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being the trace of (—4a/n,),, .7, m,, is a rational integer. What does it
represent ?

One could also remove the various restrictions on the x; in the ex-
pression for 4, and ask what 4, then represents. The object of this note is to
answer these questions and also to determine the set {4, ] a=1,2,3,..,
p — 1}

It 1s immediate that 4, can take only 10 distinct values. This follows
by looking at (2) or directly from the congruence (1) as follows: Let
(e, p) = 1, then we have

x> —a
4, =5 and so 4,,5 = (e/p), . 4,.
P

It follows that the distinct values taken by the 4, fora = 1,2,...,p — 1
are just + 4, + Adp, + 4,5, £ 4,4, + 4. We shall determine these 10
values as a set. Which value is associated with which a will not be clear
except when 4a is a quintic residue mod p.

2. DETERMINATION OF 4,
WITHOUT THE NORMALIZATION RESTRICTIONS ON THE 7;

Write p = n.7°. o (with (g/n)s = () = =, n, ny 7, say. Since
the restrictions on 7 are going to be removed, we denote 4, by 4, (n). We
write (2) in a more convenient form viz

(3) 4,(n) =

—a 4a 4a 4a 4a
— ) ql\— ] g3+ | — ] T Ty | — ) T3y F|— ) Ty, .
P /z T1/5 USYE 3/5 Ta/s

Thus 4, (1) = Tr [(—a/p), (4a/n)s 1 7°°].
Let the condition (g/n)s = { be retained first so that we only change =
to an associate nm where n = (& (0<i<4) with ¢ a real fundamental

1+./5

J
unit, say =+ < > , JEZL, of QO (\/g). We have the following

THEOREM 1. A, ({e.m) = Ay (n) where (bjm)s = (°7' and (b/p),
# N on/3)/0 (®).
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Proof. Step 1.

4,((m) = Tr[(—a/p)z(4aftn)s (o) (0]
= Tr[(—a/p); (4an)s . (* . nn”"]
= Tr[(—au/p)y (4aum)s . nn“?’],

where (u/p), = 1, (u/n)s = (*, and this = 4,,(n). It follows that
A, ((in) = A,, (1), where (u/p); = 1 and (u/n)s = {>77(i=0,1,2,3,4).
Step 2.
A,(en) = Tr[(—a/p)y,(4alen)s . em. (.977:)"3] |
= Tr[(—a/p)z(4ajn)s . N 51/3)0(8) - nn“s]
- Aav (7[),
where (v/p)z = NQ(\/§)/Q (e), (v/n)s = 1.
Combining steps 1 and 2 we get:
Aa (Ci‘gn) = Aau (87‘5) Wh€r€ (u/p)Z = l’ (M/?T)s = Cs—i
= A, (n) where (v/p), = Norme, (v/n)s = 1,

= A, () where b = uv satisfies the conditions of

theorem 1. This completes the proof of theorem 1.
We next remove the restriction (g/n)s = { and see what the 4,’s mean

then.
3. THE RESTRICTION (g/n)s = { REMOVED

Here we have to look at 4, (n°) (and similarly 4, (n"z) and 4, (n"3)).

We have the following

THEOREM 2. 4, (n°) = 4, (n).
Proof. 4,(n°) = Tr [(—a/p), (4a/n°)s . n° . (2°)"°].
Now (4a/n°)s = (4a/n,)s, and if 4a = g" (mod p) then this = (g"/n,)s
= (g/ny)s = (** = (&"/n)5 = (4a/mn)5 = o [(4a/m)s]. Hence
4,(°) = Tr[(—alp)y .o (4ajn)s .7 .7
= Tr[a ((—a/p)Z (4a/m)4 .nn"3)]
= 4,(n) as required.
A clearer insight is gained into this by looking at the whole thing

directly as follows.
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