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SUR LES SOMMES DE TROIS ET QUATRE CARRES

par André WEIL

A Carl Ludwig Siegel
en toute amitié

Comme chacun sait, c’est Lagrange qui a publié, en 1770, la premicre
démonstration du célébre théoréme de Fermat sur la décomposition des
entiers en quatre carrés [1]. Cette démonstration, qui prenait comme point
de départ un travail antérieur d’Euler, fut bientdt améliorée par Euler lui-
méme [2]; traduite dans le langage des quaternions, elle a été exposée a
nouveau par Hurwitz. C’est une démonstration par « descente infinie »,
et il est permis de supposer qu’elle ne différe pas substantiellement de celle
que Fermat disait avoir obtenue (« perfectam demonstrationem a me
inventam moneo », Euvres 11, p. 403); on ne voit pas en effet pourquoi on
mettrait en doute I’affirmation maintes fois réitérée de Fermat a cet égard.

Ni Lagrange ni Euler n’ont fait mention du nombre de représentations
d’un entier par quatre carrés. Il est bien connu que la premicre détermi-
nation de ce nombre fut obtenue par Jacobi, par le moyen des fonctions
théta, au cours de ses recherches sur les fonctions elliptiques. Peu apres,
en 1834, Jacobi donna une démonstration élémentaire du méme résultat [3],
tout en ajoutant que celle-ci ne différe que par la forme de la précédente.
En 1856, Dirichlet se donna la peine d’en présenter une version améliorée
dans une lettre a Liouville [4].

En ce qui concerne les sommes de trois carrés, ce qu’on pourrait appeler
la préhistoire du sujet est plus obscure. A son affirmation sur les sommes de
quatre carrés, Fermat en a plusieurs fois joint une autre sur les sommes de
« nombres polygonaux »: tout nombre, dit-il, est somme de trois nombres
triangulaires (au plus), de quatre carrés, de cinq nombres pentagonaux, etc.
Des nuances de style, il est vrai, pourraient suggérer que parfois il ne s’est
pas senti tout a fait sfir de lui sur ce terrain. En ce qui concerne les nombres
triangulaires, son énoncé revient a dire que tout entier de la forme 8xn + 3
est somme de trois carrés. Or il spécifie qu’il ne sait pas démontrer que 2p
est somme de trois carrés chaque fois que p est un nombre premier de la
forme 8n — 1 (GEuvres 11, p. 405). Il est donc certain que ses méthodes,




— 216 —

-~ quelles qu’elles fussent, ne lui permettaient pas de traiter des sommes de
trois carrés en toute généralité.

Ce probléme a été traité pour la premicre fois avec succeés par Gauss
dans les Disquisitiones, et a fait I’objet par la suite d’assez nombreux tra-
vaux qu’il serait superflu d’énumérer ici. L’énoncé de Fermat sur les nombres
triangulaires figure comme cas particulier parmi les résultats de Gauss;
mais ceux-ci sont présentés comme conséquences de la théorie des formes
quadratiques binaires et ternaires; et, méme a présent, on ne connait aucune
démonstration de I’énoncé de Fermat qu’on puisse attribuer a celui-ci avec
la moindre vraisemblance.

Il y a cependant un travail de Kronecker [5], composé tout a fait dans
I’esprit de la démonstration élémentaire de Jacobi-Dirichlet citée plus haut,
et qui donne, non seulement le résultat annoncé par Fermat, mais la déter-
mination compléte du nombre de décompositions d’un entier en trois
carrés. Comme ce travail est resté peu connu, il ne sera peut-étre pas inutile
d’en donner ici un exposé un peu simplifié (v. cependant [6]).

Pour i = 2, 3,4, nous noterons N, (m) le nombre de solutions (xy,..., x;) de

m = x; +x54+...+x7; x,>0,x,=1(mod.2),1l <h>i.

Bien entendu, ce nombre est 0 sauf si m > 0, m == i (mod. 8). En vertu
d’un raisonnement facile et élémentaire, basé sur I'identité

20 +y?) = (x+»)* + (x—y)*,

le nombre de décompositions de tout entier en deux resp. quatre carrés doit
étre considéré comme connu dés qu’on connait N, (m) resp. N, (m) pour
tout m. Il n’en est pas de méme pour les décompositions en trois carrés.
Néanmoins, comme notre objet ici est de présenter le principe de la démons-
tration de Kronecker plutdt que d’obtenir des résultats complets qui sont
bien connus par ailleurs, nous nous bornerons par la suite a la détermination
de N;(m), ou, ce qui revient au méme, du nombre de décompositions
de m en trois carrés pour m = 3 (mod. 8); il suffira au lecteur de savoir
que la méthode de Kronecker s’applique aussi aux autres cas, au prix de
quelques complications supplémentaires.

