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SUR LA FONCTION SOMMATOIRE DE LA FONCTION
« SOMME DES CHIFFRES »

par Hubert DELANGE

1. INTRODUCTION

Dans tout ce qui suit, ¢ est un entier fixe > 1. On désigue par S, (n)
la somme des chiffres de ’entier positif ou nul # écrit en base g.
Un certain nombre d’auteurs ont étudié le comportement de I'expression

Y. S, (n).

n=x
Bush?) avait montré tout d’abord que I'on a quand x tend vers U'infini

—1
S,(n) ~——xlog x.
ngx 2log g

Bellman et Shapiro %) ont obtenu

Y. S, (n) = ——lx log x + O (xloglogx).
ne>x 2log g

Mirsky 3) a remplacé le O (x log log x) par O (x), puis Drazin et Griffith #)
ont fait une étude plus précise du terme d’erreur.

Enfin Trollope?) a établi le résultat suivant pour le cas ou g = 2:

n étant un entier satisfaisant a 2™ <m < 2™*1, avec m >0, posons

= 2" (1+x), de sorte que 0 < x < 1.
Alors on a

T 520 = Tt 2 (2704 2B )

log 2

1) An asymptotic formula for the average sum of the digits of integers, Amer. Math.
Monthly, 47 (1940), pp. 154-156.

%) A problem in additive number theory, Ann. of Math. (2), 49 (1948), pp. 333-340.

?1 zlxztheorem on representations of integers in the scale of r, Scripta Math., 15 (1949),
pp. l1-12.

4) On the decimal representation of integers, Proc. Cambridge Phil. Soc. (4), 48
(1952), pp. 555-565.

%) An explicit expression for binary digital sums, Math. Mag., 41 (1968), pp. 21-25.
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o0

1
ou f(x) = Y .92,

r=0 27
g ¢€tant la fonction périodique de période 1 déterminée par

X
5 pour0<x<;,

g(x) =
1 —x 1

pour — <x <1.
| 2 2

La démonstration de Trollope est assez compliquée. De plus, il dit que
son résultat peut se généraliser pour ¢ quelconque, mais que les calculs
sont beaucoup plus compliqués.

Nous nous proposons ici de montrer qu’un calcul extrémement simple
conduit a un énoncé général qui est équivalent pour ¢ = 2 a celui de
Trollope, mais dont la formulation nous parait plus élégante.

On a le théoréme suivant:

THEOREME. [/ existe une fonction F continue sur R et périodique de période
1, telle que, pour tout entier m > 1,

(1) 1miIS() a-1, L r(8m) e
— = -log m — .
m , = a " 2 log g = log g

On peut définir F de la facon suivante :
On définit d’abord une fonction g sur R par la formule

X

(2) g (x) = j <[qt] — [#] ~ %) dt .

Cette fonction est évidemment continue sur R et elle est périodique de

période 1 du fait que la fonction t— [gt] — q[f] — qiz— est périodique

de période 1 et que son intégrale sur 'intervalle [0, 1] est nulle. Elle est

0

donc bornée et la série Y ¢~ " g (¢"x) est uniformément convergente sur R.
r=0

Ainsi la fonction h définie sur R par

© b = L a7e@

6) Il est clair que la fonction F est unique car cette formule détermine ses valeurs aux
logm _ [log m

log ¢q log g

points ], dont I’ensemble est partout dense sur [0,1].




33

est continue sur R (et aussi périodique de période 1, mais cette propriété

ne nous sert pas).
Finalement on pose

(4) F(x) = ————; ! (1+[x]—x) + q”[x]""h(qx‘[x]‘l\).

Il est clair que la fonction F définie par cette formule est périodique de
période 1, continue pour x non entier, et continue & droite pour x entier.
On vérifie immédiatement qu’en fait elle est aussi continue pour x entier:

-1 1
ona F(l) = q—z— +qh< ), ce qui est égal a 0 car, comme g (x) = 0
q

1 1 -1 .
pour x entier, la formule (3) donne h <> =g <_> = — _q__2_ ; Or on voit
q q q

que, quand x tend vers 1 par valeurs inférieures, F (x) tend vers A4 (1) = O.

