
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 21 (1975)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR LA FONCTION SOMMATOIRE DE LA FONCTION « SOMME
DES CHIFFRES »

Autor: Delange, Hubert

DOI: https://doi.org/10.5169/seals-47328

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-47328
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


SUR LA FONCTION SOMMATOIRE DE LA FONCTION
« SOMME DES CHIFFRES »

par Hubert Delange

1. Introduction

Dans tout ce qui suit, q est un entier fixe > 1. On désigue par S
q (n)

la somme des chiffres de l'entier positif ou nul n écrit en base q.

Un certain nombre d'auteurs ont étudié le comportement de l'expression

ZS,(n).
n^-x

Bush1) avait montré tout d'abord que l'on a quand x tend vers l'infini

_ q — 1

- — X log X
n^x 2 log q

Bellman et Shapiro 2) ont obtenu

<7 — 1

YJSq(n) — x log x + O (x log log x)
„Sc 2 log q

Mirsky 3) a remplacé le O (x log log x) par O (x), puis Drazin et Griffith 4)

ont fait une étude plus précise du terme d'erreur.
Enfin Trollope5) a établi le résultat suivant pour le cas où q 2:

n étant un entier satisfaisant à 2m </î < 2m+1, avec m > 0, posons
n 2m (1 +x), de sorte que 0 < x < 1.

Alors on a

nZ} n log n 1 / iog(l+x)V S2 (k) 2m 2/(x) +(1 +x) —— — 2x
2 log 2 V iog2

b An asymptotic formula for the average sum of the digits of integers, Amer. Math.
Monthly, 47 (1940), pp. 154-156.

2) A problem in additive number theory, Ann. of Math. (2), 49 (1948), pp. 333-340.
3) A theorem on representations of integers in the scale of r, Scripta Math., 15 (1949),

pp. 11-12.
4) On the decimal representation of integers, Proc. Cambridge Phil. Soc. (4), 48

(1952), pp. 555-565.
5) An explicit expression for binary digital sums, Math. Mag., 41 (1968), pp. 21-25.
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où / (*) Y b 9(rx)>
r 0 ^

g étant la fonction périodique de période 1 déterminée par

x 1

- pour 0 < x < -2 2

sW
1 — X 1

pour - < x < 1
2 2

La démonstration de Trollope est assez compliquée. De plus, il dit que
son résultat peut se généraliser pour q quelconque, mais que les calculs
sont beaucoup plus compliqués.

Nous nous proposons ici de montrer qu'un calcul extrêmement simple
conduit à un énoncé général qui est équivalent pour q 2 à celui de

Trollope, mais dont la formulation nous paraît plus élégante.
On a le théorème suivant:

Theoreme. Il existe une fonction F continue sur R et périodique de période
1, telle que, pour tout entier m > 1,

1 q — 1 /log m\
Cl) — E Sq(n) —log m + F î--I.6)

m„=o 2 log q\log
On peut définir F de la façon suivante :

On définit d'abord une fonction g sur R par la formule

(2) 9 (x)

Cette fonction est évidemment continue sur R et elle est périodique de

q — 1

période 1 du fait que la fonction t\-> \_qt\ — q [t] — est périodique

de période 1 et que son intégrale sur l'intervalle [0, 1] est nulle. Elle est
00

donc bornée et la série q~r g ((fx) est uniformément convergente sur R.
r= 0

Ainsi la fonction h définie sur R par
00

(3) h(x) X q~r9(qrx)
r 0

6) Il est clair que la fonction F est unique car cette formule détermine ses valeurs aux
log m

log q
points |°° —— l|og m\ dont l'ensemble est partout dense sur [0,1].
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est continue sur R (et aussi périodique de période 1, mais cette propriété

ne nous sert pas).
Finalement on pose

(4) F(x)^^(1 +[*]-*) +

Il est clair que la fonction F définie par cette formule est périodique de

période 1, continue pour x non entier, et continue à droite pour x entier.

