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et par suite, d'après la périodicité de g,
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Finalement, on voit que, pour k > m,

_ir) +t
m / ^ ^

La suite {p'fc} ne tend donc pas vers £ ar
r _1 \ 2

4. Détermination de la série de Fourier de F

Si l'on écrit la série de Fourier de F sous la forme

n2kiiixX cke2knix,
keZ

on a
î

Ci, — F(x)e~2knixdx
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La formule (4) donne pour 0 < x < 1

F(x)(l ~x) +

On a donc ck ah + bk avec

i î

_
q ~ 1

Ut — : (1 — x)e 2knix dx et bk
J
0

q1-xh(qx~1)e~2k7lixdx

4.7. On voit immédiatement que

g — 1 g - 1

ak ——: pour k # 0, et a0 —-—
4 km 4

4.2. D'après la formule (3), on a pour tout x réel

00
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r 0

La série est d'ailleurs uniformément convergente pour 0 < x < 1

Il résulte de là que l'on a

bk I
1

»
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log u
Le changement de variable x 1 — r H donne

log g
1 qr
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On obtient ainsi
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4.3. Remarquons que l'intégrale

g(u)
du

est absolument convergente pour Re s > 0 et, si l'on désigne par G (s) sa

valeur, la fonction G ainsi définie est holomorphe pour Re s > 0.

On voit que
1 2kni\

bk - G 1+
log q\ log qj

et on est ainsi amené à déterminer la fonction G.

D'abord, comme

g(u) Iqt] -q [;] - dt ^et donc g ^
une intégration par parties donne, pour Rq s > 0,

G (s)
q — 1 qs

1
1
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Maintenant, si l'on suppose que Re s > 2, on peut séparer l'intégrale
en trois et l'écrire
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t
d'après une formule connue 10), et, par le changement de variable u — -

q

' [«"]
du q

s— 1 M «S— 1

— du= Ç (s -1).r 5 — 1

On trouve ainsi que, pour Re 5 > 2,

710\ -k q~1 ^S_1 ^S_1 "ï» n(12) G (S) — •
TT— C (s - •

2 5 — 1 5(5 — 1)

En raison de l'holomorphie de G, cette formule est valable pour
Re 51 > 0, 5 # 1.

En particulier, pour k # 0,

/ 2kni\ q — 1 g — 1/ 2kni\~1 / 2kni\\
G{1+^rq)={~~4hii + i^[1+]^)

En examinant le comportement du second membre de (12) lorsque s

tend vers 1, on retrouve le fait connu que £ (0) — ^ et on voit que

q — 1 q log q
G(l) -2-y- (0)

q — 1 <7 log g 1

—-— (log 271 — 1) —— puisque £ (0) — - log 2 n

On a ainsi les valeurs de bk pour tous les k e Z, et on trouve en définitive

que
q — 1 q 1

c0 (l°ê 2tt — 1) —0 2 log qVë 4

10) On a pour Re 5 > 1 : ï (s) s j' M
us +1

du

1

On peut le voir simplement en remarquant que l'on a pour tout N entier > 1
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et, pour k#0,

ck i -—: 1 + -^0 ç 2fc7n-).

2kn\ log \log qj
Comme, quand t tend vers l'infini,

Kit) 0(| t |i+£) pour tout e > 0,

on voit que la série de Fourier de F est absolument convergente.

(Reçu le 25 février 1975)
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