Nous compléterons notre résultat en montrant que la fonction F n’est

dérivable en aucun point et déterminant explicitement sa série de Fourier.

Celle-ci est absolument convergente et ses coefficients s’expriment a 'aide
2kmi

log g

des valeurs de la fonction { de Riemann aux points ,ou keZ*")

2. DEMONSTRATION DE LA FORMULE (1)

Soient a, (n), a, (n), a, (n), ... les chiffres de D’entier positif ou nul
n écrit en base ¢, lus de droite a gauche. En fait il y a seulement un nombre
fini de chiffres, mais on peut former une suite infinic en complétant par
des zéros.

. |
Ainsi on a n= > a,(nq",
r=0

log n

avec 0 < a, (n) < g pour tout r >0 et a, (n) = 0 pour r > 1 :
0g ¢

On a aussi S, (n) = > a, (n).
r=0

) La possibilité de déterminer exphc1tement la série de Fourier de F nous a été
signalée par M. Mauclaire. Il I'obtenait & partir du résultat suivant, qu’il avait établi

antérieurement: l
e

1 5

OnapourRes>0:sf tHlS([t])dt C(/ |
1 ;

Nous donnerons ici un calcul direct. |

L’Enseignement mathém., t. XXI, fasc. 1. 3
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2.1. Remarquons d’abord que I'on a pour chaque r >0

(5) a,(n) = [1] - q[ ”]
q q

Cela résulte immédiatement de ce que ’on a pour chaque £ >0

Ceci est évidemment vrai pour k¥ = 0. Pour £ > 1 on peut écrire

k—1 0
n - -
;o Yoa;(m)g’ T+ Y, a;(n)q’7F,

j=0 j=k

et on voit que la premiére somme au second membre est >0 et < 1, tandis
que la deuxiéme est un entier.
Comme, pour n <t < n + 1,

(-

on peut écrire (5) sous la forme

n+1
t t
(6) a,(n) = — | —4q || )t
q q
. : . log m
2.2. Ceci dit, soit m un entier > 1, et posons [ = 1 .
0g g

On voit d’abord que, sin < m, on a a, (n) = 0 pour r > [/].

Ainsi on a pour chaque n < m
[l]

S,(n) = ) a.(n).

r=0
Il en résulte que ’'on a

m—1 [] m—1
@ Y S, = Y ( y ar<n>>.

n=0 r=0 n=0

Mais la formule (6) donne

Fon - [ (] ~ofg]e
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m

t t q—1 qg—1
= — 1 — ———)dt + m .
Jqq:l q[qu 2 ) 2
0

En faisant le changement de variable £ = ¢"* ! u, on voit que

m—1

e q
Y a,(m) =g g@ T im) + m

n=0

En reportant cette valeur dans (7) on obtient

m—1 [1] —1
> oS, =Y ¢ g7 m) + (1+[1]) ””%
n=0 r=0

ou
m-—1 (1]

-1
® — ¥ S, =Y ¢ g+ (1+[)

m ,=o m ,=o

En posantr = [I[] — k, on a

U LM 1 11—k k-[l]—-1
Y ¢ g(@Tim) = g T g (mg* T
r=0 k=0
— Z q1+[l]—kg(]nqk—-[l]—1),
k=0

puisque, pour k > [I], m ¢* "t~ 1 est un entier et g (mg* 117 1) = 0.
En tenant compte de ce que m = g', ceci donne
1 {1 ©
e Z qr+1g(q—r—1m) — q1+[l]—l Z q—kg(qk ,ql—[l]-1)
m, 7 k=0

— q1+[l]—l I’l (ql—[l]—-l) .
Ainsi (8) donne

ce qui est le résultat désiré.

