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NOTES ON THE CONGRUENCE y? = x> — a(mod p)

by A. R. RATWADE

1. INTRODUCTION

In a previous paper [3] we proved the following

THEOREM. Let p = 1 (mod 5) be a rational prime and g a fixed primitive
~ root mod p. Then the number of solutions of the congruence

) y? = x°> — a(mod p)

~isp + A, where A, is equal to ™

—4a —4a
(2) ) M3 Ty + Ty T3
Ty /10 Ty /1o
—4a —4a
+ LT, Ty + LTy T,
T3 /10 T4 J10

| Here p=mn,nm,n3my = n,.0n,.6°7n,.06°7,, with ¢:{ = (?, is
- the decomposition of p in Q ({), > = 1, { # 1 and =, is chosen to satisfy
(g/ny)s = {, so that (g/n;)s = (', and the n; are normalized so that the
products S = n,7m,, S = w37y, T = w73, T = 1, n, (all polynomials
- in {) satisfy

1. SO.SCH = [S(l)]2 (mod 5),
2. S (©) S (1) (mod (1-¢)%),
3. S (1) 4 (mod J).

I

(and similarly for S, T, T).
In (2) the 4 products n; w; are those 4 out of the 6 combinations
g Ty Tpy 0y T3, Toq Ty, Ty T3, Ty Ty, T3 Ty fOl' Wthh ﬁi # TEj. But thCI‘e IS

: : : —
~ no symmetrical way of coupling the residue symbol ( a) with
. i /10

- 7w;m. We ask: What do other expressions similar to 4, represent ? For
~ example the expression

) See Appendix for the definitions of («'),,, («/8)s, (a/p)z.
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—4a\ —4q —4g —4a°
- .71:1 7132 + .7[2 7[4_ + - .7'61 7T3 + ) .7-[3 7-54
1 /10 Ty /10 T3 /10 T4 /10

being the trace of (—4a/n,),, .7, m,, is a rational integer. What does it
represent ?

One could also remove the various restrictions on the x; in the ex-
pression for 4, and ask what 4, then represents. The object of this note is to
answer these questions and also to determine the set {4, ] a=1,2,3,..,
p — 1}

It 1s immediate that 4, can take only 10 distinct values. This follows
by looking at (2) or directly from the congruence (1) as follows: Let
(e, p) = 1, then we have

x> —a
4, =5 and so 4,,5 = (e/p), . 4,.
P

It follows that the distinct values taken by the 4, fora = 1,2,...,p — 1
are just + 4, + Adp, + 4,5, £ 4,4, + 4. We shall determine these 10
values as a set. Which value is associated with which a will not be clear
except when 4a is a quintic residue mod p.

2. DETERMINATION OF 4,
WITHOUT THE NORMALIZATION RESTRICTIONS ON THE 7;

Write p = n.7°. o (with (g/n)s = () = =, n, ny 7, say. Since
the restrictions on 7 are going to be removed, we denote 4, by 4, (n). We
write (2) in a more convenient form viz

(3) 4,(n) =

—a 4a 4a 4a 4a
— ) ql\— ] g3+ | — ] T Ty | — ) T3y F|— ) Ty, .
P /z T1/5 USYE 3/5 Ta/s

Thus 4, (1) = Tr [(—a/p), (4a/n)s 1 7°°].
Let the condition (g/n)s = { be retained first so that we only change =
to an associate nm where n = (& (0<i<4) with ¢ a real fundamental

1+./5

J
unit, say =+ < > , JEZL, of QO (\/g). We have the following

THEOREM 1. A, ({e.m) = Ay (n) where (bjm)s = (°7' and (b/p),
# N on/3)/0 (®).
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Proof. Step 1.

4,((m) = Tr[(—a/p)z(4aftn)s (o) (0]
= Tr[(—a/p); (4an)s . (* . nn”"]
= Tr[(—au/p)y (4aum)s . nn“?’],

where (u/p), = 1, (u/n)s = (*, and this = 4,,(n). It follows that
A, ((in) = A,, (1), where (u/p); = 1 and (u/n)s = {>77(i=0,1,2,3,4).
Step 2.
A,(en) = Tr[(—a/p)y,(4alen)s . em. (.977:)"3] |
= Tr[(—a/p)z(4ajn)s . N 51/3)0(8) - nn“s]
- Aav (7[),
where (v/p)z = NQ(\/§)/Q (e), (v/n)s = 1.
Combining steps 1 and 2 we get:
Aa (Ci‘gn) = Aau (87‘5) Wh€r€ (u/p)Z = l’ (M/?T)s = Cs—i
= A, (n) where (v/p), = Norme, (v/n)s = 1,

= A, () where b = uv satisfies the conditions of

theorem 1. This completes the proof of theorem 1.
We next remove the restriction (g/n)s = { and see what the 4,’s mean

then.
3. THE RESTRICTION (g/n)s = { REMOVED

Here we have to look at 4, (n°) (and similarly 4, (n"z) and 4, (n"3)).

