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SUR LES SOMMES DE TROIS ET QUATRE CARRÉS

par André Weil

A Carl Ludwig Siegel
en toute amitié

Comme chacun sait, c'est Lagrange qui a publié, en 1770, la première
démonstration du célèbre théorème de Fermât sur la décomposition des

entiers en quatre carrés [1]. Cette démonstration, qui prenait comme point
de départ un travail antérieur d'Euler, fut bientôt améliorée par Euler lui-
même [2]; traduite dans le langage des quaternions, elle a été exposée à

nouveau par Hurwitz. C'est une démonstration par « descente infinie »,

et il est permis de supposer qu'elle ne diffère pas substantiellement de celle

que Fermât disait avoir obtenue (« perfectam demonstrationem a me

inventam moneo », Œuvres II, p. 403) ; on ne voit pas en effet pourquoi on
mettrait en doute l'affirmation maintes fois réitérée de Fermât à cet égard.

Ni Lagrange ni Euler n'ont fait mention du nombre de représentations
d'un entier par quatre carrés. Il est bien connu que la première détermination

de ce nombre fut obtenue par Jacobi, par le moyen des fonctions
thêta, au cours de ses recherches sur les fonctions elliptiques. Peu après,

en 1834, Jacobi donna une démonstration élémentaire du même résultat [3],

tout en ajoutant que celle-ci ne diffère que par la forme de la précédente.
En 1856, Dirichlet se donna la peine d'en présenter une version améliorée
dans une lettre à Liouville [4].

En ce qui concerne les sommes de trois carrés, ce qu'on pourrait appeler
la préhistoire du sujet est plus obscure. A son affirmation sur les sommes de

quatre carrés, Fermât en a plusieurs fois joint une autre sur les sommes de

« nombres polygonaux » : tout nombre, dit-il, est somme de trois nombres
triangulaires (au plus), de quatre carrés, de cinq nombres pentagonaux, etc.
Des nuances de style, il est vrai, pourraient suggérer que parfois il ne s'est

pas senti tout à fait sûr de lui sur ce terrain. En ce qui concerne les nombres
triangulaires, son énoncé revient à dire que tout entier de la forme 8/2 + 3

est somme de trois carrés. Or il spécifie qu'il ne sait pas démontrer que 2p
est somme de trois carrés chaque fois que p est un nombre premier de la
forme 8/2 - 1 (1Œuvres II, p. 405). Il est donc certain que ses méthodes,
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quelles qu'elles fussent, ne lui permettaient pas de traiter des sommes de

trois carrés en toute généralité.
Ce problème a été traité pour la première fois avec succès par Gauss

dans les Disquisitiones, et a fait l'objet par la suite d'assez nombreux
travaux qu'il serait superflu d'énumérer ici. L'énoncé de Fermât sur les nombres

triangulaires figure comme cas particulier parmi les résultats de Gauss;
mais ceux-ci sont présentés comme conséquences de la théorie des formes

quadratiques binaires et ternaires ; et, même à présent, on ne connaît aucune
démonstration de l'énoncé de Fermât qu'on puisse attribuer à celui-ci avec
la moindre vraisemblance.

Il y a cependant un travail de Kronecker [5], composé tout à fait dans

l'esprit de la démonstration élémentaire de Jacobi-Dirichlet citée plus haut,
et qui donne, non seulement le résultat annoncé par Fermât, mais la
détermination complète du nombre de décompositions d'un entier en trois
carrés. Comme ce travail est resté peu connu, il ne sera peut-être pas inutile
d'en donner ici un exposé un peu simplifié (v. cependant [6]).

Pour i 2, 3,4, nous noterons Nt (m) le nombre de solutions (xu..., xt) de

m x\ + x2 + + x?; xh > 0, xh 1 (mod. 2), 1 < h > i

Bien entendu, ce nombre est 0 sauf si m > 0, m i (mod. 8). En vertu
d'un raisonnement facile et élémentaire, basé sur l'identité

2 (x2 + y2)(x +y)2 + (x-y)2
le nombre de décompositions de tout entier en deux resp. quatre carrés doit
être considéré comme connu dès qu'on connaît N2 (m) resp. 7V4 (m) pour
tout m. Il n'en est pas de même pour les décompositions en trois carrés.