2.3. Remargue : On peut montrer que I’on a pour tout x réel > 1

q—1 log x
ngx S,(n) = 2 Tog g xlogx + xF(logq) = h(x) + (1 +[x] —x)S,([x]) ,

b
§




_ 36 —

formule qui donne (1) en prenant x = m.

lo
En posant 4 = 5 x, on a
log g
[4]
Y, S, (n) =) ( Y a,(n)).
n=_x r=0 \n=x

On déduit de (6) que 'on a

X

nzgum)=J<&%]—th{de+u+u}<meﬂ%

— x + (1+[x] =) a, ([x]),

r -r— q
=q""'g(@ " %) +
d’ou

Z Sq (n) =

n=x

[4] q
z qr-i-lg (q—r—lx) +
r=0

2

x(L+[4]) + (1 +[x] —x) S, ([x]),

puis on vérifie que
[41 o vy A
ZO " tg(g " x) = ¢t ZO q g (q“-q* M
r= k:

— xq1+[l]—lh(ql—[l]—1> _ h(X) .

3. DEMONSTRATION DE LA NON DERIVABILITE
DE LA FONCTION F

Nous allons maintenant montrer que la fonction F n’est dérivable en
aucun point. En raison de la périodicité, il suffit de montrer qu’elle n’est
dérivable en aucun point de l'intervalle ouvert ]0, 1] et qu’elle n’est pas

dérivable a gauche au point 1.

3.1. Onvoit que ceci se ramene a montrer que la fonction /4 n’est dérivable

1
en aucun point de 'intervalle ouvert} —, 1 [et n’est pas dérivable a gauche
q

au point 1.

1 log t
En effet, si—- <<t <1l,oma <1+ < 1 et (4) donne
q log ¢ -
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log ¢ —1 logt 1
logg 2 logg t

Ceci vaut encore pour t = 1 car F (1) = h(1) = 0.

1
Ainsi on a pour — <t
q

log t q —1
h(t) =tF|1+ - t logt.
logg 2log g

1

N

Par suite, si F était dérivable au point 6 de 10, 1[, 4 serait dérivable au
1 e
point g%~ * de], 1 [ Si F était dérivable a gauche en 1, & serait dérivable
q

a gauche en 1.
En fait, nous montrerons que / n’est dérivable en aucun point de l'inter-
valle ouvert ]0, 1] et n’est pas dérivable a gauche au point I.%)

3.2. Nous utiliserons la remarque suivante:

it a \ O
Six = —,ouaeZetkeN*ona
q

he) = T a7

puisque, dés que r >k, ¢" x est un entier et g (¢"x) = 0.

. . a t b
Par suite, si x = —etx =—,
q q

avec a et beZ, a # b et ke N¥,

on a
h(x)—h(x) 1 g(@'x) —g(gx)
X —x =0 ¢x —g'x

g

3.3. Il est trés facile de montrer que la fonction / n’est pas dérivable a gauche
au point 1.

Cela résulte immédiatement de ce que, si & = 1 — g~ % la suite

{hu) —h(&) ’
e

}tend vers + oo.

8) La fonction % n’est donc dérivable en aucun point. Dans le cas ol g = 2, — A est

la _fonction f de Trollope. Celui-ci indique que cette fonction f n’est dérivable en aucun
point.




En effet, d’aprés la remarque précédente,
h(1) —h(C) _ ‘e 9(@) -9
1 — & r=0 9" —q" &

Mais, comme ¢" ¢, = ¢" — ¢" %, d’aprés la périodicité de g on a pour
chaque r <k — 1

-1

k
= > ¢ (g@) —9(@&).

=0

1

| —1
9@ —g(@&) =g) —g(l—qg"" = J ([qt] —q[t] - q—5—> dt,

T -

1-gq
kq_l

ce qui est égal a ¢g'~ car, pour 1 — ¢ * <t <1, [{] =0 et

r—k+1

[qt] = g — 1 puisque ¢ — 1 <gqg — ¢ <L qt < q On voit donc que

h(l)—h(ék)_k_q—l
{1 —& 2

3.3. Soit maintenant 8 un nombre de I'intervalle ouvert ]0, 1[.
Nous allons montrer que /# n’est pas dérivable en 0.
Nous nous baserons sur I’observation suivante:

Si h était dérivable en 0, quelles que soient les suites {x,} et {x;} tendant

h(xy) — h(x)

X — Xg

vers 0, avec x;, <(0 < x’, pour chaque k, la suite { } tendrait

vers A’ (0).°)

3.3.1. Remarquons d’abord que ’on peut écrire

9 - Z Oqu_j,

j=1

ou les o; sont des entiers satisfaisant 4 0 < «; <{¢g — 1 et il y a une infinité
de j pour lesquels o; # g — 1 (Iécriture du nombre 6 en base ¢ étant
0, ay 0ty ... & ..0).