1. Rappelons d’abord le résultat bien connu (et qui en substance était
déja connu de Fermat; cf. Euvres 11, p. 214) au sujet de N, (m). Soit y (n)
égala + 1 oud — 1, pour n impair > 0, suivant que n est = 1 ou = — |
(mod. 4), et égal a 0 pour toute autre valeur de n. On a alors:

Ny(m) = ) x(d) (m=2(mod.4), m>0),

d/m



; D’apres (1) et (2), cela donne:
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comme on le voit par exemple en écrivant la fonction zéta du corps Q (7)
comme produit de { (s) et de la fonction L formée au moyen du caractere y.
Cela peut s’écrire aussi:

(1) N,(m) = > (@ (m=2(mod.4),m>0).

m=2ab

On notera d’autre part qu'on a:

@ x(n) 7(n') = (= D7

chaque fois que n=n'= 1 (mod. 2), n > 0, n’ > 0.
Passons au calcul de N, (m). Soit m =4 (mod. 8), m > 0. On a évi-
demment:

Ny,(m) = Y N,(r)N,(s) (m=r+s,r=s=2(mod.4),r>0,5>0).

Ny(m) = ) (— 1))z
(m=2ab+2cd,a=b=c=d=1(mod.2), a,b,c,d>0).

Sur les indices de sommation, faisons le changement de variables:
a=x+y,c=x—y,b=z—t,d=2z+t.

Les conditions imposées & a, b, ¢, d donnent alors:

3) m=4xz—yt), |y| <x, |t]| <z, yEx,txz (mod?2), '

ce qui, d’aprés la condition imposée a m, implique

a—c
xz —yt=1, y = E—E—(mod.Z).

On a donc N4 (m) = > (—1)’, les conditions de sommation étant données
par (3). Soient Ny, Ny, N_ les sommes Y (—1)” étendues respectivement h
aux solutions de (3) pour lesquelles y = 0, y > 0, y < 0. Le calcul de N,
est immédiat; pour y = 0, (3) donne xz = m/4, donc x= z=1 (mod. 2),
puis | #| < z, £=0 (mod. 2). Si donc d est un diviseur impair > 0 de s,
il y aura d solutions de (3) pour lesquelles y = 0, z = d, x = m/4d. Cela
donne N, = Y d.

Dans (3), on peut changer (x,y,zt). en (x, —y,z, —t); on a donc
N, = N_. Soit d’autre part (x, y, z, ) une solution de (3) avec y > 0.
Alors x/y est > 1 et ne peut étre un entier impair, puisque y £ x (mod. 2);
il y a donc un entier « et un seul tel que 2u — 1 < x/y < 2u + 1. Posons:

!’

(4) X' =2uz—t, Yy =z, z =y, t' = 2uy —x.
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On vérifie immédiatement que (x’, y’, z’, ') est aussi une solution de (3)
avec y' >0, y" £y (mod. 2). Réciproquement, si une telle solution
(x', ', 2", t") est donnée, u est aussi 'entier unique tel que 2u — 1 < x'/y’
< 2u + 1; autrement dit, (4) définit une permutation de I’ensemble de ces
solutions. Donc N, = — N, ; par suite N, = N_ =0, N,(m) = N,
= Yd, et le théoréme de Jacobi est démontré.

2. Telle est en substance la démonstration de Jacobi-Dirichlet. On peut
aussi la présenter un peu autrement, au moyen d’un lemme qui jouera un
role essentiel dans la démonstration de Kronecker. Pour plus de clarté nous
ferons précéder ce lemme d’un autre plus simple, qui ne nous servira pas
mais fera mieux comprendre de quoi il s’agit.

LEMME 1. — Soient a, b, n des entiers > 0. Soit f(a, b, n) le nombre de
solutions entiéres de

(5) aX +bY=n 0<X <b, Y>a, Y0 (mod.a).

Alors f(a, b, n) = f(b, a, n).

