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A CONSTRUCTION OF GAUSS

by C. W. Barnes

1. Introduction

Every prime of the form 4 n + 1 can be expressed uniquely as the sum

of two squares. Suppose p x2 + y2 where p is a prime of the form
4 n + 1. A construction for x and y was given by Legendre [8] in terms of
the continued fraction for yjp. In [1] we gave a new construction for a; and

y, again using the continued fraction for yjp. A summary of the various
constructions is given in Davenport [5], pages 120-123.

Gauss [6] remarked that if p 4 n + 1, and if a and ß are defined by

(2n) p p
ß

——1^2
(m°d p), a (2n) ß (mod p), where | a | < -, | ß | < - then

p a2 + ß2; a particularly simple construction to state. Proofs of the
construction of Gauss were given by Cauchy [4], page 414, and Jacobsthal
[7]; however, neither of them is simple.

In the present note we give a simple proof of the construction of Gauss
based on the method in [1].

2. Continued Fractions

We continue with the notation in [1]. The results we need can be found
in Perron [9]. We denote the simple continued fraction

ao + 1

(1) a1 + 1

a2 +

1

+ —
an
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by [a0, au an]. For 0 m n we denote the numerator and denominator
of the mth approximant to [<a0, au by .Tm and Bm respectively.

Ifp is a prime of the form 4 n + 1, then

(2) -y/^7 [flo, #1* • • • 5 ß/u) •••> ^1?

in the usual notation for a periodic continued fraction. The symmetric part
of the period does not have a central term. In [1] we proved that p
~ x2 + y2 where

(3) X PBnßm-1 - ^m^m-1

(4) y A2m-pB2m

A mand where — is the m approximant to (2). We also showed that
Bm

Am+ -4/n— 1
(5) P r2 D 2 •

3. The Quadratic Character of

(2 n)!2 (n !)2
'

p J

It is well known that ifp is a prime of the form 4 n + 1 then { —— }2

— 1 (modp); that is, (2ft) I2 — 1 (modp). We make use of this in the

(2n)
Lemma. If p 4 n + 1 is a prime then T is a quadratic residue

2 (ft

of p.
(2ft)

Proof. We use Euler's criterion. Thus if we suppose that is a
2 (ft

(2ft) Lzi
quadratic nonresidue of p we have { ——^ } 2 — 1 (mod p) and thus

p—l p—l
{ (2ft) !2 } — { 2 (ft !)2 } (modp). Since (2ft) !2 — 1 (modp) and

p—i

ft P"1 1 (mod p) we have (—1)" — —2 2 (mod /?), or (— l)n+1
p2+l

— 1) s using the standard result for the quadratic character of 2 with res-



— 3 —

pect to an odd prime. We finally get (—1)"+1 (—1)2m2+m or (—l)w+1

(2n)\
— 1)" (mod p) which is a contradiction since p is an odd prime. Thus

^ ^ ^
is a quadratic residue of p.

4. The Construction of Gauss

Theorem. Suppose p An + I is a prime and p x2 + y2 where

x and y are given by (3) and (4). Let ß and a denote respectively the numeri-

(2ri) jP

cally smallest residues of j and (2n) ß modulo /?, so that | a | < - -
2 (n 2

\ß\ < P-.Then p a2 +ß2.

Proof. By (5) we have, using the remark at the beginning of section 3,

A2 + A2-! 0 (mod/?) and hence —A2 A2-± (mod/?), so that

{(2ri) }2 A2 A2-1 (mod/?), and since p is a prime {In) Am

± A m^1 (mod/?). Supposing the negative sign holds we have (2n) I A2

—AmAm-1 (mod/?). Therefore we obtain {In) A2 — {In) !pB2
{pBmBm_1—AmAm-1) (mod/?), so that by (3) and (4) we get

(6) x (2n) l y (mod p).

If the positive sign holds above it follows that x — {In) y (mod /?)

which is just as good for our present purposes since we are not concerned
with the signs of x and y. We will comment on the signs in section 5.

(2n) — p— Lzi
By the lemma we have { ——— } 2 1 (mod p) so (2ri) 2 2 2

p—i p—i
{n !)p~1 (mod/?), and therefore (2n) 2 2 2 (mod/?) since {n !,/?)= 1.

We have x ± {In) y (mod /?), and since each of y and — 1 is a quadratic
p— i p-1 p—i

residue of /?, x 2 (2«) 2 2 2 (mod /?), and in terms of the

x 2
Legendre symbol it follows that (-) (-) ; that is, the quadratic charac-

P P

ter of x with respect to p is the same as the quadratic character of 2 with
respect to /?.

