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Ces formes s'écrivent respectivement:

I(iP) a-l~^(X3— 3X2 Y+ Y3) +

et

Ity) (a1 — a2) (X3 — 3X2 Y + Y3) + 3a1XY(X — Y)

On voit que I (\jj) est pair, pour tous X et Y entiers rationnels si et
seulement si ax — a2 est pair. C.q.f.d.

Exemple 2.1 Soit K le corps engendré par a 5 j — j 2. On a a a

31 et a — 1 6 j, donc a est canonique unitaire et K Q (0), où 6 est

zéro du polynôme X 3 - X2 — 10 X + 8. Les 3 zéros de ce polynôme
forment une base canonique de K et AK 312.

La condition du théorème 2.2 étant satisfaite, 2 est diviseur commun
des indices de K.

Remarque 2.2 Si 2 est diviseur commun des indices de K, 0K n'est pas

monogène; mais on verra, au chapitre 4, qu'il existe des corps K où 2

n'est pas diviseur commun des indices et où 0K n'est pas monogène.

Chapitre 3. — Les nombres cubiques cycliques 6

POUR LESQUELS Z [9] EST L'ANNEAU DES ENTIERS DE Q (6)

Soit 6 un nombre cubique cyclique construit avec (/?, S) (cf. théorème 1.1).

On cherche des conditions pour que l'anneau des entiers de Q (9) soit

Z [0].

Lemme 2.1 Soit 9 un nombre cubique cyclique, construit avec (ß, S),
b -f- d b ~

tel que Z [9] soit l'anneau des entiers de Q (9). Alors ß j 4— jceoù d est égal à 1 ou à 3 et où b et c sont des entiers rationnels premiers
entre eux.

Démonstration Soit ß bx j + b2 j 2• bl et b2 sont des nombres

rationnels. 1, 9, 92 étant une base d'entiers de Q (0), on a

4(1,0,(70)
4(1,0, 92)E
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D'après les formules (1.5) et (1.6), cette condition s'écrit

27

Gß-ß'f
eZ

Mais (ß-ßf)2 - (j ~j 2)2 (b1~b2)2 - 3(bl-b2)2. La condition
9 3

s'écrit donc — —ô eZ, soit 7- 7- eZ.
(^1 b2) b 1 — b 2

Soit b1 — b2 -, avec c et d entiers rationnels premiers entre eux et
c

3 3c
d> 0; la condition eZ devient — eZ, ce qui implique, c

b1 — b2 d

et d étant premiers entre eux et d étant positif, d 1 ou d 3.

Par ailleurs, 0 e 0K donc A (1, 0, <j6) e Z ; soit, d'après (1.6) ß ßr e Z.

Mais ß ^b2+ j + b2j2; donc ßß' — b\ + b2 - +

La condition ß ß' e Z implique, c étant entier, b\c2 + b2 d c + d2 e Z.
Mais JeZ, donc cette condition s'écrit b\ c2 + b2 d c e Z, soit

b2 c (b2c + d) e Z. De là on tire b2 c e Z, soit b2 - avec b e Z.
c

b + d b
On a ainsi obtenu ß j H—7 C.q.f.d.

c c

Le théorème suivant donne des précisions supplémentaires sur ß.

Théorème 3.1 Soit 6 un nombre cubique cyclique tel que l'anneau des

entiers de K Q (9) soit Z [0] et soit (/?, S) l'image de (0, a). Alors ß
satisfait l'une des conditions suivantes :

(3.1)

(3.2)

n
b + 1 h

ß j H—j avec b eZ b 1 (mod 3)
c c

ceZ et
b2 +b + 1

3?^ "

+ 3 b
9

ß j + - j avec b e Z, b ^ 0 (mod 3),
c c

c eZ, c ^ 0(mod 3) et
b2 + 3b + 9\2

zlx
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(3.3)

3 3
ß - (b + l)j H— bj2 avec b e Z, b ^ 1 (mod 3)

c c

/b2+h + l\2
ceZ, c ^ O(mod 3) et 8l( ^ J AK

Démonstration On obtient ces 3 conditions pour ß en prenant
successivement, dans la forme de ß donnée par le lemme 3.1, <7=1, <7 3 et

b ~=é 0 (mod 3) et d 3 et b 0 (mod 3).

a) d 1

Alors, ß
+

- j + - j2 L'hypothèse Z [0] entraîne d (0)
c c

AK, donc, d'après (1.9), - 2 (ßß')2 {ß-ß')2soit encore -27 27 c

b2 +b +1\2
3?