On vérifie immédiatement qu'en fait elle est aussi continue pour x entier:

on a F (1) -
*

+ q h - J, ce qui est égal à 0 car, comme g (x) 0
2 W

A\ A\ <1 -1
pour x entier, la formule (3) donne h - — g - ; or on voit

W W 2 <2

que, quand x tend vers 1 par valeurs inférieures, F (x) tend vers h{ 1) 0.

Nous compléterons notre résultat en montrant que la fonction F n'est
dérivable en aucun point et déterminant explicitement sa série de Fourier.
Celle-ci est absolument convergente et ses coefficients s'expriment à l'aide

2 k ni
des valeurs de la fonction £ de Riemann aux points où k e Z/:\7)

log

2. Démonstration de la formule (1)

Soient a0 {ri), a1 {ri), a2 {ri), les chiffres de l'entier positif ou nul
n écrit en base q, lus de droite à gauche. En fait il y a seulement un nombre
fini de chiffres, mais on peut former une suite infinie en complétant par
des zéros.

00

Ainsi on a n £ ar {n) qr,
r o

log n
avec 0 < ar {n) < q pour tout r > 0 et ar {ri) 0 pour r >

log q
CO

On a aussi Sq {n) ]T ar {ri).
r= o

7) La possibilité de déterminer explicitement la série de Fourier de F nous a été
signalée par M. Mauclaire. Il l'obtenait à partir du résultat suivant, qu'il avait établi
antérieurement :

00

On a pour Res >0: s J ~Sq([r])dt Ç (s).
1

Nous donnerons ici un calcul direct.

L'Enseignement mathém., t. XXI, fasc. 1. 3
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2.1. Remarquons d'abord que l'on a pour chaque >0

(5) ar(n)=n n
-q [qr+1J

Cela résulte immédiatement de ce que l'on a pour chaque k > 0

Z aj(n)qJ-
j k

Ceci est évidemment vrai pour k 0. Pour k > 1 on peut écrire

k — 1 oo
n

q
Z ,• («) * + Z tfy (") qj k

j=0 j=k

et on voit que la première somme au second membre est > 0 et < 1, tandis

que la deuxième est un entier.

Comme, pour n < t < n + 1,

t " n
et

t n

qr Vr q^ qr+1

on peut écrire (5) sous la forme

n + 1

(6) ar(n) -q
t

~r+T

2.2. Ceci dit, soit m un entier > 1, et posons /

dt

log m

log q

On voit d'abord que, si n < m, on a ar (n) 0 pour r > [/].
Ainsi on a pour chaque n < m

m
Sq (n) Z (n) •

Il en résulte que l'on a

(7) Z s«(") Z Z ar(n) •

n= 0 r 0\/î 0

Mais la formule (6) donne

m— 1

Z flr(n) r t

jqrl -q Ur+1J dt



(7 t t

„ r -4 „r+ 1\S _ S
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q- 1

dt -f- m
q - 1

2 y 2

En faisant le changement de variable qr+i u, on voit que

m_1 1

Z ar(n) qr+1g(q r 1m) + m —-—
n= 0 ^

En reportant cette valeur dans (7) on obtient

m-i [/] _ 1

Z s«(") Z qr+1g(q r + (i+W)m-
» 0 r 0 2

« - 1

ou
I m-i m

(8) — £ =— X qr+1 g (q~r~1m) +(l+[/])
m ;j=o m r=0 z.

En posant r [/] - k, on a

m m
Z qr+1g{q-r~xm) E
r=0 fc 0

Z « ^-"giniq^M-1
k= o

1)!

puisque, pour k > [/], m qk [n 1 est un entier et g (mqk cn *) 0.

