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1 , D(f)nK° =D(fy)nK°’,n >N
pour un certain N. En effet choisissons N tel que n > N entraine que

(2) sup X (£, (2).fy(2)) <1,ze KD (fy) nD(f,).

Soit z € D (fy) N K°. Supposons que fy (z) # 0, et soit @ la valeur antipode
a fy (2). Alors (2) entraine que (f,—a)”!, n> N, est bornée dans I'inter-
section d’un voisinage de z et D (fy) N D (f,). Puisque X est normal le
théoréme de Riemann nous dit que (f,—a)~ ' est holomorphe au point z
et donc z € D (f,). De méme, si fy (z) = 0, on voit que z € D (f,) en appli-
quant le théoréme de Riemann directement a la fonction f,. Nous avons
démontré I'inclusion dans un sens dans (1) et 'inclusion contraire se voit
de la méme facon.

De (1) et (2) et du fait que { f, } est Cauchy, il suit que f, converge sur
D (fy) n K° vers une fonction f méromorphe sur D ( fy) N K°. Mais nous
avons vu que K °\ D (fy) est de codimension deux. Le théoréme d’extension
de Levi [6] nous dit alors que la fonction méromorphe f s’étend a tout K °.
Ceci achéve la démonstration.

II. RESULTATS PRINCIPAUX

Commengons par quelques notations et définitions. Soit X un espace
analytique. Par une suite frontiére dans X, on entend une suite { z; } dans X
qui est éventuellement hors de tout compact. On dit qu’une telle suite tend
vers I'infini. On dit qu’une fonction définie sur X s’annule a l'infini si elle
tend vers zéro sur toute suite qui tend vers 'infini. Soit 4 une métrique sur X
et soit ¢ une fonction continue et positive sur X qui s’annule a I'infini. Pour
{ z;} une suite frontiére, on définit le e-voisinage de { z; } comme suit:

V({z;},8) = E V(z;,e),
j=1

ou V (z, ¢) signifie le disque ouvert de centre z et de rayon & (2).
Si X est un espace de Stein, alors X admet un recouvrement par compacts
K;,j=1,2,.., tels que

(3) K; < (Kj+1)0 )
Théoréme 2. Soit X un espace de Stein de dimension n. Soit K;,

j=1,2,..., un recouvrement de X par compacts satisfaisants a (3). Soit d
une métrique sur X et ¢ une fonction continue et positive qui s’annule a
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I’infini. Alors, pour m < n, toute fe 0 (X, C™), sauf un ensemble maigre,
a la propriété suivante: pour toute suite fronticre { z; } telle que chaque z;
est situ€ sur dK;, on a que

f(V({z;},9) = C™.

Un résultat analogue est valable pour les fonctions méromorphes.

Théoréme 3. Sous les hypothéses du théoréeme 2, toute fonction méro-
morphe fe M (X), sauf un ensemble a la fois z-maigre et 7,-maigre, a la
propriété suivante: pour toute suite frontiere { z;} telle que chaque z;
est situé sur d0K;, on a que |

f(V{z;, g)) = P.

Avant de procéder aux démonstrations, examinons quelques-unes des
conséquences de ces deux théorémes.

Soit ¢: [0, + 00) - X un chemin continu sur X. Le chemin ¢ est dit
un chemin frontiére si o (¢) tend vers 'infini, lorsque # - + co. Soit ¢ une
fonction positive et continue sur X. On définit le e-voisinage du chemin o

par
V(e,e) = U, V(o (),e).

Du théoréme 3 on déduit aisément le

Corollaire 3.1. Soit X un espace de Stein, d une métrique sur X et ¢
une fonction continue et positive qui s’annule a linfini. Alors pour toute
fonction méromorphe fsur X, a ’exception d’'un ensemble a la fois t-maigre
et 7,-maigre dans M (X'), on a que

f(V(Ga 8)) = P,

pour tout chemin frontiére o.

Suivant une terminologie suggestive on peut dire que pour une fonction
méromorphe générique sur un espace de Stein, tout chemin frontiére est
un chemin de Picard.

Le théoréme 2 admet un corollaire analogue pour les applications holo-
morphes. En particulier, le théoréme 2 contient le théoréme D, et le théo-
réeme 3 donne une version du théoréme D pour les fonctions méromorphes.

Si X est un espace de Stein, on appelle X* une compactification de X
pourvue que X * soit un espace compact et séparé qui contient une copie
homéomorphe de X dense et ouverte dans X*. On appelle f§ = X*\ X
la frontiére idéale de X. Si f est méromorphe sur X et p € §, on dénote par
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R (f, p) ensemble des valeurs w e P telle qu’il existe une suite { z; } dans
X,z;—>p,etf(z;)=w,j=12, ...

Corollaire 3.2. Soit X un espace de Stein et X* une compactification
métrisable de X. Alors toute fonction méromorphe sur X, sauf un ensemble
a la fois t-maigre et 7 -maigre, a la propriété

4) R(f,p) = P, pourtout pef.