Suppose 2 is a quadratic residue of /?. Then



2 2 (Ä f) p-1 (AmAm -1) 2 (AmAm^) * (_*) 2 2 =1
(mod p).
Next, if 2 is a quadratic nonresidue of p we have

_(_x)V _WV _(_i) i
(mod/?),

and we conclude that 2(n !)2 A mAtn
is a quadratic residue of p. By (3),

(4), and (6) we have

(2 ri)! y- AmAm_1 (mod p)

2 (n!)2(2n) !>' - 2(n !)2 (mod p)

and

— 2 (ft !)2 (2ft) \ y b2 (mod p)

for some quadratic residue b2. Therefore

— 2 (ft !)2 (2ft) y — (2ft) I2 b2 (mod p),

— 2 (n l)2 y — (2ft) h2 (mod p),

and finally

Hence by (6)

(2n) 9

y x h (mod p).J 2 (ft!)2
V FJ

(2ft) !2
9

x ee —— b (mod p).
2 (ft

Let b2 r (mod p), | r \ < so that (r, p) 1. Then in terms of a,

ß, and r, x a r (mod p) and y ß r (mod p). There are unique integers

K and L such that x ar + Kp, y ß r + Lp. Then

x2 + y2 (a2 +ß2) r2 +(K2+L2)p2 + 2rp(aK+ßL),

or

p (a2 + ß2) r2 + (K2+L2) p2 + 2rp(aK+ßL).

Suppose that | r | > 1,K ^ 0, and L / 0. The last equation can be

written



(7) pK2+ 2rotp)K + { L2p2+ 2rß(a2 - } 0

Since (7) is a quadratic in K and we are supposing that the integral root is

not zero we have

K I { L2p2 + 2 rßpL+ (a2 +ß2) r2 - p}

There is an integer t such that

LV + IrßpL + (a2 + ß2) r2 - p Kt

and therefore (7) vanishes when

L2p2 + IrßpL + (a2 +ß2) r2 - p
K —— —

t

That is

(8) { L2p2 + 2rßpL + (oc2 +ß2) r2 — p) [t2 + 2ra.pt

+ p { L2p2 + 2rßpL + (a2 +ß2) r2 - p}} 0

The discriminant of the quadratic function

t2 + Irapt + p { p2 L2 + IrßpL + (a2 +ß2) r2 - p)

is 4p2 [p — (pL + ßr)2 } which is not zero. It follows that the second factor
in (8) cannot be zero ; otherwise we would have two distinct integral values
for t giving rise to two distinct integers K, whereas K is unique. Hence we
have

(9) p2L2 + IrßpL + (a2 +ß2) r2 — p 0

and since we are supposing that L ^ 0, we see that

L \ {(a2 + ß2)r2 - p } so that for an integer u we have (a2 + /?2) r2 - p
L u and (9) vanishes when

L
(a2+/?2) r2 - p

U

so that

(10) {(a2 +ß2)r2 - p}{u2 + Irßpu+ {(a2 r2 - p}} 0

As before we consider the quadratic function

u2 + Irßpu + p2 {(a2 +ß2)r2 - p)
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The discriminant is 4p2 (p — oc2r2) which cannot vanish, so that, as before,
the first factor in (10) must be zero, and we have

(11) (a2 +ß2) r2 — p 0

which is a contradiction since a2 + ß2 > 1 and we are supposing that

\r\> 1.

Therefore we cannot have | r | > 1, K ^ 0, and L # 0. If | r | 1 we
see that K L 0 since | x — oc r | < p and | y — ß r | < p in this case.

If I r I > 1 with K L 0 we would have x a r, y — ß r and hence

(x, y) > 1, whereas x and y are relatively prime. Finally it remains to
consider the possibility of having | r | > 1 with one of K and L zero, the
other nonzero. This if we suppose that [ r | > 1, K 0, L =# 0, we obtain
(9) which, as we have seen, leads to a contradiction. On the other hand the

supposition that | r | > 1 with K ^ 0, L 0 implies that (11) would hold
with r2 > 1.

We conclude that | r | 1, K 0 and L 0. Hence x ± a,

y ± ß and a2 + ß2 p.
In [1], Corollary 2, we observed that if p x2 + j2 then, in our

notation, ^ is a quadratic residue of p. Collecting our results we have the

Corollary. Let p x2 + y2 where p is a prime of the form 4n + I

x 2 ywith x and y given by (3) and (4). Then - - and - 1.

5. Conclusion

We saw that x ± a, y + ß. When p 13 we have y — 3,

ß —3; whenp 29, y —5,ß 5, and whenp 41, j; 5, ß 5.

Hence the sign of determined by the approximants to a continued fraction
depends on the integer m, the number of terms in the finite segment of (2)

which is used, can agree with that of ß or be opposite that of ß. The same

applies to x and a. In [1], Theorem 1, we gave a construction which always

gives positive values for x and y. Other various constructions, as we have

seen, do not have this property.

(In)
Finally we comment on the numbers which we denote by an forJ 2 (n

n 1, 2, 3,
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The members of the sequence { a„}are related to the numbers b„+1

Ç2ri)
—-, n 0, 1, 2,..., which, as mentioned by Becker [2], have a

(n + 1) n

variety of applications. Birkhoff [3] pointed out that bn is an integer for
every positive integer n, and noted the recurrence relation bn Ya= î bfi
a relation which was also obtained by Wedderburn [10].

The results of this note depend on the fact that an is an integer, at least
when p 4 « + 1 is a prime. Although it is known that is an integer
for every positive integer n, we can see that this also follows readily from [3].
For we have 2 an (n+l)bn+1. If n is even, it follows that bn+1 is even

since (2,77+1) 1. Therefore an (72 +1) is an integer. If n is odd

1 n + 1
then 2 I (72+1) and in this case also an — —-— bn+1 is an integer. A list of

values for an can be obtained from the second column of a table in [2],

77 + 1

page 699, headed Nm by multiplying the (77+ l)st member by
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