En tenant compte de ce que m ql, ceci donne

1 m oo

— Z qr+1 g(q'r~1m) q1 +m~'Z9~k 9
m r o

q

k= 0

Ainsi (8) donne

1 m — 1
^ -j

- Z S4(n) =i^_/+«^-(i+[/]-/)+i + m-«Ä(gI-m-i)
m ,I=0 2

4 - 1

2

Z-F(/);
ce qui est le résultat désiré.

2.3. Remarque : On peut montrer que l'on a pour tout x réel > 1

s<(") 11081 + *F(S) - 'w + ('+ M-»)«,([«]).
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formule qui donne (1) en prenant

c « loS *En posant a on a
log

Z s«(") Z (Zar(n)Y
/• 0 \n^x J

On déduit de (6) que l'on a

X

nZ «,(«) j ([£] + (l+W-*)«r(W),
~ 0

+q-^x+(!+[*]-*) a, (M),
d'où

Z M")
n^x
[A] _ ^

Z qr+1 g (q-'-'x) +q—— X(1+ [A]) + (1 + [x] -x) Sq ([x])
r — 0 Z

puis on vérifie que
[A] [A]

Z 4r+10(<Z~''~1x) <?1 + U] z
r—0 k — 0

xq1 + ix^~xh{qx~ix^~1) — h (x)

3. Démonstration de la non dérivabilité
DE LA FONCTION F

Nous allons maintenant montrer que la fonction F n'est dérivable en

aucun point. En raison de la périodicité, il suffit de montrer qu'elle n'est
dérivable en aucun point de l'intervalle ouvert ]0, 1[ et qu'elle n'est pas
dérivable à gauche au point 1.

3.1. On voit que ceci se ramène à montrer que la fonction h n'est dérivable

en aucun point de l'intervalle ouvert!-, 11 et n'est pas dérivable à gauche

au point 1.

1 log t
En effet, si - < t < 1, on a 0 < 1 H < 1 et (4) donne

q log q
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V l°g4/ 2 loS 4 f

Ceci vaut encore pour t 1 car F (1) h (1) 0.

1

Ainsi on a pour - < F< 1

«

/ log A 4—1
h(f) tF 1 + — +— t log F

\ log qj 2 log q

Par suite, si F était dérivable au point 9 de ]0, 1 [, h serait dérivable au

point q6 1 de
1

-, 1

q
Si F était dérivable à gauche en 1, h serait dérivable

à gauche en 1.

En fait, nous montrerons que h n'est dérivable en aucun point de l'intervalle

ouvert ]0, 1[ et n'est pas dérivable à gauche au point l.8)

3.2. Nous utiliserons la remarque suivante:

a
Si x -,oùaeZet/cG N*, on a

q

h(x)£
r= 0

puisque, dès que r > k, qr x est un entier et g (qrx) 0.

a b
Par suite, si x —T et x — avec a et b e Z, a # b et k e N*,

4 4fc

on a

fe (x') - h (x) g (qrx) - g (grx)
x' — x r=0 qVx' — qr%

3.3. Il est très facile de montrer que la fonction h n'est pas dérivable à gauche

au point 1.

Cela résulte immédiatement de ce que, si Çk l ~ q~k, la suite

/MU -/îuvn
1 -É*

tend vers + oo.

8) La fonction h n'est donc dérivable en aucun point. Dans le cas où q 2, — h est
la fonction / de Trollope. Celui-ci indique que cette fonction / n'est dérivable en aucun
point.
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En effet, d'après la remarque précédente,

h(l)-h(Çk) kZ^ g(qr)-g(qrÇk) k_—;—i—= I "—7——= I «
1 ~~ Çfc r 0 Q ~ 9 Qk r 0

Mais, comme qr - qr~k, d'après la périodicité de g on a pour
chaque r < k — 1

î

g (qr) - g (qrQ g(i)- g (i -g'"-'1) J M - dt,

l-qr~k
q — 1

ce qui est égal h qr K —-— car, pour 1 - qr < t < 1, [/] 0 et

[#/] q — 1 puisque q — 1 < q - qr~k+1 < qt < q. On voit donc que

&(1) -/z(Q * - 1

k
1 2

3.3. Soit maintenant 9 un nombre de l'intervalle ouvert ]0, 1[.

Nous allons montrer que h n'est pas dérivable en 9.

