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Since the choice of g is arbitrary, we change g to another primitive
root g" with (r,p—1) =1, r = i(mod 5), i = 1, 2, 3,4. This does not
alter 4, (as 4, 1s independent of g) but replaces = by any desired 7; so that
A, (n) = 4, (any other n). Note that such an r exists, for all we want is,
for i =1,2,3,4, a A such that (i+54,p—1) = 1. Now i+ 5] takes
infinitely many prime values as A takes positive integer values since
(i, 5) = 1; so A may be chosen so that i + 51 is a prime avoiding the primes
occuring in p — 1.

4. EXPRESSIONS ALLIED TO 4, (n)

We fix our n now with (g/n)s = { and normalize it too. It is clear that
there are only 3 expressions allied to 4,(n) viz (—a/p), (4a/n)s.n.7°
+ conjugates, (—a/p); (4a/n)s . n° .+ conjugates and (—a/p),
(4a/n); . . 2%+ conjugates. This is so because changing the first term
of 4, (n) fixes the changes in the other terms (otherwise we will not even get
a rational integer!). Let us look at the first of these (the others would be
similar), which equals Tr [(—a/p), (4a/n)s . = n°]. We have the following
theorem:

THEOREM 3. Tr[(—a/p); (4a/n)s.nn’] = A, — 1 (n), where (u/p),
= 1 and (u/n)s = (4a/n)s.
Proof. We have
4, (m) = Tr [(ajpy) (4a/n)s . 7. 7]
= Tr [(—a/p); (4a/n°)s . n° . n"3] by 3 on letting 7 — 7°,
= Tr [(—a/p), (16a*/7)s . n° . 7] since (4a/n")s = (g"/n3)s
= (&'/mn )5 = (d4a/n)s = (16a*/m)s,
= Tr [(—au/p)z (dau)/n)s . = n°], where (u/p)z = 1 and (u/p)s
= (4a/r)s.
Now writing a for au we get the theorem.

It follows that the expressions allied to 4, (n) also represent the number
of solutions of the congruence (1) for a suitable value of a.

5. THE SET {4,]|a =1,2,3,..,p — 1}

Dickson’s paper on cyclotomy [1] includes the following Theorem
(theorem 8 of [1]). Let p = 1 (mod 5) be a rational prime. Then the Dio-
phantine equations
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i, 16p = x% + 50u? + 500 + 125w°
(4) ii. 92 — duy — u? = xw
iii. x = 1(mod 5)
have exactly 4 integral simultaneous solutions. If (x, u, v, w) is otie solution

then the remaining three are (x, —u, —v, w), (x, v, —u, —w), (x, —v, u, —w).
Now let £ (x, u,v, w) = + (25w—x—10u—20v). We have the following

THEOREM 4. The distinct A, are the following 10 numbers :

+x, + f(x,u,v,w), + f(x, —u, —v,w), + f(x,v, —u, —w),
+ fx, —v,u, —w).

Remark. If 4a is a quintic residue mod p then 4, = (—a/p), . x.

Proof. In the notation of [2] we have

4a 4a 4a _ 4a _
4, =(=a/lpz|{{—) . T +{(—| +s'|—) .S +{—]).T
[(”)5 (n2>5 (”3>5 (M)s ]

with T =s;{+ 5, +s5303+s5,0* and S=s530+s5,0*+ 5,0
+ 5, {*. Letda= g’ (mod p). We have to look at the five casesv= 0, 1, 2, 3,4
(mod 5).

If v = 0 (mod 5), so that (4a/n))s = 1 for all i, then

4, = (=alp)z(T+T +S +8) = (—a/p)z[(s1 +54) ((+{*)
+ (53453 (P +3) + (53 4+53) (LY + (s +50) (P +C3)]
= (—alp)z[—(sy+s,+ts53+54)] = (—a/p); . x (see equation (62) of [1]).
If v=1,2, 3,4 (mod 5), we get respectively, as above
( 454 —_ (Sl +S2 +S3) lf Vy = ]_(mOd 5),
J 4s3 — (sy+5,+s,) if v = 2(mod 5),
| 4sy — (sy+s3+s,) if v = 3(mod 3),
| 45y —(s2+s3+sy) if v = 4(mod 5).
Now from equations (62) and (63) of [1] we get, on solving

(3 4i(m) = (—a/p),

If

Il

dsy =  Sw —x + 2u + 4v, g
ds, = —5w — x + 4u — 2v, i.
4s3 = —5w — x — 4u + 2v, |

E

4s, Sw — x — 2u — 4y.
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so that substitution in (5) gives

1
Z(25w —x — 10u — 20v) if v = 1(mod 9),

1
—(— 25w — x — 20u + 10v) if v = 2(mod 5),
4,(m) = (—alp)y = | 4

1
Z(— 25w — x + 20u — 10v) if v = 3(mod 5),

4 (mod 5).

1
Z(25w —x + 10u + 20v) if v

But letting (x, u, v, w) — (x, —u, —v, w), (x, v, —u, —w), (x, —v, u, —w)
in the case v= 1 (mod 5) gives just the cases v= 2, 3, 4 (mod 5) respectively.
This completes the proof of theorem 4.

6. A RELATION AND AN EXAMPLE

THEOREM 5. (4,)* + (4,2)* + (4,3)* + (4,0° + (45)> = 20.p
Proof. The left hand side

= [f w0, WP + [f &, —u, =0, w]* +
[f (x,0, —u, =w)]> + [f (x, —0,u, —w)]* + x*

1
= ig[4 L 625w? + 4 .x* 4+ 1000 (u® +v?)] + x?

on simplifying

5 2 2 2 2 5 - |
= Z(lZSw +x° 4+ 50u” 4+ 50v%) = 2.16 .p (byiof(4))
=20.p
as required.
An example. Let p = 11. The 4 solutions of (4) are
(19 07 15 1)3 (1: O: '—19 1)9 (19 1909 —1)9 (1a —13 OJ _1)

and so by theorem 4 the set 4, is given by + 1, +4, —9, +11, +1, so that
124+ 42+ 92 + 112+ 1% = 220 = 20.p.
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