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so that substitution in (5) gives

1
Z(25w —x — 10u — 20v) if v = 1(mod 9),

1
—(— 25w — x — 20u + 10v) if v = 2(mod 5),
4,(m) = (—alp)y = | 4

1
Z(— 25w — x + 20u — 10v) if v = 3(mod 5),

4 (mod 5).

1
Z(25w —x + 10u + 20v) if v

But letting (x, u, v, w) — (x, —u, —v, w), (x, v, —u, —w), (x, —v, u, —w)
in the case v= 1 (mod 5) gives just the cases v= 2, 3, 4 (mod 5) respectively.
This completes the proof of theorem 4.

6. A RELATION AND AN EXAMPLE

THEOREM 5. (4,)* + (4,2)* + (4,3)* + (4,0° + (45)> = 20.p
Proof. The left hand side

= [f w0, WP + [f &, —u, =0, w]* +
[f (x,0, —u, =w)]> + [f (x, —0,u, —w)]* + x*

1
= ig[4 L 625w? + 4 .x* 4+ 1000 (u® +v?)] + x?

on simplifying

5 2 2 2 2 5 - |
= Z(lZSw +x° 4+ 50u” 4+ 50v%) = 2.16 .p (byiof(4))
=20.p
as required.
An example. Let p = 11. The 4 solutions of (4) are
(19 07 15 1)3 (1: O: '—19 1)9 (19 1909 —1)9 (1a —13 OJ _1)

and so by theorem 4 the set 4, is given by + 1, +4, —9, +11, +1, so that
124+ 42+ 92 + 112+ 1% = 220 = 20.p.
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A direct computation gives the following values

a=1, 2, 3, 4, 5, 6, 7, 8, 9, 10
A, =4, -9, -1, —-11, -1, 1, 11, 1, 9, —4

The fifth powers are 4a = 1,10 that is a = 3,8 and for these
Ay = (=3/p),. x=—x= —1and 44 = (—8/p)z.x = x = 1 as re-
quired.

I should like to thank Professor Frohlich sincerely for his suggestion to
look at these 4,.

APPENDIX

1. For the convenience of the reader we give here the definition of
(%/) 10, the tenth power residue symbol and some of its properties.

First let = be a prime factor of a rational prime p = 1 (mod 5). The
residue classes mod n, in Z [{], form a field of norm n = p elements. The
non-zero classes form a cyclic group (multiplicative) 1, p, ...,pF~* of
p — 1 elements. This group has in it just 10 elements or order dividing
10 viz. p/®@~110 (7 =0,1,...,9). These are represented (mod n) by
+ 1, +¢, ..., £ {* since these are distinct mod 7 and have order dividing
10. Now let « be any non-zero residue mod n. Then «?~1/10 has order
dividing 10 and so is congruent to one of + 1, + {, ..., + {* (mod n).
We define (2/n),o = + 1, + , ..., + {* according as «?~1)/10 {5 congruent
to + 1, + ¢, ..., £ {* (mod n). It follows that

(2/n);o = 2N~ D10 (mod 7).

It is immediately verified that (sf/n);0 = (%/7);0.(B/7)1,, and we
define (o/my7,)19 = (#/71)10 - (2/7,)10. The following properties may be
easily verified directly from the definition.

(). If p = 2, 3 (mod 5), so that p stays prime in Z [{], and if ne Z,
then (n/p),, = 1.

(ii). If = is a prime factor of a p = 4 (mod 5), so that p = 7 7 is the
prime decomposition of p in Z [{], and n € Z, then

(/)10 = 1.

(itf). If n is a prime factor of a p = 1 (mod 5), so thatp = n, n, 7, 7,
is the prime decomposition of p in Z [{], then

(n/n)yo . (n/M)yo = 1.
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