9) 1l existerait une fonction ¢ continue en 0 et nulle en ce point telle que ’on ait pour
tout ¢

h(t) =h®) +@¢—0OR 0O +E=-0ec@®,

et ’on aurait

h(x"x) — h(xx) — ¥ @) +
x’k - Xk

(X’k"— O) € (x/k) + (9— Xk) € (Xk)

x’k — Xk

d’olt |
h (x'k) -~ f (Xk) _

X,k - Xk

A (0) | < Sup (| e (xx) | , | € (x'k)l) .
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Nous introduirons une suite d’entiers Ny, N ¢, ..., N, ... définie par
v .
N,=0et,pourv>1, N, =>aq "
=1
Ceci dit, définissons x, et x’, pour & > 1 par

k
. ’ _k
Xk = ZochJ et Xy =X +qg 7,

i=1
h(xy) — h(x)
et posons p, = ; .
X g — Xk

Les deux suites {x,} et {x',} tendent vers 0 et on a pour tout k > 1
<0 <x,.

Par suite, si 4 était dérivable au point 0, la suite {p,} tendrait vers A’ (0).
Onax, = Nyq ¥etx, = (N, +1)q7"

Donc, d’aprés la remarque du paragraphe 3.2., on a pour tout k£ > 1

1

Z— g(q'x) —g(q xk)

r=0 qu'“qu

Pr =

D’aprés la formule (2), on a pour chaque r <k — 1

qr x'g

, —1
gl@xy —g@x) =j ([qt] —q[t] - —2—) dt .
qr x,

On va voir que, pour ¢"x, <t < ¢"x',, ona
[at] —q[t] = oy
On voit d’abord que, pour 0 <v <k, ona

Nv<qvxk<N 1—qv—ka
d’ou il résulte que :

9) N,<¢"x, <q¢"x, <N, +1.

Clest vrai pour v = O car 0 <x, <(¢g—1)Y g7 =1—-q7%

k—1ona

Sik>2 pourl <v

I

| q’ X,
& j=

<
ZanVJ_N+Z vj:

Jj=v+1

—
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d’ou

k
Nv<qvxk<Nv+(q_1) Z qv—j =Nv+1—qv~k°

j=v+1
Enfin ¢* x, = N,.
Il résulte de (9) que, pour ¢"x, <t < ¢"x',, avec0 <r <k — l,ona

N, <t<N,+1 e N,,;<qgt<N,,;+1,
et par suite
[]] =N, et [qt] = N,yy,
d’ou
[9t] —q[f] = Nysy —qN,,

qui est bien égal a «, ;.
Ceci montre que, pour 0 <r <k — 1,
qg—1

g (qrx,k) —g(g'x) = (qrx,k —q'x) (“r+1 - —2—> 5

et on voit ainsi que

k—1 k
q—1 q—1
Pr = r§0 <°‘r+1 - —2*> = r§1 (O‘r_ _2“‘)

La fonction % n’est donc certainement pas dérivable au point 0 si la série

’ 0
q—1
(10) 2 (Otr - —2—>
r=1
n’est pas convergente.
C’est certainement le cas si ¢ est pair car alors on a pour tout
q — 1
a e ——

! 2

DN =

—1
puisque 2 (cx, — q—z-) = 2a, — q + 1 est un entier impair.

Par contre, dans le cas ou ¢ est impair, la série (10), dont tous les termes
sont des entiers, peut étre convergente. Cela se produit si, et seulement si,
ces termes sont tous nuls a partir d’un certain rang, c’est a dire si I’'on a

——

o; = a partir d’une certaine valeur de j.

