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formule qui donne (1) en prenant x = m.

lo
En posant 4 = 5 x, on a
log g
[4]
Y, S, (n) =) ( Y a,(n)).
n=_x r=0 \n=x

On déduit de (6) que 'on a

X

nzgum)=J<&%]—th{de+u+u}<meﬂ%

— x + (1+[x] =) a, ([x]),

r -r— q
=q""'g(@ " %) +
d’ou

Z Sq (n) =

n=x

[4] q
z qr-i-lg (q—r—lx) +
r=0

2

x(L+[4]) + (1 +[x] —x) S, ([x]),

puis on vérifie que
[41 o vy A
ZO " tg(g " x) = ¢t ZO q g (q“-q* M
r= k:

— xq1+[l]—lh(ql—[l]—1> _ h(X) .

3. DEMONSTRATION DE LA NON DERIVABILITE
DE LA FONCTION F

Nous allons maintenant montrer que la fonction F n’est dérivable en
aucun point. En raison de la périodicité, il suffit de montrer qu’elle n’est
dérivable en aucun point de l'intervalle ouvert ]0, 1] et qu’elle n’est pas

dérivable a gauche au point 1.

3.1. Onvoit que ceci se ramene a montrer que la fonction /4 n’est dérivable

1
en aucun point de 'intervalle ouvert} —, 1 [et n’est pas dérivable a gauche
q

au point 1.

1 log t
En effet, si—- <<t <1l,oma <1+ < 1 et (4) donne
q log ¢ -
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log ¢ —1 logt 1
logg 2 logg t

Ceci vaut encore pour t = 1 car F (1) = h(1) = 0.

1
Ainsi on a pour — <t
q

log t q —1
h(t) =tF|1+ - t logt.
logg 2log g

1

N

Par suite, si F était dérivable au point 6 de 10, 1[, 4 serait dérivable au
1 e
point g%~ * de], 1 [ Si F était dérivable a gauche en 1, & serait dérivable
q

a gauche en 1.
En fait, nous montrerons que / n’est dérivable en aucun point de l'inter-
valle ouvert ]0, 1] et n’est pas dérivable a gauche au point I.%)

3.2. Nous utiliserons la remarque suivante:

it a \ O
Six = —,ouaeZetkeN*ona
q

he) = T a7

puisque, dés que r >k, ¢" x est un entier et g (¢"x) = 0.

. . a t b
Par suite, si x = —etx =—,
q q

avec a et beZ, a # b et ke N¥,

on a
h(x)—h(x) 1 g(@'x) —g(gx)
X —x =0 ¢x —g'x

g

3.3. Il est trés facile de montrer que la fonction / n’est pas dérivable a gauche
au point 1.

Cela résulte immédiatement de ce que, si & = 1 — g~ % la suite

{hu) —h(&) ’
e

}tend vers + oo.

8) La fonction % n’est donc dérivable en aucun point. Dans le cas ol g = 2, — A est

la _fonction f de Trollope. Celui-ci indique que cette fonction f n’est dérivable en aucun
point.




En effet, d’aprés la remarque précédente,
h(1) —h(C) _ ‘e 9(@) -9
1 — & r=0 9" —q" &

Mais, comme ¢" ¢, = ¢" — ¢" %, d’aprés la périodicité de g on a pour
chaque r <k — 1

-1

k
= > ¢ (g@) —9(@&).

=0

1

| —1
9@ —g(@&) =g) —g(l—qg"" = J ([qt] —q[t] - q—5—> dt,

T -

1-gq
kq_l

ce qui est égal a ¢g'~ car, pour 1 — ¢ * <t <1, [{] =0 et

r—k+1

[qt] = g — 1 puisque ¢ — 1 <gqg — ¢ <L qt < q On voit donc que

h(l)—h(ék)_k_q—l
{1 —& 2

3.3. Soit maintenant 8 un nombre de I'intervalle ouvert ]0, 1[.
Nous allons montrer que /# n’est pas dérivable en 0.
Nous nous baserons sur I’observation suivante:

Si h était dérivable en 0, quelles que soient les suites {x,} et {x;} tendant

h(xy) — h(x)

X — Xg

vers 0, avec x;, <(0 < x’, pour chaque k, la suite { } tendrait

vers A’ (0).°)

3.3.1. Remarquons d’abord que ’on peut écrire

9 - Z Oqu_j,

j=1

ou les o; sont des entiers satisfaisant 4 0 < «; <{¢g — 1 et il y a une infinité
de j pour lesquels o; # g — 1 (Iécriture du nombre 6 en base ¢ étant
0, ay 0ty ... & ..0).

