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formule qui donne (1) en prenant

c « loS *En posant a on a
log

Z s«(") Z (Zar(n)Y
/• 0 \n^x J

On déduit de (6) que l'on a

X

nZ «,(«) j ([£] + (l+W-*)«r(W),
~ 0

+q-^x+(!+[*]-*) a, (M),
d'où

Z M")
n^x
[A] _ ^

Z qr+1 g (q-'-'x) +q—— X(1+ [A]) + (1 + [x] -x) Sq ([x])
r — 0 Z

puis on vérifie que
[A] [A]

Z 4r+10(<Z~''~1x) <?1 + U] z
r—0 k — 0

xq1 + ix^~xh{qx~ix^~1) — h (x)

3. Démonstration de la non dérivabilité
DE LA FONCTION F

Nous allons maintenant montrer que la fonction F n'est dérivable en

aucun point. En raison de la périodicité, il suffit de montrer qu'elle n'est
dérivable en aucun point de l'intervalle ouvert ]0, 1[ et qu'elle n'est pas
dérivable à gauche au point 1.

3.1. On voit que ceci se ramène à montrer que la fonction h n'est dérivable

en aucun point de l'intervalle ouvert!-, 11 et n'est pas dérivable à gauche

au point 1.

1 log t
En effet, si - < t < 1, on a 0 < 1 H < 1 et (4) donne

q log q
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V l°g4/ 2 loS 4 f

Ceci vaut encore pour t 1 car F (1) h (1) 0.

1

Ainsi on a pour - < F< 1

«

/ log A 4—1
h(f) tF 1 + — +— t log F

\ log qj 2 log q

Par suite, si F était dérivable au point 9 de ]0, 1 [, h serait dérivable au

point q6 1 de
1

-, 1

q
Si F était dérivable à gauche en 1, h serait dérivable

à gauche en 1.

En fait, nous montrerons que h n'est dérivable en aucun point de l'intervalle

ouvert ]0, 1[ et n'est pas dérivable à gauche au point l.8)

3.2. Nous utiliserons la remarque suivante:

a
Si x -,oùaeZet/cG N*, on a

q

h(x)£
r= 0

puisque, dès que r > k, qr x est un entier et g (qrx) 0.

a b
Par suite, si x —T et x — avec a et b e Z, a # b et k e N*,

4 4fc

on a

fe (x') - h (x) g (qrx) - g (grx)
x' — x r=0 qVx' — qr%

3.3. Il est très facile de montrer que la fonction h n'est pas dérivable à gauche

au point 1.

Cela résulte immédiatement de ce que, si Çk l ~ q~k, la suite

/MU -/îuvn
1 -É*

tend vers + oo.

8) La fonction h n'est donc dérivable en aucun point. Dans le cas où q 2, — h est
la fonction / de Trollope. Celui-ci indique que cette fonction / n'est dérivable en aucun
point.
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En effet, d'après la remarque précédente,

h(l)-h(Çk) kZ^ g(qr)-g(qrÇk) k_—;—i—= I "—7——= I «
1 ~~ Çfc r 0 Q ~ 9 Qk r 0

Mais, comme qr - qr~k, d'après la périodicité de g on a pour
chaque r < k — 1

î

g (qr) - g (qrQ g(i)- g (i -g'"-'1) J M - dt,

l-qr~k
q — 1

ce qui est égal h qr K —-— car, pour 1 - qr < t < 1, [/] 0 et

[#/] q — 1 puisque q — 1 < q - qr~k+1 < qt < q. On voit donc que

&(1) -/z(Q * - 1

k
1 2

3.3. Soit maintenant 9 un nombre de l'intervalle ouvert ]0, 1[.

Nous allons montrer que h n'est pas dérivable en 9.

Nous nous baserons sur l'observation suivante:
Si h était dérivable en 9, quelles que soient les suites {xk} et {x'k} tendant

fh (xh) — h
vers 6, avec xk < 9 < x'k pour chaque k, la suite < 7 > tendrait

l *k ~ *k J

vers h' (9).9)

3.3.1. Remarquons d'abord que l'on peut écrire
00

9E «/«"•'>
j= 1

où les oq- sont des entiers satisfaisant à 0 < ocj < q - 1 et il y a une infinité
de j pour lesquels ccj q — 1 (l'écriture du nombre 9 en base q étant

0, ax a2 oq-...).

9) Il existerait une fonction e continue en 0 et nulle en ce point telle que l'on ait pour
tout t

h{i) h (0) + {t- 0) h' (0) + it-0) s (t),
et l'on aurait

h (x'k) — h (xk) _ ^ ^ +
(x'k— 0) s (x'k) + (0—Xk) s (xk)

X'k Xk X k Xk
d'où

h (x'k) - h (xk) _ h, ^ < Sup (| S (Xk) | | S (x'k)!)
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Nous introduirons une suite d'entiers N 0> N l9 Nv, définie par
V

N 0 0 et, pour v > 1, N v £ aj #V_J-
j= i

Ceci dit, définissons et x'k pour k > 1 par
k

Xfc X «/g"' et
y-i

h (x'k) ~ h (xk)
et posons pk 7

* k - *k

Les deux suites {xk} et {x'k} tendent vers 6 et on a pour tout h > 1

xk < 9 < x\
Par suite, si /z était dérivable au point 9, la suite {/^} tendrait vers h' (6).

Onaxt= JVfc q~ket (Nk+l) q~k.

