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SUR UN THÉORÈME DE H. ZIESCHANG

par G. Calugareanu

Soit S une surface fermée orientable, de genre p, et N une courbe fermée

simple (nœud) tracée sur S. Un théorème de H. Zieschang [1] entraîne les

propriétés suivantes:

Théorème. A) Si N ne sépare pas S, il existe un automorphisme1 de S

qui applique la courbe 2 canonique Ul (fig. 1) sur N.

B) Si N sépare S en deux domaines, il existe un automorphisme de S qui

applique l'une des séparatrices canoniques f t de S (fig. 1) sur N.

Fig. 1

Une seconde partie du théorème concerne les courbes simples sur les

surfaces non-orientables; nous nous restreindrons ici au cas des surfaces

orientables, ayant en vue l'intérêt de ce cas pour certaines considérations

ayant trait à la théorie des nœuds [2].

Dans ce qui suit, nous nous proposons de donner une démonstration
directe de ces propriétés, par des considérations géométriques, sans passer par
l'intermédiaire du groupe fondamental de S. Les automorphismes de S que
nous utiliserons sont les torsions3 de S le long de certaines courbes simples
de cette surface. Les remarques suivantes seront souvent appliquées dans
la suite.

x) Application homéomorphe de S sur S.
2) Nous appelons courbes canoniques les courbes Ui, Q et rt (fig. 1).
3) Pour une définition des torsions, voir [2, p. 104].
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Remarque I. Soit N une non-séparatrice de S et C une courbe simple
sur S qui traverse N en un seul point. Nous indiquons une torsion de S le

long d'une bande convenable, de manière que, après cette torsion, N se

trouve remplacée par une courbe homotope à C. La bande de torsion en
question est indiquée sur la fig. 2 II, qui permet de voir que le segment a ß
de N sera remplacé par l'arc oc y S sß (fig. 2 III), et la nouvelle courbe peut
être contractée sur S de manière à se superposer à C. Remarquons encore

que cette bande de torsion peut être placée d'un coté ou de l'autre de la
courbe TV, le résultat étant le même dans les deux cas.

Fig. 2

Remarque II. La torsion de S le long de la bande indiquée plus haut
est un automorphisme de S. Il en résulte que par un tel automorphisme
suivi d'une déformation de S en elle-même (donc encore un automorphisme)
U1 peut être appliquée sur Cu C1 sur U2, U2 sur C3, ; chacune de ces

courbes peut donc être appliquée sur l'une des autres, par un automorphisme
de 5.

Carte d'un nœud sur S. La surface S étant coupée le long des courbes

appelées « coupures canoniques » (fig. 3), partant d'un même point de

base sur S, on obtient le polygone canonique 4 de S; la courbe simple N se

trouve décomposée en plusieurs arcs disjoints ayant leurs extrémités sur les

côtés du polygone; en choisissant le point de base sur S — N, aucun arc

4) Dans la suite, nous utiliserons l'abréviation « polygone » pour « polygone
canonique ».
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de N ne passe par un sommet du polygone, et l'on peut admettre qu un tel

arc n'a jamais ses deux extrémités sur un même côté du polygone car, dans

pareil cas, une déformation (automorphisme) de S permet de supprimer

Fig. 3

cet arc par résorption à travers ce côté. Nous présenterons ce polygone sous

la forme d'un disque (7) dont la frontière est un cercle 7, et les côtés du

polygone, repiésentés par des arcs de

7, seront marqués par des indices,
deux côtés provenant d'une même

coupure canonique de S étant marqués

par 7 et ï (i= 1,2,..., 2p). Afin
de rétablir le contact, existant sur S,

de deux côtés conjugués 7 et 7", nous

joindrons chaque paire 7, 7" de côtés

conjugués par un ruban (fig. 4). Les

arcs de N situés dans (7) seront
prolongés sur les rubans par des arcs

qui rétablissent la continuité de la
courbe N (fig. 5). La figure ainsi
obtenue est ce que nous appelons la
carte du nœud N sur S.

