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ÜBER DIE POTENZGESETZE

von Walter Streb

Im folgenden verstehen wir unter einem Ring R eine Struktur mit
2 Verknüpfungen, einer Addition und einer Multiplikation, die folgende

Eigenschaften besitzt: R ist bezüglich der Addition eine kommutative

Gruppe und bezüglich der Multiplikation ein nicht notwendig assoziatives

oder kommutatives Verknüpfungsgebilde. Die Multiplikation ist beidseitig
distributiv über der Addition.

In jedem assoziativen und kommutativen Ring R gilt bekanntlich für
jedes ne N das Potenzgesetz

Pn : rnsn (rs)n für alle r, s e R

Hierbei sei N die Menge der natürlichen Zahlen und werde wie üblich
rekursiv t1 : t, tl + 1: (tl) t für t e R und i e N definiert.

Wir zeigen:

Satz. Besitzt ein Ring R ein Einselement 1 und die Charakteristik 0, d.h.

(1) für n e N und r e R folgt aus n r 0 stets r 0,

und gilt in R für ein n e N mit n > 2 das Potenzgesetz Pn9 so ist R kom-
mutativ und assoziativ.

Beweis. Mit Pn gilt auch

(2) (r +1)"(s +1)" ((r +1)(s +1))" für alle r,seR
Distributive Berechnung von (2) erbringt

1 + X sij(r,s)l + £ Ti,j s)> also

(3) X (sij (r>5) - Ti,j(r>s))0 für alle r,seR.
i + j^z 1

0-^i.

Hierbei sind StJ (r,s) und TtJ (;r,s) wohlbestimmte Summen von Produkten,
in denen r genau z-mal und s genau >mal erscheint, wobei wegen der nicht
vorausgesetzten Assoziativität die Klammersetzung konsequent zu be-
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rücksichtigen ist. Für alle k, l e N erhält man aus (3) durch die formalen
Substitutionen r -> k r und s -> / s und anschließende distributive Berechnung

(4) I fc'Z'(StJ(r,s)-rw(r,S))
i + 1

0£d,j^n
E (sij(kr'ls)- Tu (kr> 0

>

i + j^l
also bei geeigneter Linearkombination der Gleichungen (4) und Beachtung
von (1)

(5) StJ (r, s) — Ttj (r, s) 0 für alle i und j, 0 < ij < n, und r, se R

Speziell gilt

(6) 0 Sl t (r, 5) — Tltl (r, 5) mxrs — (m2rs + m3sr) für alle r, s e R

mit gewissen N, 1 < / < 3

Für r — .v 1 folgt aus (6) m1 — m2 ra3, also m3 (rs-sr) 0, schließlich
mit (1)

(7) rs sr für alle r, 5 e R

Mit (7) ergibt sich

(8) (rr) s s (rr), r (rs) r (sr) (rs) r (sr) r für alle r, s e R

Speziell gilt weiterhin bei Beachtung von (8)

(9) 0 S2A (r, s) — T2?1 (r, s) n1 (rr) s — (rc2 (rr) s + n3r (rs)) für alle

r, s e R mit gewissen nt eN, 1 < i < 3.

Für r s 1 folgt aus (9) nx — n2 «3, also t23 ((rr) s —r (rs)) 0,

schließlich mit (1)

(10) (rr) s — r (rs) 0 für alle r, s e R

Durch die formalen Substitutionen r -» w + v und s -> w erhält man aus

(10) die Gleichung

0 ((m +F) (m + F)) w — (u + v) ((u + v) w) — (mm) vv —

— u(uw) + (vv) w — v (v vv) + (uv) w + (vu) w — u(vw) — v(uw)
2 (uv) vv — vi (vw) — v (uw), also

(11) 2 (uv) vv — v(uw) — u (vw) 0 für alle u,v, w e R
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Setzt man u: w und w: u, so gilt mit (11) auch 0 2 (wv) u —

v (wu) — w (vu) 2 u (vw) — v (uw) — (;uv) w, folglich

(12) (tm) w + v (uw) — 2u (vw) 0 für alle u9v, w e R

Addition der Gleichungen (11) und (12) erbringt 3 ((uv) w — u (vw)) 0,

also mit (1) (uv) w u (vw) für alle w, v, w e R.

Bemerkung. In jedem assoziativen Ring R gelten bekanntlich für alle

m, ne N die Potenzgesetze

(a) rmrn rm+n, (rm)n rmn für alle reR.
Eine dem Satz entsprechende Umkehrung dieser Aussage gilt jedoch nicht
wie folgendes

Beispiel zeigt. Mit den Basiselementen 1, a, b bilden wir einen Vektorraum

über dem Ring Z der ganzen Zahlen. Durch die Multiplikationsregeln
1-1 1, 1 • a a - 1 a, 1 • b b • 1 b, a2 b2 0 und a b

b a — 1 erhält man eine kommutative, nichtassoziative Algebra über Z,
in der alle Potenzgesetze (a) gelten.

(Reçu le 25 avril 1974}

Walter Streb
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