Il est clair que f'(a, b, n) = 0 sauf simest > ab + a + b et est multiple
du p.g.c.d. de a et b. Soit (X, Y) une solution de (5); soit u ’entier tel que
u< Ya<u-+ 1.Posons X' = Y — ua, Y’ = X + ub. C’est une solution
du probléme obtenu en échangeant a et b dans (5). Comme u est aussi déter-
miné par u < Y’'/b < u + 1, on a ainsi établi une bijection entre les solu-
tions des deux problémes.

LEMME 2. — Soient a, b des entiers > 0; soit m un entier, et soient o, f3
des entiers modulo 2. Soit ¢ (a, b, o, B, m) le nombre de solutions de

(6)aX +bY =m, |X|<b, Y>a, X =a (mod.2), Y=p (mod.2),
Y £ a (mod. 2a).

Alors ¢ (a, b, o, f, m) = ¢ (b, a, B, «, m).

Soit (X, Y) une solution de (6). Alors il y a un entier unique u tel que
| Y — 2ua| < a, et, si on pose X' = Y — 2ua, Y' = X + 2ub, (X', Y')
est une solution du probléme obtenu en échangeant (a, «) et (b, §) dans (6).
De plus, u est 'entier unique tel que | ¥' — 2ub| < b. La conclusion
s’ensuit comme pour le lemme 1. On notera que ¢ (a, b, o, §, m) = 0 sauf
si m est multiple du p.g.c.d. deaetb, m > a + b, et m = aa + bf (mod. 2).
On notera aussi que la condition Y £ a (mod. 2a), dans (6), est conséquence
de Y = B (mod. 2) chaque fois que a % f (mod. 2).
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Cela posé, reprenons les notations du n° 1, et considérons les solutions
de (3) pour lesquelles y, z ont des valeurs données > 0; (3) implique d’ailleurs
quon doit prendre y % z (mod. 2). Ecrivant (y,z, —¢, x) au lieu de
- (a,b, X, Y) dans (6), on voit immédiatement que le nombre de ces solu-

'j tions n’est autre que ¢ (y, z, y, z, m/4). On a donc:

= Z (—l)yq)(y,z,y,z, H’L/4),

- la sommation étant étendue a tous les (y, z) telsque y > 0,z>0et y = z

(mod. 2); c’est une somme finie, puisque les termes pour lesquels y + z

- > m/4 sont nuls. Echangeant y et z, et appliquant le lemme 2, on voit de
~nouveau que N, = — N,.

3. Passons maintenant & la détermination de N5 (). La méthode de

- Kronecker exige (et c’est 14 son point faible) la connaissance préalable du

' résultat & démontrer. Pour énoncer celui-ci, nous noterons H (m), pour
- tout m, le nombre de solutions (a, b, ¢) de

I

D) m=4dac—b*, b>0, b<2a, b<2, b=1 (mod.?2)

" en entiers a, b, c. Naturellement H (m) est nul sauf si m >0, m= — 1

(mod. 4). De plus, si par exemple a << ¢, (7) entraine 0 < b << 2a — 1,

m+ 1 >4a(c—a+1), donc H (m) est fini.

THEOREME. — On a N5 (m) = H (m) chaque fois que m = 3 (mod. 8).
Il est clair d’abord qu’on a, pour m = 4 (mod. 8):

Ny(m) = ) Ny(m—x?),

la sommation étant étendue aux entiers impairs x > 0. La valeur de N, (m)
- a ¢té obtenue au n° 1. Si nous faisons voir que, pour tout m = 4 (mod. 8),

on a aussi

(®) | Ny(m) = Y H(m—x?),

le théoréme s’ensuivra aussitdt par récurrence sur m. Il suffira donc de
démontrer cette derniére relation. Pour la commodité des notations, nous
écrirons m = 4n avec n impair, et nous désignerons par X, le second membre
de (8), qu'on peut écrire aussi:

1
X, = 52 H (4n — x?)

si on étend cette fois la sommation & tous les entiers x impairs, positifs ou
négatifs. De plus, si R désigne un systéme de relations (égalités, inégalités,
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congruences) ol figurent, outre n, des lettres a, b, c, x, y, etc., nous convien-
drons d’écrire { R} pour le nombre de solutions (a, b, ¢, x, y, ...) du sys-
ttme R en nombres entiers, étant entendu que le nombre impair n > 0
est fixé une fois pour toutes. Nous pouvons écrire alors:

I

1 x% — b?
Xn=§ n =ac -+ a —~,b >0,b<2a,b <2c,b=x=1(mod.2),.