J

Il faut donc traiter séparément ce cas.
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L , q—1
3.3.2. Supposons donc maintenant que ¢ est impair et que 'ona «; = 5

pour j > m, avec m > 1.
Alors, d’aprés ce que l'on vient de voir, la suite {p,} tend vers

| —1 .
Y (oc, — 2—2*) Donc, si 4 était dérivable au point 0, on devrait avoir

KO = 3 <o¢r— C"j)

Nous allons introduire une nouvelle suite {x”,} définie par

x”k — xk 4+ 2q—k

et poser

h(x") = h(x)

Pr = p
X g — Xg

En utilisant encore la remarque du paragraphe 3.2., on voit que

o g(@’x") — g(g™x)
kT F oM :

r=0 q"x"y — q" x

Si h était dérivable au point 0, la suite {p’,} devrait tendre vers
m _1
3 (oc, — %) On va montrer qu’il n’en est pas ainsi.
r=1

On voit d’abord que, si k > m, ona pour 0 <v <k — 1

N, <q¢’x, <N, +1—=2¢g"7F,
d’ou il résulte que

(11) N, <q'x, <qgx", <N, +1.

En effet, on peut d’abord écrire

k
Y= ) 9%q 7+ )

i=1 j=m+1
d’ol
m -1 1 .
<(g-1) > g7/ P Y a7 =1—-(@ "+q7".
Jj=1 2 j=m+1 2

Mais ¢7" + ¢7“ = (¢"""+1)g7* > 49 " puisque ¢ >3 et k — m > 1.
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Pour 1 <v <k — 1, on a, comme on I'a déja vu,

k
Q"x, =N, + Y o;4"77.

j=v+1
Ceci donne toujours ¢* x;, > N ,.
D’autre part, si v < m, on peut écrire
Txo= N+ Y g+ > a4
j=vt+l1 j=m-+1

et on voit ainsi que

v - v— q—‘l £ — i
% <N, +@-1) > ¢ 7 +— Y g7’

j=v+1 2 j=m+1
1 — ~k
= N, +1 —E(qv "+q')

d’ou
' x, <N, +1—-2q"7%,
puisque
qv—-m .5 qv—k — (qk—m+1) qv-k é4qv—k .

Siv > m, on a simplement

1
"%, = N, + —— Z g~/ =N, +1——(1+qv )
2 j=v+1
et

1 + qv—k — (qk—v+1) qv—k é4qv—k .

Il résulte de (11) que, si k> m, pour q"x, <t<q"x", avec
0 <r <k - 23 on a [t] = r et [qt] - r+19 d’ou [qt] - Q[t] %yt 1-

Donc, sik > m,onapour 0 <r <k — 2
14 r i r q—l
g(@'x") —g@x) = (@ x",—q"x) (“r+1"—2—>9

et par suite

p'k=z ¢ 1

k—1 _n» k—
r=0 q X —dq Xk

k_2< q-— 1) 9@ 'x") — g (@ %)
Apyr1 — +

2

e 1 l
2. (cx ———) + 5 (9 (@ 'x") — g (¢ "xp). f

Notons maintenant que ’on a
_ - q—1
¢ 'xy = Nyog + g7t = Ny 1+T

et
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g tx" = g ' x, + 2g7 = Ny + —,

et par suite, d’aprés la périodicité de g,

o _ q+3 q—1
Q(qk L P g(qk 1xk) = 9(7;) — 49 (*‘g)

q+3
ke 2.[1_

- (w0-ama- 225

q—1
29
. q —1 qg + 3
Mais on a [t] = 0 pour <Lt< ——
2q 2q
et
q—1 qg —1 qg +1
] = —— our —— <t < —— ,
[41] >— B TE T
q+1 q+1 q+ 3
[l = our < el
[41] 3 p 24 34
Par suite

B 1
g (qk—lx”k) —4g (qk 1xk)' = a .