Donc, d'après la remarque du paragraphe 3.2., on a pour tout k > 1

y1 g 0 fXj~g (gX)
P*

r o irxk-qrxk
D'après la formule (2), on a pour chaque r < fc — 1

er *'k

g (gr*'it) - g (gr**) J ^[gd - g [f] - Lr~)dt '

<lr Xk

On va voir que, pour qrxk < qr x'k, on a

[g*] - g M «r+l •

On voit d'abord que, pour 0 < v < k,ona

Nv<qvxk<Nv+ 1 -qv~k,
d'où il résulte que

(9) Nv < qv xk < q"xk<Nv + 1

k
C'est vrai pour v 0 car 0 < xk<1) X q~J 1 ~ g-'1.

j= 1

Si k > 2, pour 1 <v</c - lona

gV** X S-gV_/ + X «;gv~X
j=l J=v+1
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d'où

Nv<q*xk<Nv +(q-l)£
j V + 1

Enfin qk xk Nk.

Il résulte de (9) que, pour qr xk < £ < qr x'k9 avec 0 < r < fc — 1, on a

Nr < t < Nr + 1 et iV,+1 < gt < Nr+1 + 1

et par suite

d'où
[f] Nr et

M "«H Nr+i -
qui est bien égal à ar+1.

Ceci montre que, pour 0 < r < k - 1,

9 Ulrx'k) - 9 (qrar+1

et on voit ainsi que

q-1

q-l

Pk Z «r+1- i (W
La fonction /z n'est donc certainement pas dérivable au point 6 si la série

q-1>
(10)

n'est pas convergente.
C'est certainement le cas si q est pair car alors on a pour tout r

q - 1 1

2

puisque 2 1a,.—
«"1

2 ar — q + 1 est un entier impair.

Par contre, dans le cas où q est impair, la série (10), dont tous les termes

sont des entiers, peut être convergente. Cela se produit si, et seulement si,

ces termes sont tous nuls à partir d'un certain rang, c'est à dire si l'on a

« - 1

a,-J 2
à partir d'une certaine valeur de j.

Il faut donc traiter séparément ce cas.
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q — 1

3.3.2. Supposons donc maintenant que q est impair et que l'on a oq- —-—

pour j > m, avec m > 1.

Alors, d'après ce que l'on vient de voir, la suite {pk} lend vers
m [ / q j\
£ ar j. Donc, si h était dérivable au point 9, on devrait avoir

m / -<

h'(9) £

Nous allons introduire une nouvelle suite {x"k} définie par

X"k xk +

2

q~k

et poser

h(x\)-h(xk)
Pu

X h - Xu

En utilisant encore la remarque du paragraphe 3.2., on voit que

- 'y g - g (grxk)
Pk

r=o qrx

Si h était dérivable au point 0, la suite {p'k} devrait tendre vers
" q-l\L ar 2~J

Va montrer n'en est Pas ainsi-

On voit d'abord que, si k > m, on a pour 0 < v < k - 1

Nv<q*xk<Nv + 1 -2qy~\
d'où il résulte que

(11) Nv <qvxk < qvx\ < Nv + 1

En effet, on peut d'abord écrire

m k

xkZ a,q-J + X ctjq"*,
j=1 j=m+1

d'où

0 + 1—2. £ 1 - +
J — 1 2 j m + 1 2

Mais #"m + q~k (qk~m +1) > 4# ~k puisque # > 3 et A: - > 1.
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Pour 1 < v < ä: — 1, on a, comme on l'a déjà vu,

q*xk=Nv +£ oLjq^.
j V + 1

Ceci donne toujours qv xk > N v.

D'autre part, si v < m, on peut écrire

m k

qvxk=Nv +X « jZ aj«v"J
j=v+X j=m+1

et on voit ainsi que

«"**<^+(«-1) £ qv~J+q^£
J v + 1 ^ j m +1

JVv + 1 -I(,qv-m+q*-k)
d'où

qvXk<Nv + 1 -2^"*,
puisque

+ ^v_fc ^_m + ^ ^ 4 ^v_t _

Si v > m, on a simplement

1 ^ JL

Nv +Z <TJ' + 1 - - (1 + «v"*)
1 j=V+ 1 Z

et
1 + (qk-v + ^ qv-k ^ 4 qv-k ^

Il résulte de (11) que, si k > m, pour qr xk <it < qr x"k avec
0 <r - 2, on a [t] Nr et [g/] IV,.+1, d'où [gtf] — q [t] ocr+1.

Donc, si k > m, on a pour 0 < r < k — 2

g-1
0 Of*"*) - 0 te1**) (qrx\-qrXk) \ur+i -

et par suite

*v2/ î-l\

S (Mr-Z~) + j (0(0k~lx"k) -0(4*'%))-

Notons maintenant que l'on a

JVt-1 + «kl'1
2q

et



qk1
X"k qk1

xk + 2 1 +

et par suite, d'après la périodicité de g,

.M.jîzig qklx"ù-g (q**)0, 2 - * ^
g + 3

~2q~

[<f] -"<? M ^ dt

g-1
2g

^ — 1 + 3
Mais on a [t] 0 pour < t < ——-

2 q 2 q

et

q — 1 q — 1 q 1

m-— p°ur

p + 1 g + l g + 3

M — pour _ v < _
Par suite

q

Finalement, on voit que, pour k > m,

_ir) +t
m / ^ ^

La suite {p'fc} ne tend donc pas vers £ ar
r _1 \ 2

4. Détermination de la série de Fourier de F

Si l'on écrit la série de Fourier de F sous la forme

n2kiiixX cke2knix,
keZ

on a
î

Ci, — F(x)e~2knixdx
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