Néanmoins, comme notre objet ici est de présenter le principe de la démonstration

de Kronecker plutôt que d'obtenir des résultats complets qui sont
bien connus par ailleurs, nous nous bornerons par la suite à la détermination
de N3 (m), ou, ce qui revient au même, du nombre de décompositions
de m en trois carrés pour m 3 (mod. 8) ; il suffira au lecteur de savoir

que la méthode de Kronecker s'applique aussi aux autres cas, au prix de

quelques complications supplémentaires.

1. Rappelons d'abord le résultat bien connu (et qui en substance était

déjà connu de Fermât; cf. Œuvres II, p. 214) au sujet de N2 (m). Soit x (n)

égal à + 1 ou à - 1, pour n impair > 0, suivant que n est 1 ou - 1

(mod. 4), et égal à 0 pour toute autre valeur de n. On a alors:

N2(m) ^ xW (m 2 fmod. 4), m > 0),
d/m
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comme on le voit par exemple en écrivant la fonction zêta du corps Q

comme produit de £ (V) et de la fonction L formée au moyen du caractère x-

Cela peut s'écrire aussi:

(1) N2 (m) X X (a) (m =2 (mod* 4)' m > °) '

m —2 ab

On notera d'autre part qu'on a:

(2) X(«)Z(0=(-1)("~"')/2

chaque fois que n ri 1 (mod. 2), n > 0, ri > 0.

Passons au calcul de A"4 (m). Soit m =* 4 (mod. 8), m > 0. On a

évidemment :

N4 (m) £ iV2 (r) iV2 (s) (m r + s,r s 2 (mod. 4), r > 0, s > 0)

D'après (1) et (2), cela donne:

N,(m) £ (-1)(—)/2
(m =*2ab + lcd, a=b=c=d 1 (mod. 2), a, b,c,d> 0)

Sur les indices de sommation, faisons le changement de variables:

a =z x + y, c x — y, b z — t, d z + t.
Les conditions imposées à a, b, c, d donnent alors:

(3) 7?2 4(xz—yt), | y | < x, | 11 < z, y =}= x, t =|= z (mod. 2),

ce qui, d'après la condition imposée à m, implique

a — c
xz — yt 1, y t —-— (mod. 2)

On a donc 7V4 (m) £ (— l)y, les conditions de sommation étant données

par (3). Soient N0, N+, Ar_ les sommes ^( — l)y étendues respectivement
aux solutions de (3) pour lesquelles y 0, y > 0, y < 0. Le calcul de N0
est immédiat; pour y 0, (3) donne xz m/4, donc x^ezss 1 (mod. 2),

puis | 11 < z, t 0 (mod. 2). Si donc d est un diviseur impair > 0 de m,
il y aura d solutions de (3) pour lesquelles y 0, z d, x m/Ad. Cela
donne N0 Yfl-

Dans (3), on peut changer (x, y, z, t), en (x, -y, z, — t); on a donc
N+ AC. Soit d'autre part (x, y, z, t) une solution de (3) avec y > 0.

Alors x/y est > 1 et ne peut être un entier impair, puisque y ^ x (mod. 2) ;

il y a donc un entier u et un seul tel que lu — 1 < x/y < lu + 1. Posons:

(4) x' luz — t, y' z, z' y, t' lay — x
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On vérifie immédiatement que (x',y\ z\ t') est aussi une solution de (3)
avec y' > 0, y' ^ y (mod. 2). Réciproquement, si une telle solution
(x', y \ z\ t') est donnée, u est aussi l'entier unique tel que lu — 1 < x'jyf
< lu + 1 ; autrement dit, (4) définit une permutation de l'ensemble de ces

solutions. Donc N+ - N+ ; par suite N+ N_ 0, A4 (m) N0
Yjd, et le théorème de Jacobi est démontré.

2. Telle est en substance la démonstration de Jacobi-Dirichlet. On peut
aussi la présenter un peu autrement, au moyen d'un lemme qui jouera un
rôle essentiel dans la démonstration de Kronecker. Pour plus de clarté nous
ferons précéder ce lemme d'un autre plus simple, qui ne nous servira pas
mais fera mieux comprendre de quoi il s'agit.

Lemme 1. — Soient a, h, n des entiers > 0. Soit f(a, b, n) le nombre de

solutions entières de

(5) aX + bY n, 0 < X < b, Y > a, Y =j= 0 (mod. a).

Alors f (a, b, n) f(b, a, n).

