ring E ' (in the usual sense that h is a common
divisor of/ and g in E ' and every common divisor of/ and g in E ' divides
h in E ').

Proof The Ritt factorisation theory implies one need on y consider the

cases where / is a polynomial, a simple exponential sum, or an irreducible

exponential polynomial. If/ is a polynomial the gcd is again a polynomial,
and if/ is irreducible it is a unit or an associate of/. Finally if/ is simple
then the gcd is a product of a polynomial and a finite number of functions
of the shape of h (z) as constructed in the proof of the theorem of section 4,

that is, of functions the set of zeros of each of which 's an arithmetic
progression.

Shields [14] remarks that the above proposition has been obtained by
W. D. Bouwsma (unpublished).

We call the abovementioned greatest common divisor the "Ritt gcd" of
the two exponential polynomials / and g, and observe that one can also
define a function-theoretic gcd of / and g as follows: (see, for example,
Titchmarsh [18], Chapter 8).

Let z1;, z2, be the common zeros of / and g. Then the exponent of
convergence p' of these numbers is at most the exponent of convergence of
the zeros off hence at most the order of/. Thus p' < 1. By the Weierstrass
factorisation theorem the canonical product h of z1? z2, is an analytic
function, and by Borel's theorem the order p of h equals p'. By virtue of
the Hadamard factorisation theorem every entire function of order p < 1

with zeros zl5 z2, and no others is the product of h(z) and a unit factor
of the shape ea+ßz. Hence h (z) is uniquely determined up to a normalisation.
We call the function h (z) so defined the "Hadamard gcd" of the functions

/ and g. The Shapiro problem can now be posed as follows : Is it the case
that apart from a possible polynomial factor, the Hadamard gcd of two
exponential polynomials coincides with their Ritt gcd It is equivalent to ask
whether the Hadamard gcd of two exponential polynomials is indeed an
exponential polynomial and so has exact order 0 or 1.

Our last remark depends on the observation that an affirmative answer
to the problem implies : if the exponentialpolynomial h is the greatest common

L'Enseignement mathém., t. XXI, fasc. 1. <
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divisor of exponential polynomialsf and g, then the set of zeros of h is all but
at most finitely many of the common zeros off and g. We have shown this to
be the case if at least one of/ and g is a simple exponential sum.

We see that a natural formulation of the Shapiro problem is: Iff and g
are exponential polynomials, is it the case that there exists an exponential
polynomial h, the set of zeros of which is exactly the set of common zeros

off and g
We recall that it is not, without qualification, the case that if every

zero offeE 7 is a zero of geE ' then/ divides g in the ring E 7

; for example
(1 — ez)/z is not an element of E7 (its set of integer zeros in not a finite union
of arithmetic progressions). Equivalently, it follows that if nln=1 (ez/2,1 + 1)

divides an exponential polynomial g (z) in the ring E7 for all m 1, 2,

then 1 — ez divides g (z) in E '.

The ideas we have mentioned attack an apparently analytic problem by
essentially algebraic methods. Indeed, in a sense, "approximate" methods

appear doomed to failure by virtue of the following proposition mentioned
to the authors by H. L. Montgomery :

Proposition 3. Let g (r) be any positive-real-valued function decreasing
to 0 as r —> go. Then there exist exponential polynomials j\ g such that for
every r0 > 0 there is an r > r0 and a zeC with r0 < | z | < r such that
0 < I / (z) - g (z) I < n(r).

Proof Define an increasing sequence {nz} of integers by n0 0 and

nl+1 - nt > - log (g (2n/)/27i)/log 2 and write a ^°10(-1)I2 ~ nh

Let / (z) 1 — e2nlz and g (z) 1 — e2nmz, and write zx — T\
1 0,1, 2, Then f(zt) 0 and 0 < | g (zt) \ | 1 - e2ni**i \

2 I sin noizl I < g (Tl), as required. One notices that / (z), g (z) have

the property that there are infinitely many pairs zhz\ with f(zt) 0,

g (z',> 0 and I z, - z\ | < 2/i (| z, |).

REFERENCES

[1] Berenstein, C. A. and M. A. Dostal. A lower Estimate for Exponential Sums.
Bull. Amer. Math. Soc. 80 (1974), pp. 687-691.

[2] Dickson, D. G. Asymptotic Distribution of Exponential Sums. Publ. Math. Debrecen
11 (1964), pp. 295-300.

[3] Jager, H. A Note on the Vanishing of Power Sums. Ann. Univ. Sei. Bud sect. Math.
10 (1967), pp. 13-16.

[4] Lech, C. A Note on Recurring Series. Ark. Mat. 2 (1953), pp. 417-421.



— 67 —

[5] Mahler, K. Eine Arithmetische Eigenschaft der Taylorkoeffizienten rationaler
Funktionen. Proc. Ac. Amsterdam 38 (1935), pp. 51-60.

[6] On the Taylor coefficients of rational functions. Proc. Camb. Phil. Soc. 52

(1956), pp. 39-48.

[7] Moreno, C. J. The Zeros of Exponential Polynomials. Comp. Math. 26 (1973).

pp. 69-78.
[8] Polya, G. Geometiisches über die Verteilung der Nullstellen gewisser ganzer trans¬

zendenter Funktionen. Münchener Sitzungsberichte 50 (1920), pp. 285-290.
[9] van der Poorten, A. J. A Note on the Zeros of Exponential Polynomials, (to appear).

[10] Ritt, J. F. A Factorisation theory for Functions Z"=1aieociz. Trans. Amer. Math.
Soc. 29 (1927), pp. 584-596.

[11 ] On the Zeros of Exponential Polynomials. Trans. Amer. Math. Soc. 31 (1929),
pp. 680-686.

[12] Algebraic Combinations of Exponentials. Trans. Amer. Math. Soc. 31 (1929),
pp. 654-679.

[13] Shapiro, H. S. The Expansion of mean-periodic functions in series of exponentials.
Comm. Pure and Appl. Math. 11 (1958), pp. 1-21.

[14] Shields, A. On Quotients of Exponential Polynomials. Comm. Pure and Appl.
Math. 16 (1963), pp. 27-31.

[15] Skolem, Th. Ein Verfahren zur Behandlung gewisser Exponentialer Gleichungen
und Diophantischer Gleichungen. C.r. 8 congr. scand. à Stockholm. 1934,
pp. 163-188.

[16] Tijdeman, R. On a Conjecture of Turän and Erdös. Indag. Math. 28 (1966),
pp. 374-383.

[17] On the Number of Zeros of General Exponential Polynomials. Indag. Math. 33
(1971), pp. 1-7.

[18] Titchmarsh, E. C. The Theory of Functions. Oxford Univ. Press, 1952.
[19] Shapiro, H. N. On a Theorem concerning Exponential Polynomials. Comm. Pure and

Appl. Math. 12 (1959), pp. 487-500.

Reçu le 5 décembre 1974)

A. J. van der Poorten

School of Mathematics
The University of New South Wales
Kensington, NSW 2033
Australia

R. Tijdeman

Mathematisch Instituut
Rijkuniversiteit Leiden
Wassenaarseweg 80
Leiden
Nederland




	ON COMMON ZEROS OF EXPONENTIAL POLYNOMIALS
	1. Introduction
	2. Zeros of Exponential Polynomials
	3. Factorisation of Exponential Polynomials
	4. The Theorem of Skolem-Mahler-Lech
	5. Further Remarks
	...