9) 1l existerait une fonction ¢ continue en 0 et nulle en ce point telle que ’on ait pour
tout ¢

h(t) =h®) +@¢—0OR 0O +E=-0ec@®,

et ’on aurait

h(x"x) — h(xx) — ¥ @) +
x’k - Xk

(X’k"— O) € (x/k) + (9— Xk) € (Xk)

x’k — Xk

d’olt |
h (x'k) -~ f (Xk) _

X,k - Xk

A (0) | < Sup (| e (xx) | , | € (x'k)l) .
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Nous introduirons une suite d’entiers Ny, N ¢, ..., N, ... définie par
v .
N,=0et,pourv>1, N, =>aq "
=1
Ceci dit, définissons x, et x’, pour & > 1 par

k
. ’ _k
Xk = ZochJ et Xy =X +qg 7,

i=1
h(xy) — h(x)
et posons p, = ; .
X g — Xk

Les deux suites {x,} et {x',} tendent vers 0 et on a pour tout k > 1
<0 <x,.

Par suite, si 4 était dérivable au point 0, la suite {p,} tendrait vers A’ (0).
Onax, = Nyq ¥etx, = (N, +1)q7"

Donc, d’aprés la remarque du paragraphe 3.2., on a pour tout k£ > 1

1

Z— g(q'x) —g(q xk)

r=0 qu'“qu

Pr =

D’aprés la formule (2), on a pour chaque r <k — 1

qr x'g

, —1
gl@xy —g@x) =j ([qt] —q[t] - —2—) dt .
qr x,

On va voir que, pour ¢"x, <t < ¢"x',, ona
[at] —q[t] = oy
On voit d’abord que, pour 0 <v <k, ona

Nv<qvxk<N 1—qv—ka
d’ou il résulte que :

9) N,<¢"x, <q¢"x, <N, +1.

Clest vrai pour v = O car 0 <x, <(¢g—1)Y g7 =1—-q7%

k—1ona

Sik>2 pourl <v

I

| q’ X,
& j=

<
ZanVJ_N+Z vj:

Jj=v+1

—




e e (g M
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d’ou

k
Nv<qvxk<Nv+(q_1) Z qv—j =Nv+1—qv~k°

j=v+1
Enfin ¢* x, = N,.
Il résulte de (9) que, pour ¢"x, <t < ¢"x',, avec0 <r <k — l,ona

N, <t<N,+1 e N,,;<qgt<N,,;+1,
et par suite
[]] =N, et [qt] = N,yy,
d’ou
[9t] —q[f] = Nysy —qN,,

qui est bien égal a «, ;.
Ceci montre que, pour 0 <r <k — 1,
qg—1

g (qrx,k) —g(g'x) = (qrx,k —q'x) (“r+1 - —2—> 5

et on voit ainsi que

k—1 k
q—1 q—1
Pr = r§0 <°‘r+1 - —2*> = r§1 (O‘r_ _2“‘)

La fonction % n’est donc certainement pas dérivable au point 0 si la série

’ 0
q—1
(10) 2 (Otr - —2—>
r=1
n’est pas convergente.
C’est certainement le cas si ¢ est pair car alors on a pour tout
q — 1
a e ——

! 2

DN =

—1
puisque 2 (cx, — q—z-) = 2a, — q + 1 est un entier impair.

Par contre, dans le cas ou ¢ est impair, la série (10), dont tous les termes
sont des entiers, peut étre convergente. Cela se produit si, et seulement si,
ces termes sont tous nuls a partir d’un certain rang, c’est a dire si I’'on a

——

o; = a partir d’une certaine valeur de j.