Fig. 4

Appelons fréquence cp de N le nombre (pair) des points où N traverse
le cercle 7. Les arcs de N situés dans (7) décomposent ce disque en plusieurs
2-cellules Qk, qui sont des domaines plans simplement connexes. La frontière

L'Enseignement mathém., t. XXI, fasc. 1. 2
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7)Qk d'une telle cellule est formée d'arcs de TV alternant avec des arcs du
cercle y, et, comme nous l'avons vu, nous pouvons admettre qu'un arc de
TV n'a jamais ses deux extrémités sur un même coté i ou

TV étant orienté, nous dirons qu'une cellule Qk est N-orientable si, en
orientant i) Qk positivement (aire à gauche) cette orientation induit sur tous
les arcs de TV qui appartiennent à B Qk l'orientation choisie sur TV ou bien
l'orientation contraire à celle de TV. Dans le premier cas nous dirons que Qk

est (+ TV) orientable, et dans le second cas, — TV) orientable. Lorsque
i)Qk n'est pas TV-orientable, nous dirons que Qk est non-N-orientable; nous
aurons alors sur ~d Qk des arcs de N sur lesquels i) Qk induit la même orientation

que N, mais aussi des arcs de N sur lesquels ~d Qk induit l'opposée de

l'orientation induite par N, et cela quelles que soient les orientations
choisies pour ï>Qk et N. Notre fig. 5 présente la carte du nœud 3X séparateur
de la surface de genre p 2, ainsi que celle du nœud 4X qui ne sépare pas
cette surface. On remarque que dans le premier cas toutes les cellules sont
TV-orientables, ce qui est évident lorsque N sépare S, tandis que dans le

second cas nous avons des cellules non-TV-orientables.
Si toutes les cellules Qk sont TV-orientables, il n'en résulte pas que TV

sépare S, sans une restriction que nous préciserons; de toute façon nous

pouvons alors répartir les Qk en deux classes : classe I, contenant toutes les

cellules (+TV) orientables, et classe II, contenant les cellules (—TV)
orientables. Aucune de ces classes n'est vide, car chaque arc de TV appartient à la
frontière d'une cellule de classe I et à la frontière d'une cellule de classe II.
On remarque aussi que si toutes les cellules sont TV-orientables, et si l'on
envisage les arcs de TV au voisinage de leurs extrémités sur y, en parcourant
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le cercle y, on rencontre alternativement des arcs de TV dirigés vers l'intérieur

ou vers l'extérieur de (y).
Montrons d'abord que si la carte de TV contient au moins une cellule

non-TV-orientable, une torsion convenable permet de diminuer la fréquence
de TV, en appliquant la Remarque I.

Soit donc Q une cellule non-TV-orientable. Sur T) Q nous avons donc

deux arcs de TV dont les orientations (imposées par celle de TV) sont
discordantes. Soient v1 et v2 ces arcs (fig. 6) que nous pouvons supposer
consécutifs sur i) Q, donc séparés par un seul arc de y appartenant à c) Q.

En changeant au besoin l'orientation
de TV, nous pouvons admettre que v±

et v2 sont dirigés vers l'intérieur de

(y). Soient q± et q2 les points où v1

et v2 traversent y. Soit u un point
intérieur à Q, voisin de vt. A partir
de u menons un chemin K parallèle
à TV (en traits interrompus sur la

fig. 6) que nous prolongerons jusqu'à
ce qu'il passe au voisinage de v2, en
arrivant au point v. Remarquons que
v se trouve dans une cellule ayant v2

sur sa frontière, mais différente de

g, et que l'arc K arrive en v avant
de passer par qx (la courbe K
prolongée au delà de v, parallèlement à K, devant se fermer en u). En
joignant v à u par un arc simple qui traverse v2 en un point, on a une
courbe simple K u uv C qui traverse TV en un seul point et dont la

fréquence est cp' < cp, car à chaque point où C traverse y correspond un
point voisin où TV traverse y, mais C ne traverse pas y au voisinage de q±

(au moins). L'application répétée de cette remarque nous conduit, tant que
la carte du nœud contient des cellules non-TV-orientables, à faire diminuer
la fréquence du nœud. Mais on peut arriver à un nœud TV dont la carte ne
contient que des cellules TV-orientables, et cela peut arriver même si TV ne
sépare pas la surface S. Pour traiter ce cas, il sera utile d'établir le

Lemme. Si le nombre des points où TV traverse un côté quelconque du

polygone estpair (éventuellement zéro), TV divise la surface S en deux domaines.

