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(1) DfJJnK0 D(fN)nK°,n>N
pour un certain N. En effet choisissons N tel que n> N entraine que

(2) sup X(/„ (z),fN (z)) < 1,z(/„).
Soit z e D (fN) n K°. Supposons que fN (z) i=- 0, et soit a la valeur antipode
à fN (z). Alors (2) entraîne que (fn~a)"1, n> N, est bornée dans
l'intersection d'un voisinage de z et D (fN) n D (/„). Puisque X est normal le

théorème de Riemann nous dit que (fn — a)"1 est holomorphe au point z

et donc z e D (fn). De même, si fN (z) 0, on voit que z e D (fn) en
appliquant le théorème de Riemann directement à la fonction /„. Nous avons
démontré l'inclusion dans un sens dans (1) et l'inclusion contraire se voit
de la même façon.

De (1) et (2) et du fait que {/„ } est Cauchy, il suit que fn converge sur
D (/a) n vers une fonction /méromorphe sur D (fN) n K°. Mais nous
avons vu que K 0 \ D fN) est de codimension deux. Le théorème d'extension
de Levi [6] nous dit alors que la fonction méromorphe/s'étend à tout K°.
Ceci achève la démonstration.

II. Résultats principaux

Commençons par quelques notations et définitions. Soit X un espace

analytique. Par une suite frontière dans X, on entend une suite { z- } dans X
qui est éventuellement hors de tout compact. On dit qu'une telle suite tend

vers l'infini. On dit qu'une fonction définie sur X s'annule à l'infini si elle

tend vers zéro sur toute suite qui tend vers l'infini. Soit d une métrique sur X
et soit 8 une fonction continue et positive sur X qui s'annule à l'infini. Pour

{ Zj } une suite frontière, on définit le e-voisinage de {Zj } comme suit:
00

V({zj},8) U V(zj9e),
j= i

où V (z, s) signifie le disque ouvert de centre z et de rayon s (z).

Si X est un espace de Stein, alors X admet un recouvrement par compacts

Kp j 1, 2, tels que

(3) KjCz(Kj+1)0,

Théorème 2. Soit X un espace de Stein de dimension n. Soit Kp

j 1,2,..., un recouvrement de X par compacts satisfaisants à (3). Soit d

une métrique sur X et s une fonction continue et positive qui s'annule à
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l'infini. Alors, pour m < n9 toute fed) (X, Cm), sauf un ensemble maigre,

a la propriété suivante : pour toute suite frontière { Zj } telle que chaque Zj
est situé sur 7)Kp on a que

f(y({zj}>e)) Cm

Un résultat analogue est valable pour les fonctions méromorphes.

Théorème 3. Sous les hypothèses du théorème 2, toute fonction méro-

morphe /e l(I), sauf un ensemble à la fois r-maigre et Tz-maigre, a la

propriété suivante : pour toute suite frontière { Zj } telle que chaque Zj
est situé sur ^Kp on a que

f(V({zj},e)) =P.
Avant de procéder aux démonstrations, examinons quelques-unes des

conséquences de ces deux théorèmes.

Soit cr: [0, +oo) -> X un chemin continu sur X. Le chemin o est dit
un chemin frontière si o (t) tend vers l'infini, lorsque t -> + oo. Soit e une
fonction positive et continue sur X. On définit le e-voisinage du chemin cr

par
V(cr, s) UtV(a(t),s).

Du théorème 3 on déduit aisément le

Corollaire 3.1. Soit X un espace de Stein, d une métrique sur I et s

une fonction continue et positive qui s'annule à l'infini. Alors pour toute
fonction méromorphe/ sur X, à l'exception d'un ensemble à la fois r-maigre
et Tz-maigre dans M (X), on a que

f(V(c7, 8)) P

pour tout chemin frontière <r.

Suivant une terminologie suggestive on peut dire que pour une fonction
méromorphe générique sur un espace de Stein, tout chemin frontière est
un chemin de Picard.

Le théorème 2 admet un corollaire analogue pour les applications
holomorphes. En particulier, le théorème 2 contient le théorème D, et le théorème

3 donne une version du théorème D pour les fonctions méromorphes.
Si X est un espace de Stein, on appelle X* une compactification de X

pourvue que X* soit un espace compact et séparé qui contient une copie
homéomorphe de X dense et ouverte dans X*. On appelle ß X* \ X
la frontière idéale de X. Si / est méromorphe sur X et p e ß9 on dénote par
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R (/, p) l'ensemble des valeurs w e P telle qu'il existe une suite { z}} dans

X, zj -+p, et/(zj) wj 1, 2,

Corollaire 3.2. Soit X un espace de Stein et X* une compactification
métrisable de X. Alors toute fonction méromorphe sur X, sauf un ensemble
à la fois T-maigre et rz-maigre, a la propriété

(4) R (/, p) P, pour tout p e ß

Démonstration du corollaire. Puisque ß est séparable, il suffit de montrer

que pour tout p e ß, l'ensemble des fonctions ne satisfaisant pas à (4)
est maigre.