Finalement, on voit que, pour k > m,

, - q—1 1
= O(r-——— +—.
Pl ;( 2) 2

4, DETERMINATION DE LA SERIE DE FOURIER DE F

Si I’on écrit la série de Fourier de F sous la forme

Z ck ekax ,
keZ

on a
1

¢ = J‘ F (x)e™ 2™~ dx

0
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La formule (4) donne pour 0 < x < 1

qg—1 x .
F@) =~—@1- —-x) +q' " h(g*™h).
On a donc ¢, = a, + b, , avec
1 1
-1
ak — q J (1 x)e 2kmxdx et bk __f 1- xh(qx l)e 2kmxdx

0

4.1. On voit immédiatement que

q-1 k#0, et q-1
a, = our , e ay = ——.
* = Akmi © 0T Ty
4.2. D’aprés la formule (3), on a pour tout x réel
ql—xh(qx—l) e—2k1rix — Z 1 pe x r+x—1) e—2k1rix.

La série est d’ailleurs uniformément convergente pour 0 << x <1

Il résulte de 14 que I'on a

bk — Z J ql—r—xg(qr+x—-1)e—2knix dx.
r=0

log 1
Le changement de variable x = 1 —r +- & " donne
log g
1 qr .
: 1 u lo
ql—r—xg (qr-i-x—l) e—-kax dx — 9 (2) 2kTCl gu du )
log g u logg
0 r—1

q
On obtient ainsi

0

1 lo
b, = g(;t) exp| —2kmni st du
log g u logg
1

q
0

1 g (u)
= 57 2kwijiozg AU
loggq | u riosd
1

q
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g (u)
J‘ us+1 db[
1
q

est absolument convergente pour Re s > 0 et, si 'on désigne par G (s) sa
valeur, la fonction G ainsi définie est holomorphe pour Re s > 0.

On voit que
1 2kmi
= . G(1+
log g log g

et on est ainsi amené a déterminer la fonction G.
D’abord, comme

4.3. Remarquons que I'intégrale

u

g() = f ([qt]—q [ - ?;)dt (et done g (;) _ qz‘ql)

une intégration par parties donne, pour Re s > 0,

20

-1 ¢t 1 1\d
G(s) = _ 4 ,qS _{_Sf([qu] q[u]—2> Lz

2 u

q

Maintenant, si on suppose que Re s > 2, on peut séparer I'intégrale
en trois et ’écrire

f’[qu] P PR

us us 2

q

Q|
i}

On a

S e e Sy e
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1 . t
d’aprés une formule connue %), et, par le changement de variable u = —,

J[qz]duzq []du -~q—s:ié( -1).
u s

a
On trouve ainsi que, pour Re s > 2,
q — 1 qs—l qs—l

(12) Gs) = =5 + (s—l) ((s—1).

En raison de I’holomorphie de G, cette formule est valable pour
Res > 0,s # 1.
En particulier, pour k # 0,

G 1_}_2kni q——1+.q——1 1+2k7£i —IC 2kmi |
= —_ 1 O .
log g 4kmi 2km log g log g &1

En examinant le comportement du second membre de (12) lorsque s

1
tend vers 1, on retrouve le fait connu que { (0) = — 3 et on voit que
q—1 qloggq :
G(1) = - - —(@@-1 (0)
2 2
q

— 1 qlogqg . : 1
=3 (log2n—1) — puisque { (0) = —Elog 2n.
On a ainsi les valeurs de b, pour tous les k € Z, et on trouve en définitive
que
q — q+1

log2n—1) — ———
210gq(ogn ) 4

Co

10) OnapourRes > 1:C(s) = s{ —[%]id
(] us
1
On peut le voir simplement en remarquant que ’on a pour tout N entier > 1

N n+1

[, _ N1 sdu N1 (1 1
s f e = 2o | wm T B M ary
1

n

(13) 2D (o) s v (e

N-171 N-1
) :

n=1ns Ns
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q—1 kni\~t [ 2kni
Cp =10 1+ ¢ .
2km log g log g

Comme, quand ¢ tend vers I’infini,

et, pour k #0,

(i) = 0(]¢]***) pour tout & > 0,

on voit que la série de Fourier de F est absolument convergente.

( Recu le 25 février 1975)

Hubert Delange

Université de Paris-Sud
Mathématiques
F-91405 Orsay
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