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et par suite, d’aprés la périodicité de g,
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Par suite
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Finalement, on voit que, pour k > m,
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4, DETERMINATION DE LA SERIE DE FOURIER DE F

Si I’on écrit la série de Fourier de F sous la forme
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La formule (4) donne pour 0 < x < 1

qg—1 x .
F@) =~—@1- —-x) +q' " h(g*™h).
On a donc ¢, = a, + b, , avec
1 1
-1
ak — q J (1 x)e 2kmxdx et bk __f 1- xh(qx l)e 2kmxdx

0

4.1. On voit immédiatement que

q-1 k#0, et q-1
a, = our , e ay = ——.
* = Akmi © 0T Ty
4.2. D’aprés la formule (3), on a pour tout x réel
ql—xh(qx—l) e—2k1rix — Z 1 pe x r+x—1) e—2k1rix.

La série est d’ailleurs uniformément convergente pour 0 << x <1

Il résulte de 14 que I'on a
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Le changement de variable x = 1 —r +- & " donne
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On obtient ainsi
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g (u)
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est absolument convergente pour Re s > 0 et, si 'on désigne par G (s) sa
valeur, la fonction G ainsi définie est holomorphe pour Re s > 0.

On voit que
1 2kmi
= . G(1+
log g log g

et on est ainsi amené a déterminer la fonction G.
D’abord, comme

4.3. Remarquons que I'intégrale

u

g() = f ([qt]—q [ - ?;)dt (et done g (;) _ qz‘ql)

une intégration par parties donne, pour Re s > 0,
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Maintenant, si on suppose que Re s > 2, on peut séparer I'intégrale
en trois et ’écrire
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1 . t
d’aprés une formule connue %), et, par le changement de variable u = —,

J[qz]duzq []du -~q—s:ié( -1).
u s

a
On trouve ainsi que, pour Re s > 2,
q — 1 qs—l qs—l

(12) Gs) = =5 + (s—l) ((s—1).

En raison de I’holomorphie de G, cette formule est valable pour
Res > 0,s # 1.
En particulier, pour k # 0,
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En examinant le comportement du second membre de (12) lorsque s

1
tend vers 1, on retrouve le fait connu que { (0) = — 3 et on voit que
q—1 qloggq :
G(1) = - - —(@@-1 (0)
2 2
q

— 1 qlogqg . : 1
=3 (log2n—1) — puisque { (0) = —Elog 2n.
On a ainsi les valeurs de b, pour tous les k € Z, et on trouve en définitive
que
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On peut le voir simplement en remarquant que ’on a pour tout N entier > 1
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q—1 kni\~t [ 2kni
Cp =10 1+ ¢ .
2km log g log g

Comme, quand ¢ tend vers I’infini,

et, pour k #0,

(i) = 0(]¢]***) pour tout & > 0,

on voit que la série de Fourier de F est absolument convergente.

( Recu le 25 février 1975)
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