Soit donc p e ß, d une métrique sur A*, et posons s(z) d (z, ß),

pour z e X. Fixons un voisinage U de p. Il suffit de montrer que, sauf un
ensemble maigre, toute /e M (X) a la propriété

(5) f(UnX) P

Soit { Kj } un recouvrement de X par compacts satisfaisants à (3) et
tels que chaque Kj contient un point Zj sur sa frontière tel que V (zj9 s) c= U.

Cette construction est possible. Evidemment une fonction générique au sens

du théorème 3 satisfait à (5), ce qui achève la démonstration du corollaire.
Utilisant une terminologie semblable à celle suivant le corollaire 3.1,

on peut dire que sur un espace de Stein, une fonction méromorphe générique
admet tout point frontière comme point de Picard.

Le théorème 2 aussi admet un corollaire analogue au corollaire 3.2.

En particulier ces corollaires englobent le théorème C ainsi que le théorème

B.

Passons enfin aux démonstrations des théorèmes.

Démonstration du théorème 2. Nous allons commencer par le cas où

m n.

Pour /e 0 (X, C") et we Cn, dénotons par dimxf~1 (w) la dimension

en x de l'ensemble analytique /_1 (w).

Soit B une boule de C" et considérons l'ensemble A (B) c (9 (X, Cn),

d'applications holomorphes / telles qu'il existe une suite {zj}, Zj e î)Kj,
et un point w e B ayant la propriété que si f(x)mw pour x e V({zj}, e)

alors dimxf ~1 (w) # 0. Remarquons que A (B) contient les applications

/e (V (X, Cn) telles que

/(F({z,},£))4>B.
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Conséquemment il suffit (pour m ri) de montrer que A (B) est un ensemble

rare, puisque Cn admet un recouvrement par une suite dénombrable de

boules.

a) A (B) est fermé. En effet, soit une suite de fk, fke A (B), et lim fk /.
Alors il existe des suites { zkJ }, zkJe~dKj, et des points wkeB associés.

On peut supposer que la suite wk, correspondante aux fk dans la définition
de A (B), converge vers w, et que pour chaque k, { zkJ } converge vers

Zj e 7)Kj. Si nécessaire, on choisit une soussuite avec ces propriétés par le

procédé usuelle de diagonalisation.
Un argument standard (voir preuve du lemme 2 dans [3]) montre que

si zeV({zjj, e) et f(z) w, alors dimz/_1(w) A 0. Donc feA{B) et
A (B) est fermé.

b) C (.B) § (X, Cn) \ ^4 (Ü) est dense dans (9 (X, C"). Soit donc

fe & (X, Cn) et un voisinage fondamental de /, N (/, K, ô). Soit v un indice
A A

tel que K a Kv (K signifie l'enveloppe d'holomorphie de K). Puisque
c)Xv+1 est compact, il existe une suite finie de boules paramétriques Uß;

fi 1, 2, q, ayant les propriétés suivantes:
A

1) Pour chaque jx, K n Üß 0.
2) Pour ji A a, Üß n Üa 0.
3) Pour chaque z e i)Xv + 1, il y a un fi tel que F (z, e) =d C7m.

Il nous suffira maintenant de montrer l'existence d'une application
g e (9 (X, C") telle que g soit près de / sur K et g envoie chaque Uß sur un
ensemble contenant B.

A
Puisque K est holomorphiquement convexe, il existe des boules

paramétriques Gß, fi 1, 2, q, telles que pour chaque fi,

(6) GßCUß,
et

(7) (^uG1U...UG9)Ac (X\UUJ u
1 1

Il existe pour /( 1,2, q, une application non-singulière et injective

- C"

telle que

(8) â'xCG/i) => B
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D'après (7) et le théorème de Runge-Oka-Cartan, il existe g e 0 (X, C")
telle que g est près de / sur K et g est près de gß sur Gß, ji 1,2, q. Il
en suit que

geN(f,K,8)nC(B).
En effet il est évident que g e N (/, K', S) si g est une bonne approximation.
Pour voir que g e C (B) notons que puisque gß est injective, la distance entre

gß QïGf) et B est positive. Aussi puisque g | Gß est non-singulière, g (Gß)
cz g (èG^). Donc si g est près de gß, la distance entre 7)g (Gß) et B est positive.
Donc g (Gß) => B ce qui montre que g e C (B). Ceci achève la démonstration

pour le cas m n.

Ayant démontré le cas m n, le cas m < n devrait être vrai à fortiori.
En effet la même démonstration marche avec modifications évidentes. Ceci
achève la démonstration du théorème 2.