Montrons que, dans les conditions du lemme, toute courbe fermée
simple traverse TV en des points dont le nombre est pair. Le lemme en résulte

Fig. 6
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alors car, si A ne divise pas S, on construit immédiatement une courbe
fermée simple qui traverse A en un seul point; il suffit de construire un
segment ab qui traverse A en un seul point, a et b étant d'un coté et de

l'autre de A et assez rapprochés; S-N étant un domaine connexe, on peut
joindre a à b par un arc sur S qui ne rencontre pas A. Alors cet arc, fermé

par le segment ab, fournit la courbe en question.
Soit C une courbe fermée simple sur S. Considérons la carte de A et

représentons la carte de C sur le même polygone. Remarquons que, en
déformant continûment A ou C sur S, le nombre des points d'intersection
N n C peut varier, mais la parité de ce nombre se conserve, si l'on exige

que A et C se coupent transversalement en chaque point d'intersection.
Divisons chaque côté du polygone en deux arcs; nous pouvons alors
déformer A et C de manière que les points où A traverse un côté se trouvent
sur l'une des moitiés de ce côté et les points où C le traverse se trouvent
sur l'autre moitié. Après cela on voit que, sur chaque ruban, les arcs de A
et de C vont parallèlement sans se rencontrer. Les points de A n C se

trouvent donc dans (y). Déformons maintenant les arcs de C de manière
à les rapprocher du cerle y, jusqu'à ce qu'ils se trouvent tous dans un

voisinage assez mince de y, situé à l'intérieur de (y). On voit bien que cela

peut se faire sans que les arcs de C se rencontrent (fig. 7 I et II). Mais alors

chaque arc de C qui traverse un arc de A traverse aussi tous les arcs de A
venant du même côté du polygone, donc, cet arc de C traverse un nombre

pair d'arcs de A. Il en résulte que C traverse A sur un nombre pair d'arcs,

ce qui démontre le lemme. Il s'ensuit que chaque cellule de la carte de A

Fig. 7
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est TV-orientable, donc, au voisinage de y, les arcs de TV sont dirigés

alternativement vers l'intérieur et l'extérieur de (y), si on les observe en parcourant

y dans un sens quelconque.

Corollaire. La condition nécessaire et suffisante pour que N.divise la

surface S est que, sur la carte de TV, chaque côté du polygone contienne un

nombre pair de points où N traverse y.

La condition est évidemment nécessaire, car chaque coupure canonique

est une courbe fermée qui passe alternativement dans l'un ou l'autre des

domaines de S - TV. La suffisance résulte du lemme.

Si TV n'est pas une séparatrice de S, il existe donc au moins deux côtés

(conjugués) du polygone qui portent chacun le même nombre impair de

points de TV. Si les deux côtés conjugués adjacents aux précédents (fig. 8)

contiennent aussi des points de TV, on voit que
la carte de TV contient nécessairement des

cellules non-TV-orientables. Mais si ces côtés

adjacents ne contiennent pas des points de TV,

l'existence d'une cellule non-TV-orientable
n'est pas assurée. Si TV traverse une seule fois
un côté du polygone (et son conjugué) et ne
traverse pas les côtés conjugués adjacents
(fig. 9), on trace immédiatement une courbe
fermée qui traverse TV une seule fois et possède

la fréquence 2, ce qui, par application i

de la remarque I, permet de vérifier la par-
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tie A) du théorème. Reste le cas où A traverse chacun de deux cotés

conjugués du polygone en un nombre impair > 3 de points, et ne traverse

pas les côtés conjugués adjacents aux précédents (fig. 10). La fig. 10 permet

Fig. 10

de constater l'existence d'un chemin (en traits interrompus) qui part de a et
arrive en c, en passant par le ruban qui ne contient aucun arc de A. En
arrivant en c sur la gauche de A, ce chemin court parallèlement à TV jusqu'à
son arrivée en ù, puis le segment ba ferme ce contour qui traverse A en un
seul point. Sa fréquence est inférieure à celle de A, car ce contour ne passe

pas par d et c, ce qui arriverait seulement si on le prolongeait parallèlement

à A jusqu'à sa fermeture en c. Ainsi, la Remarque I est applicable à

tous les cas, ce qui établit la partie A) du théorème, car, par application
répétée de la Remarque I, la fréquence de A pourra être diminuée jusqu'à
la valeur 2, et alors A sera nécessairement réduite à une coupure canonique.

Passons à la partie B) du théorème.

