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est continue sur R (et aussi périodique de période 1, mais cette propriété

ne nous sert pas).
Finalement on pose

(4) F(x) = ————; ! (1+[x]—x) + q”[x]""h(qx‘[x]‘l\).

Il est clair que la fonction F définie par cette formule est périodique de
période 1, continue pour x non entier, et continue & droite pour x entier.
On vérifie immédiatement qu’en fait elle est aussi continue pour x entier:

-1 1
ona F(l) = q—z— +qh< ), ce qui est égal a 0 car, comme g (x) = 0
q

1 1 -1 .
pour x entier, la formule (3) donne h <> =g <_> = — _q__2_ ; Or on voit
q q q

que, quand x tend vers 1 par valeurs inférieures, F (x) tend vers A4 (1) = O.

Nous compléterons notre résultat en montrant que la fonction F n’est

dérivable en aucun point et déterminant explicitement sa série de Fourier.

Celle-ci est absolument convergente et ses coefficients s’expriment a 'aide
2kmi

log g

des valeurs de la fonction { de Riemann aux points ,ou keZ*")

2. DEMONSTRATION DE LA FORMULE (1)

Soient a, (n), a, (n), a, (n), ... les chiffres de D’entier positif ou nul
n écrit en base ¢, lus de droite a gauche. En fait il y a seulement un nombre
fini de chiffres, mais on peut former une suite infinic en complétant par
des zéros.

. |
Ainsi on a n= > a,(nq",
r=0

log n

avec 0 < a, (n) < g pour tout r >0 et a, (n) = 0 pour r > 1 :
0g ¢

On a aussi S, (n) = > a, (n).
r=0

) La possibilité de déterminer exphc1tement la série de Fourier de F nous a été
signalée par M. Mauclaire. Il I'obtenait & partir du résultat suivant, qu’il avait établi

antérieurement: l
e

1 5

OnapourRes>0:sf tHlS([t])dt C(/ |
1 ;

Nous donnerons ici un calcul direct. |
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2.1. Remarquons d’abord que I'on a pour chaque r >0

(5) a,(n) = [1] - q[ ”]
q q

Cela résulte immédiatement de ce que ’on a pour chaque £ >0

Ceci est évidemment vrai pour k¥ = 0. Pour £ > 1 on peut écrire

k—1 0
n - -
;o Yoa;(m)g’ T+ Y, a;(n)q’7F,

j=0 j=k

et on voit que la premiére somme au second membre est >0 et < 1, tandis
que la deuxiéme est un entier.
Comme, pour n <t < n + 1,

(-

on peut écrire (5) sous la forme

n+1
t t
(6) a,(n) = — | —4q || )t
q q
. : . log m
2.2. Ceci dit, soit m un entier > 1, et posons [ = 1 .
0g g

On voit d’abord que, sin < m, on a a, (n) = 0 pour r > [/].

Ainsi on a pour chaque n < m
[l]

S,(n) = ) a.(n).

r=0
Il en résulte que ’'on a

m—1 [] m—1
@ Y S, = Y ( y ar<n>>.

n=0 r=0 n=0

Mais la formule (6) donne

Fon - [ (] ~ofg]e
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m

t t q—1 qg—1
= — 1 — ———)dt + m .
Jqq:l q[qu 2 ) 2
0

En faisant le changement de variable £ = ¢"* ! u, on voit que

m—1

e q
Y a,(m) =g g@ T im) + m

n=0

En reportant cette valeur dans (7) on obtient

m—1 [1] —1
> oS, =Y ¢ g7 m) + (1+[1]) ””%
n=0 r=0

ou
m-—1 (1]

-1
® — ¥ S, =Y ¢ g+ (1+[)

m ,=o m ,=o

En posantr = [I[] — k, on a

U LM 1 11—k k-[l]—-1
Y ¢ g(@Tim) = g T g (mg* T
r=0 k=0
— Z q1+[l]—kg(]nqk—-[l]—1),
k=0

puisque, pour k > [I], m ¢* "t~ 1 est un entier et g (mg* 117 1) = 0.
En tenant compte de ce que m = g', ceci donne
1 {1 ©
e Z qr+1g(q—r—1m) — q1+[l]—l Z q—kg(qk ,ql—[l]-1)
m, 7 k=0

— q1+[l]—l I’l (ql—[l]—-l) .
Ainsi (8) donne

ce qui est le résultat désiré.

2.3. Remargue : On peut montrer que I’on a pour tout x réel > 1

q—1 log x
ngx S,(n) = 2 Tog g xlogx + xF(logq) = h(x) + (1 +[x] —x)S,([x]) ,

b
§
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formule qui donne (1) en prenant x = m.

lo
En posant 4 = 5 x, on a
log g
[4]
Y, S, (n) =) ( Y a,(n)).
n=_x r=0 \n=x

On déduit de (6) que 'on a

X

nzgum)=J<&%]—th{de+u+u}<meﬂ%

— x + (1+[x] =) a, ([x]),

r -r— q
=q""'g(@ " %) +
d’ou

Z Sq (n) =

n=x

[4] q
z qr-i-lg (q—r—lx) +
r=0

2

x(L+[4]) + (1 +[x] —x) S, ([x]),

puis on vérifie que
[41 o vy A
ZO " tg(g " x) = ¢t ZO q g (q“-q* M
r= k:

— xq1+[l]—lh(ql—[l]—1> _ h(X) .

3. DEMONSTRATION DE LA NON DERIVABILITE
DE LA FONCTION F

Nous allons maintenant montrer que la fonction F n’est dérivable en
aucun point. En raison de la périodicité, il suffit de montrer qu’elle n’est
dérivable en aucun point de l'intervalle ouvert ]0, 1] et qu’elle n’est pas

dérivable a gauche au point 1.

3.1. Onvoit que ceci se ramene a montrer que la fonction /4 n’est dérivable

1
en aucun point de 'intervalle ouvert} —, 1 [et n’est pas dérivable a gauche
q

au point 1.

1 log t
En effet, si—- <<t <1l,oma <1+ < 1 et (4) donne
q log ¢ -
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