Nous nous baserons sur l'observation suivante:
Si h était dérivable en 9, quelles que soient les suites {xk} et {x'k} tendant

fh (xh) — h
vers 6, avec xk < 9 < x'k pour chaque k, la suite < 7 > tendrait

l *k ~ *k J

vers h' (9).9)

3.3.1. Remarquons d'abord que l'on peut écrire
00

9E «/«"•'>
j= 1

où les oq- sont des entiers satisfaisant à 0 < ocj < q - 1 et il y a une infinité
de j pour lesquels ccj q — 1 (l'écriture du nombre 9 en base q étant

0, ax a2 oq-...).

9) Il existerait une fonction e continue en 0 et nulle en ce point telle que l'on ait pour
tout t

h{i) h (0) + {t- 0) h' (0) + it-0) s (t),
et l'on aurait

h (x'k) — h (xk) _ ^ ^ +
(x'k— 0) s (x'k) + (0—Xk) s (xk)

X'k Xk X k Xk
d'où

h (x'k) - h (xk) _ h, ^ < Sup (| S (Xk) | | S (x'k)!)
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Nous introduirons une suite d'entiers N 0> N l9 Nv, définie par
V

N 0 0 et, pour v > 1, N v £ aj #V_J-
j= i

Ceci dit, définissons et x'k pour k > 1 par
k

Xfc X «/g"' et
y-i

h (x'k) ~ h (xk)
et posons pk 7

* k - *k

Les deux suites {xk} et {x'k} tendent vers 6 et on a pour tout h > 1

xk < 9 < x\
Par suite, si /z était dérivable au point 9, la suite {/^} tendrait vers h' (6).

Onaxt= JVfc q~ket (Nk+l) q~k.

Donc, d'après la remarque du paragraphe 3.2., on a pour tout k > 1

y1 g 0 fXj~g (gX)
P*

r o irxk-qrxk
D'après la formule (2), on a pour chaque r < fc — 1

er *'k

g (gr*'it) - g (gr**) J ^[gd - g [f] - Lr~)dt '

<lr Xk

On va voir que, pour qrxk < qr x'k, on a

[g*] - g M «r+l •

On voit d'abord que, pour 0 < v < k,ona

Nv<qvxk<Nv+ 1 -qv~k,
d'où il résulte que

(9) Nv < qv xk < q"xk<Nv + 1

k
C'est vrai pour v 0 car 0 < xk<1) X q~J 1 ~ g-'1.

j= 1

Si k > 2, pour 1 <v</c - lona

gV** X S-gV_/ + X «;gv~X
j=l J=v+1
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d'où

Nv<q*xk<Nv +(q-l)£
j V + 1

Enfin qk xk Nk.

Il résulte de (9) que, pour qr xk < £ < qr x'k9 avec 0 < r < fc — 1, on a

Nr < t < Nr + 1 et iV,+1 < gt < Nr+1 + 1

et par suite

d'où
[f] Nr et

M "«H Nr+i -
qui est bien égal à ar+1.

Ceci montre que, pour 0 < r < k - 1,

9 Ulrx'k) - 9 (qrar+1

et on voit ainsi que

q-1

q-l

Pk Z «r+1- i (W
La fonction /z n'est donc certainement pas dérivable au point 6 si la série

q-1>
(10)

n'est pas convergente.
C'est certainement le cas si q est pair car alors on a pour tout r

q - 1 1

2

puisque 2 1a,.—
«"1

2 ar — q + 1 est un entier impair.

Par contre, dans le cas où q est impair, la série (10), dont tous les termes

sont des entiers, peut être convergente. Cela se produit si, et seulement si,

ces termes sont tous nuls à partir d'un certain rang, c'est à dire si l'on a

« - 1

a,-J 2
à partir d'une certaine valeur de j.