Supposons que A sépare S en deux domaines A et A\ En admettant que
le point de base appartienne à A ', aucune cellule appartenant à d ne possède
des sommets du polygone sur sa frontière. Dans chaque cellule Qk ci A

choisissons un point intérieur ock; sur chaque arc de y appartenant à <) Qk

choisissons un point ßJk intérieur à cet arc; joignons chaque ßk à ak par un
arc simple intérieur à Qk, de manière que ces arcs ne se rencontrent qu'au
point ak. Cette construction étant faite pour chaque cellule Qk c= A, si deux

points ßJk et ßlh se trouvent aux deux bouts d'un même ruban, joignons ces

points par un arc simple intérieur à ce ruban. L'ensemble de tous ces arcs
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en pointillé sur la fig. 11 I) forme un graphe K (fig. 11 II) qui est un rétracte

de déformation du domaine A. Ce graphe présente des sommets d'ordre

> 2 intérieurs à (y), sans quoi A formerait une bande unique qui, étant

Fig. 11

orientable, aurait une frontière à deux composantes, contrairement à notre
hypothèse. En contractant certaines arêtes de K on peut obtenir un autre

graphe ayant un seul sommet multiple (fig. 11 III). Nous supposerons que
cette opération a déjà été effectuée sur K; en plaçant le sommet au centre
O du cercle y, K sera formé par plusieurs rayons de y, par certains arcs
intérieurs à (y) et d'autres arcs intérieurs aux rubans de la gerbe (rubans

que nous omettons sur les fig. 11 pour une meilleure visibilité). On voit que
la contraction que nous venons d'effectuer sur K correspond à une déformation

de A sur S, donc à un automorphisme de S. De cette manière, A prend
la forme d'un disque central auquel sont attachés plusieurs rubans (fig. 12)

et dont la frontière résulte de N
par déformation isotope sur S.

Nous appellerons gerbe de N une
telle surface G. Chaque ruban,
ayant ses deux bouts attachés au

disque central, sera appelé une
boucle de la gerbe G, et nous
appellerons aussi boucle du graphe
K chaque arc de K ayant ses deux
extrémités au sommet unique de

K. Remarquons que le graphe K
ne divise pas S, car la rétraction
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de A sur K s'accompagne d'une dilatation de A' sur S—K. Or, K
divise (y) en cellules simplement connexes que nous désignerons encore

par Qk et l'on voit que deux points appartenant respectivement à

deux cellules quelconques peuvent être joints par un arc simple intérieur
à G — K, en passant par les rubans. Pour démontrer la proposition B),
nous appliquerons sur K une suite d'opérations que nous appelons des

glissements, puis des torsions, de manière à donner au graphe K une forme
canonique qui entraîne immédiatement la proposition B). On doit se

rappeler que chaque opération ainsi effectuée sur K traduit la même opération

effectuée sur la gerbe G.

Une gerbe G est donc une surface orientable dont la frontière est connexe.
Le graphe K ci G, qui en est un rétracte de déformation, est formé par
plusieurs boucles C, ayant en commun leurs extrémités au point O. Soit

n le nombre de ces boucles. Choisissons un sens positif de parcours sur y

et marquons par les indices 1, 2, 2n les points d'intersection des courbes

Ct avec y, l'ordre de succession de ces points sur y coïncidant avec l'ordre

de (y) sur le bord + de Ck, et l'on rentre sur le bord — de C/(/c), on ressort

sur le bord + de Cf(k)-1 et l'on rentre sur le bord - de C/[/(fc)_1]5 etc.

Soit (i,j),j / (i), un couple d'indices conjugués, en ce sens qu'ils
correspondent aux points d'intersection d'une boucle avec y. Remplaçons
le rayon i - 1 par un arc de courbe intérieure à (y), qui joint le point
i — 1 (sur y) à un point P du rayon i (fig. 14 II) situé sur le bord — de ce

rayon, puis, en faisant glisser le point P sur la courbe Ct qui joint i à j sur
G, prolongeons l'arc (i - 1, P) par un arc sur G assez voisin de Ct pour qu'il
ne rencontre aucune autre boucle de K. Le point P arrivera sur le bord +