Il est clair que f (a, b, n) 0 sauf si n est > ab + a + b et est multiple
du p.g.c.d. de a et b. Soit (X, Y) une solution de (5); soit u l'entier tel que
u < Y/a <u+ 1. Posons X' Y — ua, Y' X + ub. C'est une solution
du problème obtenu en échangeant a et b dans (5). Comme u est aussi déterminé

par u < Y'/b < u + 1, on a ainsi établi une bijection entre les

solutions des deux problèmes.

Lemme 2. — Soient a, b des entiers > 0; soit m un entier, et soient a, ß

des entiers modulo 2. Soit <p (a, b, a, ß, m) le nombre de solutions de

(6) aX + bY m, \X \ < b, Y > a, X oc (mod. 2), Y ß (mod. 2),
Y a (mod. la).

Alors cp (a, b, a, ß,m) (p (b, a, ß, a, m).

Soit (X, Y) une solution de (6). Alors il y a un entier unique u tel que
| Y — lua | < a, et, si on pose X' Y — lua, Y' X + lub, (X\ Y')
est une solution du problème obtenu en échangeant (a, a) et (b, ß) dans (6).

De plus, u est l'entier unique tel que | Y' - lub | < b. La conclusion
s'ensuit comme pour le lemme 1. On notera que (p (,a, b, a, ß, m) 0 sauf
si m est multiple du p.g.c.d. de a et h, m > a + b, et m aa + bß (mod. 2).

On notera aussi que la condition Y ^ a (mod. la), dans (6), est conséquence
dq Y ß (mod. 2) chaque fois que a =}= ß (mod. 2).
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Cela posé, reprenons les notations du n° 1, et considérons les solutions

de (3) pour lesquelles y, z ont des valeurs données > 0 ; (3) implique d'ailleurs

qu'on doit prendre y ^ z (mod. 2). Ecrivant (y, z, — t, x) au lieu de

(a, b, X, Y) dans (6), on voit immédiatement que le nombre de ces solutions

n'est autre que cp (y, z, y, z, m/4). On a donc:

N+X (~iy<p(y,z,y,z,ml4),
la sommation étant étendue à tous les (y, z) tels que y > 0, z>0et_y^z
(mod. 2); c'est une somme finie, puisque les termes pour lesquels y + z

> m/4 sont nuls. Echangeant y et z, et appliquant le lemme 2, on voit de

nouveau que N+ — N+.

3. Passons maintenant à la détermination de N3 (m). La méthode de

Kronecker exige (et c'est là son point faible) la connaissance préalable du
résultat à démontrer. Pour énoncer celui-ci, nous noterons ET (m), pour
tout m, le nombre de solutions (a, b, c) de

(7) m 4ac — b2 b > 0 b < 2a b < 2c b 1 (mod. 2)

en entiers a, b, c. Naturellement H (m) est nul sauf si m > 0, m ~ — 1

(mod. 4). De plus, si par exemple a < c, (7) entraîne 0 < b < 2a - 1,

m + 1 > 4a (c —û + 1), donc H {m) est fini.

Théorème. — On a N3 (m) H {m) chaque fois que m= 3 (mod. 8).

Il est clair d'abord qu'on a, pour m 4 (mod. 8) :

W4(m) £ iV3 (m — x2),

la sommation étant étendue aux entiers impairs x > 0. La valeur de iV4 (m)
a été obtenue au n° 1. Si nous faisons voir que, pour tout m 4 (mod. 8),
on a aussi

(8) N4 (m) Yj H (m ~x2)

le théorème s'ensuivra aussitôt par récurrence sur m. Il suffira donc de
démontrer cette dernière relation. Pour la commodité des notations, nous
écrirons m 4n avec n impair, et nous désignerons par Xn le second membre
de (8), qu'on peut écrire aussi:

~ Y H(4n- x2)

si on étend cette fois la sommation à tous les entiers x impairs, positifs ou
négatifs. De plus, si R désigne un système de relations (égalités, inégalités,
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congruences) où figurent, outre n, des lettres a, b, c, x, y, etc., nous conviendrons

d'écrire { R } pour le nombre de solutions (a, b, c, x, y, du
système R en nombres entiers, étant entendu que le nombre impair n > 0

est fixé une fois pour toutes. Nous pouvons écrire alors:

1 x2 — b2
Xn -< n ac -j b > 0, b < 2a, b < 2c, b x 1 (mod. 2)>.

