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ON TRANSLATIVE SUBDIVISIONS OF CONVEX DOMAINS

by H. GROEMER 1)

In euclidean n-space R" let K be a convex body (compact convex subset
of R" with interior points). Let S = { S}, S, ... S,, } be a finite collection
of at least two closed subsets of K such that each S; can be obtained from
any S; by a translation. Then, S will be called a translative subdivision of
K if

‘!
1

(1) SIUSZU...US,":K,

and if for i # j
mtS;,nintS; = 3.

Under the assumption that the sets S; of a translative subdivision of a convex
body K are also convex it can be shown that K and the sets .S; must be
cylinders (for n=2 parallelograms). Also, the possible arrangements of the
sets S, can be completely described (see [2]). Related to this result is the
question whether there exist a convex body K and a translative subdivision
{8y, 85, ...8,} of K with sets §; that are not convex. If no assumptions
concerning the regularity or connectivity of the sets S; are made, there are
trivial examples of convex bodies (e.g. cubes) which permit such non-convex
subdivisions. To obtain a meaningful problem let us call a subset M of R"
strongly connected if any two of its points can be connected in the interior
. of M by a Jordan arc; that means, if xe M, ye M, x # y there exists a
| Jordan arc y with x and y as endpoints and such that every point of y which
j 1s different from x and y is contained in the interior of M. Using this defini-
| tion, the question can be raised whether there exists a convex body with a
| translative subdivision that consist of strongly connected non-convex sets.
| For n = 1 the situation is completely trivial. For n > 3 this problem has
| not yet been solved. In the present paper the case n = 2 is settled by the
| following theorem which will be proved with the aid of the Jordan curve
| theorem. As a convenient abbreviation a two-dimensional convex body will
be called a convex domain.
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THEOREM. If a translative subdivision of a convex domain consists of
strongly connected compact sets, then these sets are necessarily convex (and
therefore parallelograms ).

Proor: Let K be a given convex domain and let us assume that K has a
translative subdivision { Sy, S,,... S, } with strongly connected non-
convex sets S;. As a notational simplification, the set .S, will often be denoted
by S. Now there are two possibilities. Either the boundary of the convex
hull of § is contained in S or this is not the case.

I. Assume that
(3) bdrconvS < S,

where conv S denotes the convex hull of S. Since S is not convex there 1s a
point p with p € conv S and

(4) pé¢S.
Because of conv § = bdr conv S U int conv S and (3) this implies
(5) peintconv S .

From the convexity of K and S = K it follows that conv § < K and there-
fore

(6) : pek.
The relations (1), (4), and (6) imply

for somej # 1 and a translation vector ¢ # 0. The set S + 7 is not contained
in conv S (for this would imply (convS) + ¢ = conv (S+¢) < conv S
which is clearly impossible since a convex domain cannot contain a translate
of itself). Hence, there is a point g with

(8) q¢conv S,
) gesS +t.

(7) and (9) show that p and g can be connected in the interior of § + ¢
by some Jordan arc y. From (5) and (8) one obtains that y has a point, say
x, in common with bdr conv S. Because of the assumption (3) it is clear
that

(10) xeS.
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On the other hand, (5) and (8) show that x # p, x # g and therefore
(11) xeint(S+1¢) = int §; .

Because of (10) and the strong connectivity of S there are interior points

of S in any neighborhood of x. This together with (11) shows that for some

j# 1 :
mtS;nint§; #

in contradiction to (2).

II. Assume that bdr conv § ¢ S. This means that there exists a point g
f with g € bdr conv § and

(12) gES.

By a well-known version of the theorem of Carathéodory on the convex
hull of connected sets (see Bonnesen-Fenchel [1], p. 9) there is a closed line
segment ¢ = [s;,s,] with 5, €S, 5,€S and g in its (relative) interior.
If L denotes a support line for conv § which contains g, it is obvious
that

(13) cc L.

Let H be the halfplane which is bounded by L and contains conv S, and
let H; be defined by H; = H + t; where ¢; is the translation vector deter-
mined by S; = § + ¢,. Then, the union of all the halfplanes H, is again one
of these halfplanes, say H,. Since H, contains every S; it follows that the
line L, = L + t, is a support line of K. By a proper assignment of the
subscripts it can be achieved that £ = 1 and therefore L, = L. Hence, there
is no loss in generality by assuming that the line L which contains ¢ is a
support line of K. This implies in particular that

(14) ¢ <bdr K.

Because of the strong connectivity of S it is possible to connect the
points s, and s, in the interior of S by some Jordan arc 7. Since (13) implies
that o contains no interior points of S the arcs o and 7 have only the points
s; and s, in common. Let 4 be the closed Jordan curve composed of o
and 7. Then, the Jordan curve theorem shows that the complement of 1
(with respect to R?) consists of two open connected sets which have the same
boundary, namely 1. Further, one of these regions, say J, is bounded and
the other is unbounded.
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From the inclusions J = (Ju A) < conv(J U i) = convd and
A=(cu1t)c ((convS)u S) =convS = K it follows immediately that

(15) J < conv S
and
(16) JcK.

Because of (12) and the compactness of S it is obvious that the point g
has positive distance from S. Using the fact that g e 4 = bdr J one can find
a point ¢ in J which is so close to g that ¢ ¢ S. This, together with (1) and
(16) shows that ¢ is contained in some S, # S. Actually, one may assume
that g 1s in the interior of §,. If necessary this can be achieved by a suffi-
ciently small change in the selection of ¢ without disturbing the relations
qge€J, g¢ S. On the other hand, there is a point p with p €int S, and p ¢ J.
If such a point would not exist one had int S, < J. But then (15) shows that
int S, < conv § and by taking the closure and the convex hull one would
obtain conv S, = (conv S) + ¢, < conv S with #, # 0 and this is certainly
impossible. Note that the closure of the interior of S}, is .S, since the strong
connectivity implies that there are interior points in any neighborhood of a
boundary point.

Hence, it has been found that there are points p, g with the following
properties:

(17) peint S,, geintS,,
(18) p¢d, qed.

Let x be a Jordan arc which connects p and ¢ in the interior of §). Because
of (17) the endpoints of x are also in int S, and therefore in int K. This fact,
if compared with (14), shows that x and o are disjoint. On the other hand, it
follows from (18) that xk must contain a point of bdrJ = 1 = 1 U 0.
Writing t/ = t© — { sy, s, } it has therefore been shown that x and ¢’
have a point, say x, in common. But this implies that x e k < int S, and
x e 1’ < int S, which contradicts the assumption (2).
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