Fig. 13

naturel des indices. A chaque entier
k entre 1 et 2n il correspond un
indice / (k), si k et/ (k) représentent
les points d'intersection de la courbe
Ck avec y, pour k 1, 2, In.
L'application / est une permutation
de la suite 1, 2, 2n et se décompose

en cycles binaires, donc /f (k)
k. Marquons, au voisinage de y,

les bords de chaque Ck des signes +
et —, ces signes se suivant alternativement

le long de y (fig. 13). On voit
alors que, en parcourant le bord de

G dans un sens convenable, on sort
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du rayon j (fig. 14 III) et, finalement sera amené en O, le rayon / — 1 se

trouvant déplacé entre les rayons j et j + 1 (fig. 14 IV). A cette opération

sur K, que nous appelons un glissement, correspond une transformation

Fig. 14

de la gerbe G qui est une déformation isotope sur S, donc un automorphisme
de S. Un glissement analogue peut être effectué en prenant P sur le bord +
du rayon z, ce qui permet de déplacer le rayon i 4- 1 entre j — 1 et j.

Remarquons que z et j étant conjugués, les rayons correspondants
appartiennent à une même boucle de K; il existe alors entre z et j un indice
k dont le conjugué f (k) n'est pas compris entre z et j, sans quoi le bord de

K ne formerait pas une courbe unique, contrairement à notre hypothèse;
en effet, si k etf (k) étaient compris entre z et /, le bord de K aurait au moins
deux composantes. Admettons / (k) < z, le cas / (k) > j se ramenant au
précédent par un changement du sens positif sur y. Déplaçons successivement,

par glissement, les rayons z — 1, z — 2, ...,/(£)+ 1 entre j et j + 1 ;

il ne restera alors aucun rayon entre / (k) et z (fig. 15 1, II). Déplaçons

Fig. 15
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ensuite les rayons z + 1, z + 2, k — 1 sur le bord + du rayon z, ce qui
amène ces rayons entre j — 1 et j (fig. 151, II), et continuons avec les rayons
situés entre k et j, que nous déplacerons sur le bord + de k, en les amenant
entre f (k) — 1 et f (k) (fig. 15 III). On obtient ainsi un quadruplet
k,f (ik), i,j f (z), aucun rayon n'existant entre k et/ (/:), entre / {k) et z,

ou entre z et j. Les rayons k et / (k) sont joints par une courbe sur G, de
même que z et j, et le nouveau graphe K correspond encore à une gerbe dont
le bord est connexe. En laissant inchangé le quadruplet ainsi obtenu, on
peut reprendre l'opération sur les rayons restants, ce quadruplet permettant
le passage du point P d'un côté ou de l'autre du quadruplet déjà formé. On
arrive ainsi à la formation de plusieurs quadruplets et, si n était impair, il
resterait finalement un couple de rayons conjugués consécutifs donc joints
par un arc. Mais alors le bord de K ne serait pas connexe, contrairement à

notre hypothèse. Il en résulte que n est nécessairement un nombre pair, et
le nombre des rayons de K est un multiple de 4. Le graphe K contient donc
2k boucles, k > 1. On a k < p, car dans chaque quadruplet on peut choisir
une boucle de manière à obtenir k courbes homotopiquement distinctes et

disjointes sur G, et l'on sait que, S étant de genre p, cette surface ne peut
porter plus de p telles courbes disjointes. Les opérations que nous venons
d'indiquer nous conduisent donc à un graphe K dont les rayons sont distribués

en k quadruplets autour de O ; c'est ce que nous appelons un graphe

canonique de N; la. gerbe correspondente sera appelée une gerbe canonique

Quittons maintenant la carte de TV pour revenir à la surface Sp. Figurons
la gerbe G sur Sp ; elle est formée de 2k rubans attachés à un disque central,
et les boucles sont disposées en quadruplets autour de ce disque central.

de N.

i JT

Fîg. 16

M
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La surface Sp - G étant connexe, chaque boucle de G prise séparément

ne sépare pas Sp. En appliquant la partie A) du théorème, nous voyons
qu'il existe un automorphisme de Sp qui applique la boucle a, a' sur la

coupure canonique 1 (fig. 161).
Afin d'appliquer l'induction sur l'entier p, admettons que sur une surface

Sp-.u de genre p — 1, une gerbe à 2k boucles (fc</>- 1) peut être réduite à

la forme canonique par des torsions sur Sp^1. En revenant à Sp, coupons
cette surface le long d'un cercle situé entre a et a' (fig. 16 II) et appliquons
ensuite des disques sur les deux fenêtres apparues sur Sp. On obtient une
Sp_1 (fig. 16 III) sur laquelle N est formé par deux cercles a, a' joints par
deux courbes parallèles b, b\ les boucles restantes c, c', d, d\ étant
attachées au cercle a. Les cercles a, a' avec le ruban b, b' renferment un
domaine simplement connexe de Sp-1 qui peut servir de disque central à

la gerbe c, c\ d, dr, Par l'hypothèse d'induction, une suite de torsions
de Sp_1 permettent de réduire la gerbe c, c\ d, d\ à la forme canonique.