We have the following

THEOREM 2. 4, (n°) = 4, (n).
Proof. 4,(n°) = Tr [(—a/p), (4a/n°)s . n° . (2°)"°].
Now (4a/n°)s = (4a/n,)s, and if 4a = g" (mod p) then this = (g"/n,)s
= (g/ny)s = (** = (&"/n)5 = (4a/mn)5 = o [(4a/m)s]. Hence
4,(°) = Tr[(—alp)y .o (4ajn)s .7 .7
= Tr[a ((—a/p)Z (4a/m)4 .nn"3)]
= 4,(n) as required.
A clearer insight is gained into this by looking at the whole thing

directly as follows.
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Since the choice of g is arbitrary, we change g to another primitive
root g" with (r,p—1) =1, r = i(mod 5), i = 1, 2, 3,4. This does not
alter 4, (as 4, 1s independent of g) but replaces = by any desired 7; so that
A, (n) = 4, (any other n). Note that such an r exists, for all we want is,
for i =1,2,3,4, a A such that (i+54,p—1) = 1. Now i+ 5] takes
infinitely many prime values as A takes positive integer values since
(i, 5) = 1; so A may be chosen so that i + 51 is a prime avoiding the primes
occuring in p — 1.

4. EXPRESSIONS ALLIED TO 4, (n)

We fix our n now with (g/n)s = { and normalize it too. It is clear that
there are only 3 expressions allied to 4,(n) viz (—a/p), (4a/n)s.n.7°
+ conjugates, (—a/p); (4a/n)s . n° .+ conjugates and (—a/p),
(4a/n); . . 2%+ conjugates. This is so because changing the first term
of 4, (n) fixes the changes in the other terms (otherwise we will not even get
a rational integer!). Let us look at the first of these (the others would be
similar), which equals Tr [(—a/p), (4a/n)s . = n°]. We have the following
theorem:

THEOREM 3. Tr[(—a/p); (4a/n)s.nn’] = A, — 1 (n), where (u/p),
= 1 and (u/n)s = (4a/n)s.
Proof. We have
4, (m) = Tr [(ajpy) (4a/n)s . 7. 7]
= Tr [(—a/p); (4a/n°)s . n° . n"3] by 3 on letting 7 — 7°,
= Tr [(—a/p), (16a*/7)s . n° . 7] since (4a/n")s = (g"/n3)s
= (&'/mn )5 = (d4a/n)s = (16a*/m)s,
= Tr [(—au/p)z (dau)/n)s . = n°], where (u/p)z = 1 and (u/p)s
= (4a/r)s.
Now writing a for au we get the theorem.

It follows that the expressions allied to 4, (n) also represent the number
of solutions of the congruence (1) for a suitable value of a.

5. THE SET {4,]|a =1,2,3,..,p — 1}

Dickson’s paper on cyclotomy [1] includes the following Theorem
(theorem 8 of [1]). Let p = 1 (mod 5) be a rational prime. Then the Dio-
phantine equations
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i, 16p = x% + 50u? + 500 + 125w°
(4) ii. 92 — duy — u? = xw
iii. x = 1(mod 5)
have exactly 4 integral simultaneous solutions. If (x, u, v, w) is otie solution

then the remaining three are (x, —u, —v, w), (x, v, —u, —w), (x, —v, u, —w).
Now let £ (x, u,v, w) = + (25w—x—10u—20v). We have the following

THEOREM 4. The distinct A, are the following 10 numbers :

+x, + f(x,u,v,w), + f(x, —u, —v,w), + f(x,v, —u, —w),
+ fx, —v,u, —w).

Remark. If 4a is a quintic residue mod p then 4, = (—a/p), . x.

Proof. In the notation of [2] we have

4a 4a 4a _ 4a _
4, =(=a/lpz|{{—) . T +{(—| +s'|—) .S +{—]).T
[(”)5 (n2>5 (”3>5 (M)s ]

with T =s;{+ 5, +s5303+s5,0* and S=s530+s5,0*+ 5,0
+ 5, {*. Letda= g’ (mod p). We have to look at the five casesv= 0, 1, 2, 3,4
(mod 5).