Cette condition entraîne b2 + b + 1 0 (mod 3), soit b ss 1 (mod 3).

(b2 + b + l)2 — 3)
o 3 AK.

b) d — 3 et b ^ 0 (mod 3)

c et (7 étant premiers entre eux, on a c fé 0 (mod 3).

b + 3 b
On a donc ß — j + - j et l'égalité d (0) AK s'écrit

c

i2 + 3b + 9^2

C3 -I-
c) <7 3 et b 0 (mod 3)

Comme en b), on voit que c 0 (mod 3).
3 3 _

En posant b 3 b0, il vient ß - (b0 + 1)j H— b0j
c c

/6o+fe0 + l\2
La condition d (0) dx s'écrit 811 ^

I AK

Cette condition ne peut être satisfaite que siZ>o + Z?o+l#0 (mod 3),

c'est-à-dire si b0 ^ 1 (mod 3). En écrivant b au lieu de bQ, on a les conditions

(3.3). C.q.f.d.
Ces conditions (3.1), (3.2) et (3.3) sont deux à deux exclusives.

ß étant un nombre satisfaisant l'une de ces conditions et 0 étant construit
avec (ß, S), il se peut, même si S est entier, que 0 ne soit pas entier.
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Dans les 3 lemmes qui suivent, on donne des conditions pour que 9 soit
entier, lorsque ß satisfait des conditions proches de (3.1), (3.2) ou (3.3).

Pour que 9 soit entier, il faut et il suffit que les coefficients du polynôme
(1.4) soient entiers, soit que S e Z et que les 2 conditions suivantes soient
satisfaites :

(3.4) \{S2-ßß')eZ

(3.5) ^(S3~3 Sßß'+ßß'(ß+ß'))eZ

Lemme 3.2 Soit S e Z et ß satisfaisant

b+1 b

(3.1)'

ß —:—-j + - j2 avec b eZ
c c

b2 + b + 1

c e Z et - e Z
3c3

Alors, si 6 est construit avec (/?, S), une condition nécessaire et suffisante
pour que 9 soit entier est S 0 (mod 3) et b 4 (mod 9).

Démonstration :

ßß'=b'+b,+ 1 3c.b'+b + '
33c

est un entier congru à 0 (mod 3), puisque -—+ eZ.
3c3

La condition (3.4) est donc équivalente à =s 0 (mod 3), et en tenant

compte de ceci, la condition (3.5) est équivalente à - ß

Le calcul donne - ~ßß>y +ß>)
1

(2b + 1).
^ ' 21c

^.jr •
b2 + b + 1

3? eZ entraîne b + b + 1 0 (mod 3), ce qui est

équivalent à b ^ 1 (mod 3) et h b2 + b + 1 3 (mod 9). Ceci entraîne
c 0 (mod 3).

t
h2 + b + 1 2b + 1

La condition — — e z est donc équivalente à 2 b +
1 0 (mod 9), soit à b 4 (mod. 9). C.q.f.d.
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Remarque 3.1 La condition b 4 (mod 9) est équivalente à la condi-
b2 + b + 1

tion - 7 (mod 9) si c as 1 (mod 3) et à la condition
3c

b2 + b + 1

3?
— 7 (mod 9) si c — 1 (mod 3).

Lemme 3.3 Soit S e Z 11 ß satisfaisant

b + 3 b
ß / + -j2 avec b eZ b ^ 0(mod 3),

c c

(3.2)'

c gZ et
b2 + 3b +

eZ.

Alors, si 6 est construit avec (/?, *S), une condition nécessaire et suffisante

pour que 6 soit entier est S — b c (mod 3).