Démonstration du corollaire. Puisque f est séparable, il suffit de mon-
trer que pour tout p € f, ’ensemble des fonctions ne satisfaisant pas a (4)
est maigre.

Soit donc p e f, d une métrique sur X*, et posons ¢(z) = d(z, ),
pour z € X. Fixons un voisinage U de p. 1l suffit de montrer que, sauf un
ensemble maigre, toute fe M (X) a la propriété

(5) f(UnX) =P.

Soit { K; } un recouvrement de X par compacts satisfaisants a (3) et
tels que chaque K; contient un point z; sur sa fronticre tel que V' (z;, &) < U.
Cette construction est possible. Evidemment une fonction générique au sens
du théoréme 3 satisfait a (5), ce qui achéve la démonstration du corollaire.

Utilisant une terminologie semblable & celle suivant le corollaire 3.1,
on peut dire que sur un espace de Stein, une fonction méromorphe générique
admet tout point frontiére comme point de Picard.

Le théoréme 2 aussi admet un corollaire analogue au corollaire 3.2.
En particulier ces corollaires englobent le théoréme C ainsi que le théo-
reme B.

Passons enfin aux démonstrations des théorémes.

Démonstration du théoréme 2. Nous allons commencer par le cas ou
m = n.

Pour fe 0 (X, C") et we C", dénotons par dim, f ! (w) la dimension
en x de ’ensemble analytique £ ~* (w).

Soit B une boule de C" et considérons I’ensemble 4 (B) = 0 (X, C"),
d’applications holomorphes f telles qu’il existe une suite { z; }, z; € 3K,
et un point w € B ayant la propriété que si f(x) = w pour x e V ({z;}, ¢)
alors dim,f ~' (w) # 0. Remarquons que A4 (B) contient les applications
fe 0 (X, C" telles que

f(V({z;},¢) pB.
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Conséquemment il suffit (pour m=mn) de montrer que A (B) est un ensemble
rare, puisque C" admet un recouvrement par une suite dénombrable de

boules.

a) A (B) est fermé. En effet, soit une suite de f,, f, € 4 (B), et lim f;, = f.
Alors il existe des suites { z; ; }, z; ; € 0K, et des points w, € B associés.
On peut supposer que la suite w,, correspondante aux f, dans la définition
de A4 (B), converge vers w, et que pour chaque k, {z,;} converge vers
z; € 0K;. Si nécessaire, on choisit une soussuite avec ces propriétés par le
procédé usuelle de diagonalisation.

Un argument standard (voir preuve du lemme 2 dans [3]) montre que
si ze V ({z;},¢) et f(z) = w, alors dim,f ~"' (w) # 0. Donc fe 4 (B) et
A (B) est fermé. |

b) C(B) = O0(X,C")\ 4(B) est dense dans 0 (X,C". Soit donc
fe 0 (X, C") et un voisinage fondamental de £, N (f, K, §). Soit v un indice
tel que K = K, (K signifie 'enveloppe d’holomorphie de K). Puisque

0K, 1 est compact, il existe une suite finie de boules paramétriques U,;
u=1,2,..,¢q, ayant les propriétés suivantes:

1) Pour chaque 1, Kn U, = &.

2) Pour p#0, U, n U, = 2.

3) Pour chaque ze€dK, ., il y a un u tel que V (z, ¢) o U,

Il nous suffira maintenant de montrer 'existence d’une application

g€ 0 (X, C") telle que g soit prés de f sur K et g envoie chaque U, sur un
ensemble contenant B.

Puisque K est holomorphiquement convexe, il existe des boules para-
métriques G, u = 1, 2, ..., g, telles que pour chaque g,

(6) G, =U,,
et
A q _ q
(7) (KuGyu..vG) =« (X\UU)LUU,.
1 1

Il existe pour = 1, 2, ..., g, une application non-singuliére et njective
g,:u, -

telle que

(8) 9.(G,)> B.
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D’aprés (7) et le théoréme de Runge-Oka-Cartan, il existe ge 0 (X, C)
telle que g est prés de f sur K et g est prés de g.sur G, p=1,2,..,q 1
en suit que

geN(f,K,d0) nC(B).

En effet il est évident que g e N (f, K, d) si g est une bonne approximation.
Pour voir que g € C (B) notons que puisque g, est injective, la distance entre
2, (0G,) et B est positive. Aussi puisque g| G, est non-singuliére, dg (G,)
< g (3G,). Doncssi g est prés de g, la distance entre 3g (G,) et B est positive.
Donc g (G,) © B ce qui montre que g € C (B). Ceci achéve la démonstration
pour le cas m = n.

Ayant démontré le cas m = n, le cas m < n devrait étre vrai a fortiori.
En effet la méme démonstration marche avec modifications évidentes. Ceci
achéve la démonstration du théoréme 2.