If v = 0 (mod 5), so that (4a/n))s = 1 for all i, then

4, = (=alp)z(T+T +S +8) = (—a/p)z[(s1 +54) ((+{*)
+ (53453 (P +3) + (53 4+53) (LY + (s +50) (P +C3)]
= (—alp)z[—(sy+s,+ts53+54)] = (—a/p); . x (see equation (62) of [1]).
If v=1,2, 3,4 (mod 5), we get respectively, as above
( 454 —_ (Sl +S2 +S3) lf Vy = ]_(mOd 5),
J 4s3 — (sy+5,+s,) if v = 2(mod 5),
| 4sy — (sy+s3+s,) if v = 3(mod 3),
| 45y —(s2+s3+sy) if v = 4(mod 5).
Now from equations (62) and (63) of [1] we get, on solving

(3 4i(m) = (—a/p),

If

Il

dsy =  Sw —x + 2u + 4v, g
ds, = —5w — x + 4u — 2v, i.
4s3 = —5w — x — 4u + 2v, |

E

4s, Sw — x — 2u — 4y.
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so that substitution in (5) gives

1
Z(25w —x — 10u — 20v) if v = 1(mod 9),

1
—(— 25w — x — 20u + 10v) if v = 2(mod 5),
4,(m) = (—alp)y = | 4

1
Z(— 25w — x + 20u — 10v) if v = 3(mod 5),

4 (mod 5).

1
Z(25w —x + 10u + 20v) if v

But letting (x, u, v, w) — (x, —u, —v, w), (x, v, —u, —w), (x, —v, u, —w)
in the case v= 1 (mod 5) gives just the cases v= 2, 3, 4 (mod 5) respectively.
This completes the proof of theorem 4.

6. A RELATION AND AN EXAMPLE

THEOREM 5. (4,)* + (4,2)* + (4,3)* + (4,0° + (45)> = 20.p
Proof. The left hand side

= [f w0, WP + [f &, —u, =0, w]* +
[f (x,0, —u, =w)]> + [f (x, —0,u, —w)]* + x*

1
= ig[4 L 625w? + 4 .x* 4+ 1000 (u® +v?)] + x?

on simplifying

5 2 2 2 2 5 - |
= Z(lZSw +x° 4+ 50u” 4+ 50v%) = 2.16 .p (byiof(4))
=20.p
as required.
An example. Let p = 11. The 4 solutions of (4) are
(19 07 15 1)3 (1: O: '—19 1)9 (19 1909 —1)9 (1a —13 OJ _1)

and so by theorem 4 the set 4, is given by + 1, +4, —9, +11, +1, so that
124+ 42+ 92 + 112+ 1% = 220 = 20.p.
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A direct computation gives the following values

a=1, 2, 3, 4, 5, 6, 7, 8, 9, 10
A, =4, -9, -1, —-11, -1, 1, 11, 1, 9, —4

The fifth powers are 4a = 1,10 that is a = 3,8 and for these
Ay = (=3/p),. x=—x= —1and 44 = (—8/p)z.x = x = 1 as re-
quired.

I should like to thank Professor Frohlich sincerely for his suggestion to
look at these 4,.

APPENDIX

1. For the convenience of the reader we give here the definition of
(%/) 10, the tenth power residue symbol and some of its properties.

First let = be a prime factor of a rational prime p = 1 (mod 5). The
residue classes mod n, in Z [{], form a field of norm n = p elements. The
non-zero classes form a cyclic group (multiplicative) 1, p, ...,pF~* of
p — 1 elements. This group has in it just 10 elements or order dividing
10 viz. p/®@~110 (7 =0,1,...,9). These are represented (mod n) by
+ 1, +¢, ..., £ {* since these are distinct mod 7 and have order dividing
10. Now let « be any non-zero residue mod n. Then «?~1/10 has order
dividing 10 and so is congruent to one of + 1, + {, ..., + {* (mod n).
We define (2/n),o = + 1, + , ..., + {* according as «?~1)/10 {5 congruent
to + 1, + ¢, ..., £ {* (mod n). It follows that

(2/n);o = 2N~ D10 (mod 7).

It is immediately verified that (sf/n);0 = (%/7);0.(B/7)1,, and we
define (o/my7,)19 = (#/71)10 - (2/7,)10. The following properties may be
easily verified directly from the definition.

(). If p = 2, 3 (mod 5), so that p stays prime in Z [{], and if ne Z,
then (n/p),, = 1.

(ii). If = is a prime factor of a p = 4 (mod 5), so that p = 7 7 is the
prime decomposition of p in Z [{], and n € Z, then

(/)10 = 1.

(itf). If n is a prime factor of a p = 1 (mod 5), so thatp = n, n, 7, 7,
is the prime decomposition of p in Z [{], then

(n/n)yo . (n/M)yo = 1.
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(iv). If = is a complex prime factor of a p = 1,4 (mod 5) and o of a
q = 1,4 (mod 5), then (n/0)1, = (7)),

2. The symbol (a/f) s is defined in the same way and has similar proper-
ties. '

3. The symbol (a/p), is simply the ordinary Legendre symbol, the
subscript Z is used to distinguish it from the symbol («/f), which denotes
the quadratic character of @« modulo f in a given ring, e.g. if «, f € Z [i]

1 if x* = « (mod p) is solvable in Z [i],
— 1 otherwise.

then (o¢/B)zry = {
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