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Proof. Step 1.

Aa(Çn) T r[(-alp)z(4alÇTi)5(Ç
T r [( -a/p)z C4 rni"3]=Tr [( -au/p)z(4au/n)f .nn"3'],

where (ujp)z 1, (u/n)5(4, and this (n). It follows that

Aa (Cri) Aau(ji),where(u/p)z 1 and (u/n)s 1,2,3,4).

Step 2.

Aa(en)T r [( — ajp)z(4ajen) 5en.(eft)"3]

Tr [(-afp)z(4fl/7r)5 N (e) •

Aav(n),

where (v/p)z N Q(^s yQ0),(v/n)5
Combining steps 1 and 2 we get:

Aa(Cen:) da„(87i) where (w/p)z 1, (m/ti)s Ç5_i

da„.„ (ti) where (p /;)z Norm e, (v/n)5 1,

(71) where b wy satisfies the conditions of
theorem 1. This completes the proof of theorem 1.

We next remove the restriction (g/n)5 £ and see what the Af s mean
then.

3. The restriction (gln)5 £ removed

Here we have to look at Aa(n<T) (and similarly Aa(n(j2) and Aa(na3)).
We have the following

Theorem 2. Aa (7c0") Aa (71).

Proof. Aa (7O Tr [(-a/p)z (4a/7i")5 ti* (tiT3]-
Now (Aajn")5 (4û/7i2)5, and if 4« g' (mod then this (gv/n2)5

(^2)5 C2v (gvMi)s (4a/?ii)l tr [(4fl/7i)5]. Hence

O"7) T r [( - a/p)z o ti ttct3]

T r [cr - a/(4aln)5.titi"3)]

Aa (ti) as required.

A clearer insight is gained into this by looking at the whole thing
directly as follows.
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Since the choice of g is arbitrary, we change g to another primitive
root gr with (r,p— 1) 1, r i (mod 5), i 1,2,3,4. This does not
alter Aa (as Aa is independent of g) but replaces n by any desired %t so that
Aa (tz) Aa (any other it). Note that such an r exists, for all we want is,

for i 1,2,3,4, a 2 such that (i+5X,p—l) 1. Now i + 52 takes

infinitely many prime values as X takes positive integer values since

(z, 5) 1 ; so X may be chosen so that i + 52 is a prime avoiding the primes
occuring in p — 1.

4. Expressions allied to Aa (n)

We fix our % now with (g/n)5 Ç and normalize it too. It is clear that
there are only 3 expressions allied to Aa(n) viz — ajp)z (4a/n) 5 n na

+ conjugates, — ajp)z (4a/n)5 if if2 + conjugates and — ajp)z
(4a/n)5 n°2. n+ conjugates. This is so because changing the first term
of Aa (71) fixes the changes in the other terms (otherwise we will not even get
a rational integer!). Let us look at the first of these (the others would be

similar), which equals Tr [(-tf/p)z {^aln)s •71 n<rJ- We have the following
theorem :

Theorem 3. Tr [_(-a/p)z (4a/n)5 .mf~] Aau - 1 (n), where (u]p)z
1 and (u/n)5 (4a/ri)5.

Proof. We have

Aa(n) Tr li-a/pz)(4a/ii)5.n na3~]

Tr l(-alp)z (4a/n")5 n"r"3] by 3 on letting n -»•

Tr l(-a/p)z(I6a2/n)5 ntc] since (4a/n (gv/n2)5

1)5 (4a/7i)2s (16a2/7t)5,

Tr \_{-aujp)z (4(au)/n)5 n where (u/p)z 1 and (u/p)5

(4a/7i)5.

Now writing a for au we get the theorem.

It follows that the expressions allied to Aa (n) also represent the number

of solutions of the congruence (1) for a suitable value of a.

5. The set {Aa | a 1, 2, 3,...,/? - 1}

Dickson's paper on cyclotomy [1] includes the following Theorem

(theorem 8 of [1]). Let p= 1 (mod 5) be a rational prime. Then the Dio-
phantine equations
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