Démonstration du théoréeme 3. La démonstration du théoréme 3 est
trés semblable & celle que nous venons de terminer. En effet nous allons
tout simplement indiquer les modifications a apporter a cette démonstration
pour le cas des fonctions méromorphes.

Premierement la boule B est située dans une carte de P. Ensuite on définit
A (B) comme étant I'ensemble des fonctions méromorphes f telle qu’il
existe une suite { z; }, z; € 9K, et un we B avec la propriété que si f(z)
= w,ze R(X)nV({z;},¢ alors f=w au voisinage de z. Dans cette
définition R (X') signifie 'ensemble des points réguliers de X.

Pour ce qui est de montrer que A (B) est a la fois t-rare et 7 -rare,
notons que puisque la topologie t est plus fine que la topologie 7, il suffit
de montrer que A4 (B) est 7,-fermé et que C (B) est 7-dense.

a) A (B) est fermé. Soient {f,}, { w;}, et w définis comme dans la
démonstration du théoréme 2. Soit z un point de

R(X)nV({z;}, ¢

tel que f(z) = w. On montre que f est constante au voisinage de z. Sinon,
il y a une droite complexe Y passant par z telle que la fonction f | L ainsi
que les fonctions f; l L sont toutes non-constantes et méromorphes sur L.
Des arguments standards pour une seule variable complexe montre que
pour k grand, f, prend la valeur w, sur R(X) prés de z, et f, est non-
constante au voisinage de z. Puisque z, ; - z;, ceci contredit la maniére
dont les f, étaient choisis. Donc A4 (B) est fermé.
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b) C (m) est dense. Ici il faut faire un petit changement. La fonction g
sera de la forme f + & ol /& doit étre trés petit sur K et trés prés de g, — f
sur G,, u = 1,2, ..., g. Ceci ne pose aucun probléme si I’on choisit les U,
de telle facon que f | U, soit holomorphe, u = 1, ..., ¢, ce qui est toujours
possible.

En faisant ces modifications, le théoréme 3 est démontré.

Dans la suite de cet article nous allons nous borner au cas ou X est une
surface de Riemann ouverte. Donc X est Stein et les théorémes 2 et 3, et
bien sfir leurs corollaires, sont valables pour une surface de Riemann ouverte
quelconque.

Le corollaire 3.2 et son homologue pour les fonctions holomorphes sont
valables pour les compactifications métrisables. Mais ceci inclus une grande
partie des compactifications que I’on rencontre en variables complexes,
notamment les compactifications de Stoilow-Kerékjarto, de Kuramochi,
de Martin, et d’Alexandrov.

Une autre compactification importante est obtenue lorsque X est
intérieur d’une surface & bord X. Si X est compact on pose X* = X,
tandis que si X n’est pas compact on pose X * égale a la compactification
d’Alexandrov pour X. Dans les deux cas, le corollaire 3.2 dit qu’une fonc-
tion méromorphe générique sur l'intérieur d’une surface de Riemann a
bord prend toute valeur de la sphére de Riemann une infinité de fois dans
tout voisinage de tout point du bord. Bien sfir un résultat analogue est
valable pour les fonctions holomorphes mais avec I'infini comme valeur
exceptionnelle.

On termine par un exemple « plus fort » que ce que 1’on a obtenu par
mnos arguments de catégorie.

Théoréme 4. Soit X une surface de Riemann ouverte, d une métrique
sur X et ¢ une fonction positive et continue sur X. Alors il existe une fonc-
tion f dans M (X) (0 (X )) ayant la propriété suivante: pour toute suite
frontiére { z; },

f(V({z;},9) = P(O).

Démonstration. On peut construire une suite D,, de disques paramé-
triques disjoints de fagon a ce que les D,, soient éventuellement disjoints
de tout compact et pour tout z€ X, il y a un m tel que V' (z,¢) o D,,.

Pour chaque m, soit a,, le centre de D,, et soit @,, une représentation
conforme du disque unité sur D, telle que &, (0) = a,. Posons b,
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= @, (1/m). D’aprés le théoréme de Florack, il existe une fonctiong € 0 (X))
telle que g(a,) =0 et g(b,) = 1,m = 1,2,... Alors g est presque la
fonction recherchée. Soit { z; } une suite frontiére. Alors V' ({z,}, &) contient
U D,y pour une sous-suite m;, d’indices. Posons g; = g° ®,,;,. Alors
puisque g; (0) = 0 et g; (1/,(;)) = 1, 1a suite { g; } n’est pas une famille
normale dans le disque unité D. Par un théoréme bien connu,

g (V({Zj}a 8)) ~ (Dm(j)) = Mg (D)

ne peut manquer qu’au plus une valeur du plan fini. La fonction holo-
morphe que I’on cherche est sin g et la fonction méromorphe est tout sim-
plement une fonction doublement périodique composée avec g.

Nous remarquons que dans cet exemple il n’y a pas de restriction sur
la croissance des suites frontiéres telle qu’il y en avait dans nos arguments
catégoriques.
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