J

Il faut donc traiter séparément ce cas.
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L , q—1
3.3.2. Supposons donc maintenant que ¢ est impair et que 'ona «; = 5

pour j > m, avec m > 1.
Alors, d’aprés ce que l'on vient de voir, la suite {p,} tend vers

| —1 .
Y (oc, — 2—2*) Donc, si 4 était dérivable au point 0, on devrait avoir

KO = 3 <o¢r— C"j)

Nous allons introduire une nouvelle suite {x”,} définie par

x”k — xk 4+ 2q—k

et poser

h(x") = h(x)

Pr = p
X g — Xg

En utilisant encore la remarque du paragraphe 3.2., on voit que

o g(@’x") — g(g™x)
kT F oM :

r=0 q"x"y — q" x

Si h était dérivable au point 0, la suite {p’,} devrait tendre vers
m _1
3 (oc, — %) On va montrer qu’il n’en est pas ainsi.
r=1

On voit d’abord que, si k > m, ona pour 0 <v <k — 1

N, <q¢’x, <N, +1—=2¢g"7F,
d’ou il résulte que

(11) N, <q'x, <qgx", <N, +1.

En effet, on peut d’abord écrire

k
Y= ) 9%q 7+ )

i=1 j=m+1
d’ol
m -1 1 .
<(g-1) > g7/ P Y a7 =1—-(@ "+q7".
Jj=1 2 j=m+1 2

Mais ¢7" + ¢7“ = (¢"""+1)g7* > 49 " puisque ¢ >3 et k — m > 1.
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Pour 1 <v <k — 1, on a, comme on I'a déja vu,

k
Q"x, =N, + Y o;4"77.

j=v+1
Ceci donne toujours ¢* x;, > N ,.
D’autre part, si v < m, on peut écrire
Txo= N+ Y g+ > a4
j=vt+l1 j=m-+1

et on voit ainsi que

v - v— q—‘l £ — i
% <N, +@-1) > ¢ 7 +— Y g7’

j=v+1 2 j=m+1
1 — ~k
= N, +1 —E(qv "+q')

d’ou
' x, <N, +1—-2q"7%,
puisque
qv—-m .5 qv—k — (qk—m+1) qv-k é4qv—k .

Siv > m, on a simplement

1
"%, = N, + —— Z g~/ =N, +1——(1+qv )
2 j=v+1
et

1 + qv—k — (qk—v+1) qv—k é4qv—k .

Il résulte de (11) que, si k> m, pour q"x, <t<q"x", avec
0 <r <k - 23 on a [t] = r et [qt] - r+19 d’ou [qt] - Q[t] %yt 1-

Donc, sik > m,onapour 0 <r <k — 2
14 r i r q—l
g(@'x") —g@x) = (@ x",—q"x) (“r+1"—2—>9

et par suite

p'k=z ¢ 1

k—1 _n» k—
r=0 q X —dq Xk

k_2< q-— 1) 9@ 'x") — g (@ %)
Apyr1 — +

2

e 1 l
2. (cx ———) + 5 (9 (@ 'x") — g (¢ "xp). f

Notons maintenant que ’on a
_ - q—1
¢ 'xy = Nyog + g7t = Ny 1+T

et
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g tx" = g ' x, + 2g7 = Ny + —,

et par suite, d’aprés la périodicité de g,

o _ q+3 q—1
Q(qk L P g(qk 1xk) = 9(7;) — 49 (*‘g)

q+3
ke 2.[1_

- (w0-ama- 225

q—1
29
. q —1 qg + 3
Mais on a [t] = 0 pour <Lt< ——
2q 2q
et
q—1 qg —1 qg +1
] = —— our —— <t < —— ,
[41] >— B TE T
q+1 q+1 q+ 3
[l = our < el
[41] 3 p 24 34
Par suite

B 1
g (qk—lx”k) —4g (qk 1xk)' = a .

Finalement, on voit que, pour k > m,

, - q—1 1
= O(r-——— +—.
Pl ;( 2) 2

4, DETERMINATION DE LA SERIE DE FOURIER DE F

Si I’on écrit la série de Fourier de F sous la forme

Z ck ekax ,
keZ

on a
1

¢ = J‘ F (x)e™ 2™~ dx

0
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