

Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de l'Enseignement Mathématique
Band: 20 (1974)
Heft: 3-4: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ON TRANSLATIVE SUBDIVISIONS OF CONVEX DOMAINS
Autor: Groemer, H.
DOI: <https://doi.org/10.5169/seals-46906>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 16.01.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

ON TRANSLATIVE SUBDIVISIONS OF CONVEX DOMAINS

by H. GROEMER ¹⁾

In Euclidean n -space R^n let K be a convex body (compact convex subset of R^n with interior points). Let $S = \{S_1, S_2, \dots, S_m\}$ be a finite collection of at least two closed subsets of K such that each S_i can be obtained from any S_j by a translation. Then, S will be called a *translative subdivision* of K if

$$(1) \quad S_1 \cup S_2 \cup \dots \cup S_m = K,$$

and if for $i \neq j$

$$\text{int } S_i \cap \text{int } S_j = \emptyset.$$

Under the assumption that the sets S_i of a translative subdivision of a convex body K are also convex it can be shown that K and the sets S_i must be cylinders (for $n=2$ parallelograms). Also, the possible arrangements of the sets S_i can be completely described (see [2]). Related to this result is the question whether there exist a convex body K and a translative subdivision $\{S_1, S_2, \dots, S_m\}$ of K with sets S_i that are not convex. If no assumptions concerning the regularity or connectivity of the sets S_i are made, there are trivial examples of convex bodies (e.g. cubes) which permit such non-convex subdivisions. To obtain a meaningful problem let us call a subset M of R^n *strongly connected* if any two of its points can be connected in the interior of M by a Jordan arc; that means, if $x \in M, y \in M, x \neq y$ there exists a Jordan arc γ with x and y as endpoints and such that every point of γ which is different from x and y is contained in the interior of M . Using this definition, the question can be raised whether there exists a convex body with a translative subdivision that consist of strongly connected non-convex sets. For $n = 1$ the situation is completely trivial. For $n \geq 3$ this problem has not yet been solved. In the present paper the case $n = 2$ is settled by the following theorem which will be proved with the aid of the Jordan curve theorem. As a convenient abbreviation a two-dimensional convex body will be called a convex domain.

¹⁾ Supported by National Science Foundation Research Grant GP-34002.

THEOREM. *If a translative subdivision of a convex domain consists of strongly connected compact sets, then these sets are necessarily convex (and therefore parallelograms).*

PROOF: Let K be a given convex domain and let us assume that K has a translative subdivision $\{S_1, S_2, \dots, S_m\}$ with strongly connected non-convex sets S_i . As a notational simplification, the set S_1 will often be denoted by S . Now there are two possibilities. Either the boundary of the convex hull of S is contained in S or this is not the case.

I. Assume that

$$(3) \quad \text{bdr conv } S \subset S,$$

where $\text{conv } S$ denotes the convex hull of S . Since S is not convex there is a point p with $p \in \text{conv } S$ and

$$(4) \quad p \notin S.$$

Because of $\text{conv } S = \text{bdr conv } S \cup \text{int conv } S$ and (3) this implies

$$(5) \quad p \in \text{int conv } S.$$

From the convexity of K and $S \subset K$ it follows that $\text{conv } S \subset K$ and therefore

$$(6) \quad p \in K.$$

The relations (1), (4), and (6) imply

$$(7) \quad p \in S_j = S + t$$

for some $j \neq 1$ and a translation vector $t \neq 0$. The set $S + t$ is not contained in $\text{conv } S$ (for this would imply $(\text{conv } S) + t = \text{conv } (S+t) \subset \text{conv } S$ which is clearly impossible since a convex domain cannot contain a translate of itself). Hence, there is a point q with

$$(8) \quad q \notin \text{conv } S,$$

$$(9) \quad q \in S + t.$$

(7) and (9) show that p and q can be connected in the interior of $S + t$ by some Jordan arc γ . From (5) and (8) one obtains that γ has a point, say x , in common with $\text{bdr conv } S$. Because of the assumption (3) it is clear that

$$(10) \quad x \in S.$$

On the other hand, (5) and (8) show that $x \neq p$, $x \neq q$ and therefore

$$(11) \quad x \in \text{int}(S + t) = \text{int } S_j.$$

Because of (10) and the strong connectivity of S there are interior points of S in any neighborhood of x . This together with (11) shows that for some $j \neq 1$

$$\text{int } S_1 \cap \text{int } S_j \neq \emptyset$$

in contradiction to (2).