Puisque b se x (mod. 2), on peut poser b + x 2y, b - x — 2z et écrire:

Xn -|n ac — yz, y+z>0,y + z< 2a, y + z < 2c, y ^ z(mod. 2)|,

où nous notons que les conditions imposées entraînent que yz est pair, donc
ac impair, donc c — z ^ a — y. Ces conditions étant symétriques en a

et c, et en y et z, on diminue de moitié le nombre de solutions qui figure au
second membre en ajoutant la condition c — z > a — y; mais alors,
comme ces conditions entraînent aussi y + z < a + r, on a même c — z

> | a — y |. Cela donne:

Xn { n ac — yz, y + z>Q,y+z< 2a, y + z < 2c,

c — z>|a — y I, y ^ z (mod. 2) }

Soit A l'ensemble des (a, c, y, z) défini par ces dernières conditions; il est

contenu dans l'ensemble B défini par

(B) n ac — yz, 0<y + z<2a,c — z> | a — y |, y ^ z (mod. 2),

et la difference C B — A est l'ensemble défini par

(C) n ac — yz, 0 < y + z < 2a, y + z > 2c,

c — z > j a — y I, y ^ z (mod. 2).

Parmi ces dernières conditions, y + z < 2a est conséquence des autres, à

savoir de 0<y + z, y + z>2c, c — z > y — a, qui entraînent aussi

a > | c |. Notons aussi que les conditions qui définissent B entraînent que

yz est pair, donc a et c impairs.
Dans (B), nous ferons le changement de variables

y a — u, z — u +w,c — u + f + w.

Il transforme B en l'ensemble des (a, a, v, w) qui satisfont à

(D) n u2 + av + uw, | w | < a, v > | u J, w ^ a (mod. 2).
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Comme ces conditions sont équivalentes à (B), elles entraînent aussi a= 1

(mod. 2), donc w 0 (mod. 2). Considérons d'abord les solutions de (D)

pour lesquelles u — 0; celles qui correspondent à une valeur donnée de a

sont au nombre de a, et, comme on peut prendre pour a n'importe quel
diviseur > 0 de n, le nombre total de ces solutions n'est pas autre chose que
le nombre Yß déjà obtenu au n° 1 comme valeur de N4 (4ri). Comme
de plus (D) ne change pas si on y change (;u, w) en — u, — w), on voit que le

nombre d'éléments de B est N4 (4ri) + 2 F, où Y est le nombre d'éléments
de l'ensemble défini par

(D') n — u2 av + uw, | w | < a, v > u > 0, a 1, w — 0 (mod. 2).

D'ailleurs ces conditions impliquent v ^ u (mod. 2). Dans ces conditions,
ceux des éléments de cet ensemble qui correspondent à des valeurs données
de a et de u sont au nombre de (p (u, a, 0, u+ 1, n — u2), de sorte qu'on a:

Y Y (P (w, a, 0, u + 1, n — u2),

où la sommation est étendue à tous les couples (u, a) pour lesquels u > 0,

a > 0, a 1 (mod. 2). D'après ce qu'on a vu à la suite du lemme 2, tous
les termes de cette somme sont nuls à l'exception de ceux pour lesquels
n — u2 > u + a, ce qui montre que l'ensemble B est fini.

Passons à (C), où, comme on l'a vu, on peut omettre la condition
y + z < 2a. Cette fois nous ferons le changement de variables

a u + v + w, y u + w, z c — u

qui transforme C en l'ensemble des (u, v, w, c) défini par

n u2 + cv + ww, w > |c|,u > | f w c (mod. 2),

conditions qui entraînent de nouveau c 1, w 0 (mod. 2). Comme par
conséquent c # 0, et qu'on peut changer (c, v) en (-c, -y), le nombre
d'éléments de C est 2Yf, où est le nombre d'éléments de l'ensemble
défini par

n - u2 cv + uw, w > c > 0, u > | v j, c 1, w 0 (mod. 2).

Tout comme plus haut, les éléments de cet ensemble qui correspondent à des
valeurs données de c et de w sont au nombre de (p (c, w, u+1, 0, n — u2), et
l'on a -

Z + n-u2),
où la somme est étendue aux couples (c, w) tels que c > 0, u > 0 et c 1

(mod. 2). Le lemme 2 donne F' Y, ce qui achève la démonstration.
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