Il faut donc traiter séparément ce cas.
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q — 1

3.3.2. Supposons donc maintenant que q est impair et que l'on a oq- —-—

pour j > m, avec m > 1.

Alors, d'après ce que l'on vient de voir, la suite {pk} lend vers
m [ / q j\
£ ar j. Donc, si h était dérivable au point 9, on devrait avoir

m / -<

h'(9) £

Nous allons introduire une nouvelle suite {x"k} définie par

X"k xk +

2

q~k

et poser

h(x\)-h(xk)
Pu

X h - Xu

En utilisant encore la remarque du paragraphe 3.2., on voit que

- 'y g - g (grxk)
Pk

r=o qrx

Si h était dérivable au point 0, la suite {p'k} devrait tendre vers
" q-l\L ar 2~J

Va montrer n'en est Pas ainsi-

On voit d'abord que, si k > m, on a pour 0 < v < k - 1

Nv<q*xk<Nv + 1 -2qy~\
d'où il résulte que

(11) Nv <qvxk < qvx\ < Nv + 1

En effet, on peut d'abord écrire

m k

xkZ a,q-J + X ctjq"*,
j=1 j=m+1

d'où

0 + 1—2. £ 1 - +
J — 1 2 j m + 1 2

Mais #"m + q~k (qk~m +1) > 4# ~k puisque # > 3 et A: - > 1.
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Pour 1 < v < ä: — 1, on a, comme on l'a déjà vu,

q*xk=Nv +£ oLjq^.
j V + 1

Ceci donne toujours qv xk > N v.

D'autre part, si v < m, on peut écrire

m k

qvxk=Nv +X « jZ aj«v"J
j=v+X j=m+1

et on voit ainsi que

«"**<^+(«-1) £ qv~J+q^£
J v + 1 ^ j m +1

JVv + 1 -I(,qv-m+q*-k)
d'où

qvXk<Nv + 1 -2^"*,
puisque

+ ^v_fc ^_m + ^ ^ 4 ^v_t _

Si v > m, on a simplement

1 ^ JL

Nv +Z <TJ' + 1 - - (1 + «v"*)
1 j=V+ 1 Z

et
1 + (qk-v + ^ qv-k ^ 4 qv-k ^

Il résulte de (11) que, si k > m, pour qr xk <it < qr x"k avec
0 <r - 2, on a [t] Nr et [g/] IV,.+1, d'où [gtf] — q [t] ocr+1.

Donc, si k > m, on a pour 0 < r < k — 2

g-1
0 Of*"*) - 0 te1**) (qrx\-qrXk) \ur+i -

et par suite

*v2/ î-l\

S (Mr-Z~) + j (0(0k~lx"k) -0(4*'%))-

Notons maintenant que l'on a

JVt-1 + «kl'1
2q

et



qk1
X"k qk1

xk + 2 1 +

et par suite, d'après la périodicité de g,

.M.jîzig qklx"ù-g (q**)0, 2 - * ^
g + 3

~2q~

[<f] -"<? M ^ dt

g-1
2g

^ — 1 + 3
Mais on a [t] 0 pour < t < ——-

2 q 2 q

et

q — 1 q — 1 q 1

m-— p°ur

p + 1 g + l g + 3

M — pour _ v < _
Par suite

q

Finalement, on voit que, pour k > m,

_ir) +t
m / ^ ^

La suite {p'fc} ne tend donc pas vers £ ar
r _1 \ 2

4. Détermination de la série de Fourier de F

Si l'on écrit la série de Fourier de F sous la forme

n2kiiixX cke2knix,
keZ

on a
î

Ci, — F(x)e~2knixdx
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La formule (4) donne pour 0 < x < 1