Si une bande de torsion B traverse a ou a', ou le ruban b, b\ on peut la
modifier (fig. 17) de manière qu'elle contourne ces obstacles.

Enlevons les disques placés précédemment sur les deux fenêtres et
recollons les bords de celles-ci, en retrouvant Sp. Sur Sp nous avons
maintenant la boucle a, a' qui est canonique, de même que les boucles c, L,
d, d, mais la boucle b, b' n'est pas canonique. Remarquons que les
torsions qui nous ont conduits à cette situation ne nécessitent pas la coupure
de Sp entre a et a' et la construction de Sp_ 1? car ces torsions ont été choisies
de manière à éviter les cercles a, a' et courbes Z), b'. Elles peuvent donc être
effectuées directement sur Sp. Afin de ramener la boucle è, b' à la forme
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canonique, il suffit de reprendre les mêmes opérations sur la boucle c, c'

(qui est canonique), en passant de nouveau à une Sp_1, etc. Par de nouvelles
torsions qui évitent c et c', on « canonise » b et b' et l'on obtient sur Sp une
gerbe canonique a, a\ b, b', c, c',

Vérifions l'hypothèse d'induction pour p 2, car, pour p 1, toute
courbe simple séparatrice est contractible en un point du tore. Or, dans le

cas p 2, on a k 1 ou k 2. Si k 1, la gerbe est formée par deux
boucles a, a' et b, b'. L'opération déjà décrite plus haut remplace a, a' par

une boucle canonique et, après coupure S2

est remplacé par un tore sur lequel N est

formé par les cercles a et a' (fig. 18) joints par
deux arcs simples parallèles b, b'. Le ruban
b, b' tourne un certain nombre de fois dans

le sens des méridiennes et un nombre de

fois dans le sens des longitudes du tore. On
voit alors que si l'on applique des torsions

sur des bandes méridiennes ou longitudinales
du tore, le ruban b, b' peut être réduit à deux

arcs de longitudes. En recollant a et a' on
retrouve S2, sur laquelle la gerbe peut facilement être déformée de manière
à donner l'unique séparatrice canonique de £2 (fig. 19).

Fig. 18

Fig. 19

Si k 2, la gerbe contient 4 boucles et les mêmes opérations conduisent
à un tore sur lequel N est formé par deux cercles a, a' joints par les boucles
b, b', c, c\ d, df. Comme précédemment, on amène b, b' sur un arc de

longitude (fig. 20). Ensuite, par des torsions méridiennes ou longitudinales
qui évitent a,a\b,b\ on amène c, c' sur une longitude; alors, par des

torsions longitudinales, d, d' sera amené sur une courbe homotope à une
méridienne, puisque deux rubans de la gerbe ne se rencontrent que sur le

disque central, et cette propriété se conserve par les automorphismes de la
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surface, de même que l'ordre de rotation des rubans autour du disque central.
En revenant à S2, on obtient sur celle-ci une gerbe canonique (fig. 21), et

l'on sait que son bord N est alors une courbe contractible en un point de

S2. L'induction étant complète, il résulte que sur Sp toute gerbe peut être

réduite à la forme canonique et, par une déformation sur Sp, celle-ci peut
être appliquée sur une séparatrice canonique r de Sp, dont la classe d'homo-
topie est déterminée par la valeur de k < p. La fig. 22 présente le cas

p — 5, k — 2. Remarquons que, par raison de symétrie, on peut se
restreindre aux valeurs k 1,2,... [$] afin d'obtenir sur Sp des séparatrices
dont les types (de nœuds) soient distincts. Le procédé utilisé dans notre
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démonstration est constructif, car il permet de former effectivement l'auto-
morphisme qui applique N c= S sur une coupure canonique, ou séparatrice
canonique de S. Cet automorphisme étant connu, une présentation
(intrinsèque) du groupe n (N) n1 (R3 - N) en résulte [2], si N est placé

sur une surface fermée orientable en position normale dans R3, de manière

que N ne sépare pas S.
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