Démonstration du théorème 3. La démonstration du théorème 3 est
très semblable à celle que nous venons de terminer. En effet nous allons
tout simplement indiquer les modifications à apporter à cette démonstration

pour le cas des fonctions méromorphes.
Premièrement la boule B est située dans une carte de P. Ensuite on définit

A (B) comme étant l'ensemble des fonctions méromorphes / telle qu'il
existe une suite { Zj }, Zj e ~bKj, et un w e B avec la propriété que si / (z)

w, ze R(X) n V({zj}, s) alors / w au voisinage de z. Dans cette
définition i?(X) signifie l'ensemble des points réguliers de X.

Pour ce qui est de montrer que A (B) est à la fois r-rare et r^-rare,
notons que puisque la topologie t est plus fine que la topologie %x il suffit
de montrer que A (B) est u^-fermé et que C (B) est r-dense.

a) A (B) est fermé. Soient {fk}, { wk }, et w définis comme dans la
démonstration du théorème 2. Soit z un point de

R(X)nV({zj}9e)

tel que/ (z) w. On montre que / est constante au voisinage de z. Sinon,
il y a une droite complexe Y passant par z telle que la fonction /1 L ainsi

que les fonctions fk | L sont toutes non-constantes et méromorphes sur L.
Des arguments standards pour une seule variable complexe montre que

pour k grand, fk prend la valeur wk sur R(X) près de z, et fh est non-
constante au voisinage de z. Puisque zkJ zj9 ceci contredit la manière

dont les fk étaient choisis. Donc A (B) est fermé.
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b) C (m) est dense. Ici il faut faire un petit changement. La fonction g

sera de la forme / + h où h doit être très petit sur K et très près de gß — f
sur Gß, fi 1, 2, q. Ceci ne pose aucun problème si l'on choisit les Uß,

de telle façon que/1 Uß soit holomorphe, ji 1, ...,#, ce qui est toujours

possible.
En faisant ces modifications, le théorème 3 est démontré.

Dans la suite de cet article nous allons nous borner au cas où X est une

surface de Riemann ouverte. Donc X est Stein et les théorèmes 2 et 3, et

bien sûr leurs corollaires, sont valables pour une surface de Riemann ouverte

quelconque.
Le corollaire 3.2 et son homologue pour les fonctions holomorphes sont

valables pour les compactifications métrisables. Mais ceci inclus une grande

partie des compactifications que l'on rencontre en variables complexes,

notamment les compactifications de Stoilow-Kerékjarto, de Kuramochi,
de Martin, et d'Alexandrov.

Une autre compactification importante est obtenue lorsque X est

l'intérieur d'une surface à bord X. Si X est compact on pose X* X,
tandis que si X n'est pas compact on pose X* égale à la compactification
d'Alexandrov pour X. Dans les deux cas, le corollaire 3.2 dit qu'une fonction

méromorphe générique sur l'intérieur d'une surface de Riemann à

bord prend toute valeur de la sphère de Riemann une infinité de fois dans

tout voisinage de tout point du bord. Bien sûr un résultat analogue est

valable pour les fonctions holomorphes mais avec l'infini comme valeur
exceptionnelle.

On termine par un exemple « plus fort » que ce que l'on a obtenu par
nos arguments de catégorie.

Théorème 4. Soit X une surface de Riemann ouverte, d une métrique
sur X et s une fonction positive et continue sur X. Alors il existe une fonction

/ dans M (X) (0 (X)) ayant la propriété suivante: pour toute suite
frontière { Zj },

f(V({zj},s))P(C).

Démonstration. On peut construire une suite Dm de disques paramétriques

disjoints de façon a ce que les Dm soient éventuellement disjoints
de tout compact et pour tout z eX,ily a un m tel que V (z, s) =>

Pour chaque m,soitamlecentre de Dm. et soit <P„, une représentation
conforme du disque unité sur Dm telle que <Pm (0) Posons
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<Pm (1 /m). D'après le théorème de Florack, il existe une fonction g e (9 (X
telle que g (am) 0 et g (bm) — 1, m 1, 2,... Alors g est presque la
fonction recherchée. Soit { Zj } une suite frontière. Alors V ({Zj}, e) contient
u Dm(jp pour une sous-suite m(j) d'indices. Posons gj g° $mUy Alors
puisque gj (0) 0 et gj(l/mU)) 1, la suite { gj} n'est pas une famille
normale dans le disque unité D. Par un théorème bien connu,

9(v({zj}> e))13 u 9=> u (D)
j j

ne peut manquer qu'au plus une valeur du plan fini. La fonction
holomorphe que l'on cherché est sin g et la fonction méromorphe est tout
simplement une fonction doublement périodique composée avec g.

Nous remarquons que dans cet exemple il n'y a pas de restriction sur
la croissance des suites frontières telle qu'il y en avait dans nos arguments
catégoriques.
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