F(x)(l ~x) +

On a donc ck ah + bk avec

i î

_
q ~ 1

Ut — : (1 — x)e 2knix dx et bk
J
0

q1-xh(qx~1)e~2k7lixdx

4.7. On voit immédiatement que

g — 1 g - 1

ak ——: pour k # 0, et a0 —-—
4 km 4

4.2. D'après la formule (3), on a pour tout x réel

00

q1~xh (qx~x) e~2knix ]T q1~r~x g (q^"0'1) e~2knix
r 0

La série est d'ailleurs uniformément convergente pour 0 < x < 1

Il résulte de là que l'on a

bk I
1

»

1 — r — x _ ~r+ x— 1\ n — 2knix'giq^^^e'2^ dix.

log u
Le changement de variable x 1 — r H donne

log g
1 qr

q1-r-xg{qr+x-'L)e-2knixdx - — f - 1-^ 1

log J u\ logg

On obtient ainsi
0 qr-1

r 9 f«)
J «2
î

(w) log w\
y- exp —2knii ] du

log g J u2 \ log qr

9 (M)—flog g J u2 + 2kni/iogq
du
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4.3. Remarquons que l'intégrale

g(u)
du

est absolument convergente pour Re s > 0 et, si l'on désigne par G (s) sa

valeur, la fonction G ainsi définie est holomorphe pour Re s > 0.

On voit que
1 2kni\

bk - G 1+
log q\ log qj

et on est ainsi amené à déterminer la fonction G.

D'abord, comme

g(u) Iqt] -q [;] - dt ^et donc g ^
une intégration par parties donne, pour Rq s > 0,

G (s)
q — 1 qs

1
1

2 s
+

s

q-l\ du
\_qu\ -q [i/J — I-

Maintenant, si l'on suppose que Re s > 2, on peut séparer l'intégrale
en trois et l'écrire

On a

[qu] f lu] q - 1 f du
du — q \ — du

o

I du qs

us 1

M
us

i M idu | —- du 1)1
s — 1
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t
d'après une formule connue 10), et, par le changement de variable u — -

q

' [«"]
du q

s— 1 M «S— 1

— du= Ç (s -1).r 5 — 1

On trouve ainsi que, pour Re 5 > 2,

710\ -k q~1 ^S_1 ^S_1 "ï» n(12) G (S) — •
TT— C (s - •

2 5 — 1 5(5 — 1)

En raison de l'holomorphie de G, cette formule est valable pour
Re 51 > 0, 5 # 1.

En particulier, pour k # 0,

/ 2kni\ q — 1 g — 1/ 2kni\~1 / 2kni\\
G{1+^rq)={~~4hii + i^[1+]^)

En examinant le comportement du second membre de (12) lorsque s

tend vers 1, on retrouve le fait connu que £ (0) — ^ et on voit que

q — 1 q log q
G(l) -2-y- (0)

q — 1 <7 log g 1

—-— (log 271 — 1) —— puisque £ (0) — - log 2 n

On a ainsi les valeurs de bk pour tous les k e Z, et on trouve en définitive

que
q — 1 q 1

c0 (l°ê 2tt — 1) —0 2 log qVë 4

10) On a pour Re 5 > 1 : ï (s) s j' M
us +1

du

1

On peut le voir simplement en remarquant que l'on a pour tout N entier > 1

N n+1

f [«] V T sduN~1(\ î \
S Xî du S « M S « — — --TT-J «s+l n=l J «s + 1 n=l W (« + 1)V

- (<-ï) + 2 (s - *) + 3 (h- i) + + <"- "(why - &)
N~1 1 N- 1

2 —- •

n i n8 N3



— 47 —

et, pour k#0,

ck i -—: 1 + -^0 ç 2fc7n-).

2kn\ log \log qj
Comme, quand t tend vers l'infini,

Kit) 0(| t |i+£) pour tout e > 0,

on voit que la série de Fourier de F est absolument convergente.

(Reçu le 25 février 1975)

Hubert Delange
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