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est continue sur R (et aussi périodique de période 1, mais cette propriété

ne nous sert pas).
Finalement on pose

(4) F(x)^^(1 +[*]-*) +

Il est clair que la fonction F définie par cette formule est périodique de

période 1, continue pour x non entier, et continue à droite pour x entier.

On vérifie immédiatement qu'en fait elle est aussi continue pour x entier:

on a F (1) -
*

+ q h - J, ce qui est égal à 0 car, comme g (x) 0
2 W

A\ A\ <1 -1
pour x entier, la formule (3) donne h - — g - ; or on voit

W W 2 <2

que, quand x tend vers 1 par valeurs inférieures, F (x) tend vers h{ 1) 0.

Nous compléterons notre résultat en montrant que la fonction F n'est
dérivable en aucun point et déterminant explicitement sa série de Fourier.
Celle-ci est absolument convergente et ses coefficients s'expriment à l'aide

2 k ni
des valeurs de la fonction £ de Riemann aux points où k e Z/:\7)

log

2. Démonstration de la formule (1)

Soient a0 {ri), a1 {ri), a2 {ri), les chiffres de l'entier positif ou nul
n écrit en base q, lus de droite à gauche. En fait il y a seulement un nombre
fini de chiffres, mais on peut former une suite infinie en complétant par
des zéros.

00

Ainsi on a n £ ar {n) qr,
r o

log n
avec 0 < ar {n) < q pour tout r > 0 et ar {ri) 0 pour r >

log q
CO

On a aussi Sq {n) ]T ar {ri).
r= o

7) La possibilité de déterminer explicitement la série de Fourier de F nous a été
signalée par M. Mauclaire. Il l'obtenait à partir du résultat suivant, qu'il avait établi
antérieurement :

00

On a pour Res >0: s J ~Sq([r])dt Ç (s).
1

Nous donnerons ici un calcul direct.
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2.1. Remarquons d'abord que l'on a pour chaque >0

(5) ar(n)=n n
-q [qr+1J

Cela résulte immédiatement de ce que l'on a pour chaque k > 0

Z aj(n)qJ-
j k

Ceci est évidemment vrai pour k 0. Pour k > 1 on peut écrire

k — 1 oo
n

q
Z ,• («) * + Z tfy (") qj k

j=0 j=k

et on voit que la première somme au second membre est > 0 et < 1, tandis

que la deuxième est un entier.

Comme, pour n < t < n + 1,

t " n
et

t n

qr Vr q^ qr+1

on peut écrire (5) sous la forme

n + 1

(6) ar(n) -q
t

~r+T

2.2. Ceci dit, soit m un entier > 1, et posons /

dt

log m

log q

On voit d'abord que, si n < m, on a ar (n) 0 pour r > [/].
Ainsi on a pour chaque n < m

m
Sq (n) Z (n) •

Il en résulte que l'on a

(7) Z s«(") Z Z ar(n) •

n= 0 r 0\/î 0

Mais la formule (6) donne

m— 1

Z flr(n) r t

jqrl -q Ur+1J dt



(7 t t

„ r -4 „r+ 1\S _ S
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q- 1

dt -f- m
q - 1

2 y 2

En faisant le changement de variable qr+i u, on voit que

m_1 1

Z ar(n) qr+1g(q r 1m) + m —-—
n= 0 ^

En reportant cette valeur dans (7) on obtient

m-i [/] _ 1

Z s«(") Z qr+1g(q r + (i+W)m-
» 0 r 0 2

« - 1

ou
I m-i m

(8) — £ =— X qr+1 g (q~r~1m) +(l+[/])
m ;j=o m r=0 z.

En posant r [/] - k, on a

m m
Z qr+1g{q-r~xm) E
r=0 fc 0

Z « ^-"giniq^M-1
k= o

1)!

puisque, pour k > [/], m qk [n 1 est un entier et g (mqk cn *) 0.

En tenant compte de ce que m ql, ceci donne

1 m oo

— Z qr+1 g(q'r~1m) q1 +m~'Z9~k 9
m r o

q

k= 0

Ainsi (8) donne

1 m — 1
^ -j

- Z S4(n) =i^_/+«^-(i+[/]-/)+i + m-«Ä(gI-m-i)
m ,I=0 2

4 - 1

2

Z-F(/);
ce qui est le résultat désiré.

2.3. Remarque : On peut montrer que l'on a pour tout x réel > 1

s<(") 11081 + *F(S) - 'w + ('+ M-»)«,([«]).
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formule qui donne (1) en prenant

c « loS *En posant a on a
log

Z s«(") Z (Zar(n)Y
/• 0 \n^x J

On déduit de (6) que l'on a

X

nZ «,(«) j ([£] + (l+W-*)«r(W),
~ 0

+q-^x+(!+[*]-*) a, (M),
d'où

Z M")
n^x
[A] _ ^

Z qr+1 g (q-'-'x) +q—— X(1+ [A]) + (1 + [x] -x) Sq ([x])
r — 0 Z

puis on vérifie que
[A] [A]

Z 4r+10(<Z~''~1x) <?1 + U] z
r—0 k — 0

xq1 + ix^~xh{qx~ix^~1) — h (x)

3. Démonstration de la non dérivabilité
DE LA FONCTION F

Nous allons maintenant montrer que la fonction F n'est dérivable en

aucun point. En raison de la périodicité, il suffit de montrer qu'elle n'est
dérivable en aucun point de l'intervalle ouvert ]0, 1[ et qu'elle n'est pas
dérivable à gauche au point 1.

3.1. On voit que ceci se ramène à montrer que la fonction h n'est dérivable

en aucun point de l'intervalle ouvert!-, 11 et n'est pas dérivable à gauche

au point 1.

1 log t
En effet, si - < t < 1, on a 0 < 1 H < 1 et (4) donne

q log q
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