II. Assume that $\text{bdr conv } S \notin S$. This means that there exists a point g with $g \in \text{bdr conv } S$ and

$$(12) \quad g \notin S.$$

By a well-known version of the theorem of Carathéodory on the convex hull of connected sets (see Bonnesen-Fenchel [1], p. 9) there is a closed line segment $\sigma = [s_1, s_2]$ with $s_1 \in S$, $s_2 \in S$ and g in its (relative) interior. If L denotes a support line for $\text{conv } S$ which contains g , it is obvious that

$$(13) \quad \sigma \subset L.$$

Let H be the halfplane which is bounded by L and contains $\text{conv } S$, and let H_i be defined by $H_i = H + t_i$ where t_i is the translation vector determined by $S_i = S + t_i$. Then, the union of all the halfplanes H_i is again one of these halfplanes, say H_k . Since H_k contains every S_i it follows that the line $L_k = L + t_k$ is a support line of K . By a proper assignment of the subscripts it can be achieved that $k = 1$ and therefore $L_k = L$. Hence, there is no loss in generality by assuming that the line L which contains σ is a support line of K . This implies in particular that

$$(14) \quad \sigma \subset \text{bdr } K.$$

Because of the strong connectivity of S it is possible to connect the points s_1 and s_2 in the interior of S by some Jordan arc τ . Since (13) implies that σ contains no interior points of S the arcs σ and τ have only the points s_1 and s_2 in common. Let λ be the closed Jordan curve composed of σ and τ . Then, the Jordan curve theorem shows that the complement of λ (with respect to R^2) consists of two open connected sets which have the same boundary, namely λ . Further, one of these regions, say J , is bounded and the other is unbounded.

From the inclusions $J \subset (J \cup \lambda) \subset \text{conv}(J \cup \lambda) = \text{conv } \lambda$ and $\lambda = (\sigma \cup \tau) \subset ((\text{conv } S) \cup S) \subset \text{conv } S \subset K$ it follows immediately that

$$(15) \quad J \subset \text{conv } S$$

and

$$(16) \quad J \subset K.$$

Because of (12) and the compactness of S it is obvious that the point g has positive distance from S . Using the fact that $g \in \lambda = \text{bdr } J$ one can find a point q in J which is so close to g that $q \notin S$. This, together with (1) and (16) shows that q is contained in some $S_h \neq S$. Actually, one may assume that q is in the interior of S_h . If necessary this can be achieved by a sufficiently small change in the selection of q without disturbing the relations $q \in J$, $q \notin S$. On the other hand, there is a point p with $p \in \text{int } S_h$ and $p \notin J$. If such a point would not exist one had $\text{int } S_h \subset J$. But then (15) shows that $\text{int } S_h \subset \text{conv } S$ and by taking the closure and the convex hull one would obtain $\text{conv } S_h = (\text{conv } S) + t_h \subset \text{conv } S$ with $t_h \neq 0$ and this is certainly impossible. Note that the closure of the interior of S_h is S_h since the strong connectivity implies that there are interior points in any neighborhood of a boundary point.

Hence, it has been found that there are points p, q with the following properties:

$$(17) \quad p \in \text{int } S_h, \quad q \in \text{int } S_h,$$

$$(18) \quad p \notin J, \quad q \in J.$$

Let κ be a Jordan arc which connects p and q in the interior of S_h . Because of (17) the endpoints of κ are also in $\text{int } S_h$ and therefore in $\text{int } K$. This fact, if compared with (14), shows that κ and σ are disjoint. On the other hand, it follows from (18) that κ must contain a point of $\text{bdr } J = \lambda = \tau \cup \sigma$. Writing $\tau' = \tau - \{s_1, s_2\}$ it has therefore been shown that κ and τ' have a point, say x , in common. But this implies that $x \in \kappa \subset \text{int } S_h$ and $x \in \tau' \subset \text{int } S_1$, which contradicts the assumption (2).

REFERENCES

- [1] BONNESEN, T. und W. FENCHEL. *Theorie der konvexen Körper*. Ergebn. d. Math., Bd. 3. Berlin-Göttingen-Heidelberg, Springer 1934.
- [2] GROEMER, H. Über translatable Zerlegungen konvexer Körper. *Arch. d. Math.* 19 (1968), 445-448.

H. Groemer

The University of Arizona
Tucson, Arizona, 85721

(Reçu le 30 avril 1974)

vide-leer-empty