Puisque b = x (mod. 2), on peut poser b + x = 2y, b — x = 2z et écrire:

1
X, Zi{n =dac —yz,y +z >0,y+Z<2a,y+Z<2C,J/$Z(m0d-2)}a

~ou nous notons que les conditions imposées entrainent que yz est pair, donc

ac 1mpair, donc ¢ — z % a — y. Ces conditions étant symétriques en a
et ¢, et en y et z, on diminue de moitié¢ le nombre de solutions qui figure au
second membre en ajoutant la condition ¢ — z > a — y; mais alors,
comme ces conditions entrainent aussi y + z < a + ¢, on a méme ¢ — z
> |a — y|. Cela donne:

X, ={n=ac—yz,y+z>0,y +z<2a,y+z <2,

i

¢c—z>|a—=yl|,y £z (mod.2)}.

Soit A4 ensemble des (a, ¢, y, z) défini par ces derniéres conditions; il est
contenu dans I’ensemble B défini par

B) n =ac—-—yz,0<y+z<2ac—z>|a—yl|,y=Ez (mod.?2),

et la différence C = B — A est ’ensemble défini par

(C) n=a—-yz,0<y+z<2a,y+z>2c,
c—z>la—yl,y £z (mod.?2).

Parmi ces derniéres conditions, y + z < 2a est conséquence des autres, a
savoir de O <y +z, y+z>2c, ¢ —z>y — a, qui entrainent aussi
a> | z [ Notons aussi que les conditions qui définissent B entrainent que
yz est pair, donc a et ¢ impairs.

Dans (B), nous ferons le changement de variables

y=a—uU,z=u-+ w,c=u-+9+w.
Il transforme B en ’ensemble des (a, u, v, w) qui satisfont -a

(D) n=u’+av+uw, |w|l<a,v>|ul|l, w=£a (mod.?2).
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Comme ces conditions sont équivalentes a (B), elles entrainent aussi a = 1
(mod. 2), donc w = 0 (mod. 2). Considérons d’abord les solutions de (D)
pour lesquelles u# = 0; celles qui correspondent & une valeur donnée de a
sont au nombre de g, et, comme on peut prendre pour g n’importe quel
diviseur > 0 de », le nombre total de ces solutions n’est pas autre chose que
le nombre ) d déja obtenu au n° 1 comme valeur de N, (4n). Comme
de plus (D) ne change pas si on y change (4, w) en (—u, —w), on voit que le
nombre d’éléments de B est N, (4n) + 2Y, ou Y est le nombre d’éléments
de ’ensemble défini par

(D) n —u* = av + uw, [w|<a,v>u>0,azl, w = 0 (mod. 2).

Drailleurs ces conditions impliquent v £ u (mod. 2). Dans ces conditions,
ceux des éléments de cet ensemble qui correspondent & des valeurs données
de a et de u sont au nombre de ¢ (1, a, 0, u+1, n—u?), de sorte qu’on a:

Y =5 o,a,0,u+1,n—u?),

ou la sommation est étendue a tous les couples (u, @) pour lesquels u > 0,
a> 0, a= 1 (mod. 2). D’aprés ce qu’on a vu a la suite du lemme 2, tous
les termes de cette somme sont nuls & I’exception de ceux pour lesquels
n— u* > u + a, ce qui montre que I'ensemble B est fini.

Passons & (C), ol, comme on I’a vu, on peut omettre la condition
y + z < 2a. Cette fois nous ferons le changement de variables

a=u+v4+w, y=u+w z=c¢—1u,
qui transforme C en P'ensemble des (u, v, w, ¢) défini par
n=u’+4+c+uw, w>|cl|, u>|v|, wzxc (mod.2),

conditions qui entrainent de nouveau ¢ = 1, w= 0 (mod. 2). Comme par
conséquent ¢ # 0, et qu’on peut changer (c,v) en (—c¢, —v), le nombre
d’éléments de C est 2Y’, ou Y’ est le nombre d’éléments de ’ensemble
défini par

n—u’=cw+uw, w>c>0,u>[v|,c=1, w=0 (mod.?2).
Tout comme plus haut, les éléments de cet ensemble qui correspondent 2 des
valeurs données de ¢ et de u sont au nombre de ¢ (¢, u, u+1, 0, n—u?), et
'on a - ‘
Y'= > ¢(c,u,u+1,0,n—u?),

ou la somme est étendue aux couples (¢, u) tels que ¢ >0, u > O et c = 1
(mod. 2). Le lemme 2 donne Y’ = Y, ce qui achéve la démonstration.
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