Démonstration b p§ 0 (mod 3) entraîne b2 + 3b + 9= l (mod 3).
fc2 + 3b + 9

Donc z gZ entraîne c^O (mod 3). Il en résulte ßßf

62 + 3b + 9
EEE 1 (mod 3); la condition (3.4) est équivalente à S # 0

(mod 3). D'autre part, ßß' (ß +ß')
b2 + 3b +9

(lb + 3) est entier

rationnel et la condition (3.5) entraîne la condition plus faible S 3 s
— ß ß' (ß + ß') (mod 3). D'où, en tenant compte de S 8 îs S (mod 3) et

b2 + 3b + 9
de 2 /; + 3 - b (mod 3), S b (mod 3).

c

b2 + 3b + 9 b2 + 3b +9
Mais ~ c (mod 3) puisque z 1 (mod 3) et

c c

c 0 (mod 3). Il vient S — b c (mod 3). Réciproquement, on vérifie que
si S — b c (mod 3), la condition (3.5) est satisfaite. C.q.f.d.

Lemme 3.4 Soit S e Z et ß satisfaisant

(3.3)'

3 3
ß (b +1)j + - bj2 avec beZ ceZ

c c

b2 + b + 1

et —z gZ
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Alors, si 6 est construit avec (ß, S) ,une condition nécessaire et

suffisante pour que 6 soit entier est S 0 (mod 3).

9
Démonstration ßß' -^-(62 + 6 +1) est un entier congru à 0 (mod 9),

la condition (3.4) est donc équivalente à S 0 (mod 3). La condition (3.5)
est alors aussi satisfaite. En effet S 0 (mod 3) entraîne S 3 0 (mod 27)

et 3 S ß ß' 0 (mod 27). Donc la condition (3.5) est équivalente à

±ßß'(ß+ß>)eZ.

Cette dernière condition est vérifiée, car ßßf (ß + ß') — 27
fr2 + 6 + 1 62+6 + l

Y (26 + 1) est un entier congru à 0 (mod 27), puisque
<r » <+

eZ. C.q.f.d.
Les résultats précédents permettent de démontrer le théorème principal

de ce travail:

Théorème 3.2 Soit (jß, S) e E x Z et soit 0 construit avec (/?, *S). Alors
Z [0] est l'anneau des entiers de Q (6) si et seulement si (/?, 5) satisfait l'une
des conditions suivantes:

(3.6)

(3.7)

(3.8)

n
6 + 1 6

^
ß j H— j avec 6 e Z 6=4 (mod 9), c eZ

c c

et
62 +6 + 1

3?

S 0 (mod 3)

entier différent de + 1 et sans facteur carré.

6 + 3 6
ß j + -j avec 6 e Z 6 # 0 (mod 3), ceZ

c c

et
62 + 36 + 9

entier différent de + 1 et sans facteur carré.

S — be (mod 3)

3 3
ß m - (6 + l)j + - bj avec 6 g Z 6^1 (mod 3), ceZ

et
62 + 6 + 1

entier différent de + 1 et sans facteur carré.

S 0 (mod 3)

L'Enseignement mathém., t. XX, fasc. 3-4. 13
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Ces conditions sont deux à deux exclusives et entraînent ßß'2 <££3.

Démonstration Ces conditions sont nécessaires d'après le théorème 3.1

et les lemmes 3.2, 3.3 et 3.4.

D'après ces mêmes lemmes, 9 est entier. Il reste donc, pour montrer

que ces conditions sont suffisantes, à montrer que dans chacun de ces cas,
A (9) est le discriminant de Q (9).

a) cas où (ß, S) satisfait (3.6).

cß (b+l)j + b j2 est sans facteur rationnel. Mais

2 3
h2 + b + 1 b2 + b + 1

(cß)(cß)' b2 + b + 1 3 | c |

—jp-jj—, avec——^—entier
positif distinct de 1 et sans facteurs carrés.

Donc, d'après le lemme 1.3, | c | est égal à 1 ou est produit de nombres
u2 + b + 1

3 | c [3

premiers distinct congrus à 1 (mod 3) et cß (j - j2)y2 a, avec
b2 + b + 1.

y e 0E tel que y y' | c | et a entier canonique tel que aa' — —3 [ ' [3

ß2 ßr fi — /2\3
On a de plus —— — y6y'3eE3; donc ßß'2£E3, d'après

a a' \ c J
le théorème 1.2, a engendre Q (9).

1 /h2+h + D2
La formule (1.5) donne A (6) (ßß') (ß —ß'Y

premiers congrus à 1 (mod 3), —^^— est produit de nombres

27 V 3c

(aar)2; il s'ensuit que A (9) (aa')2 est le discriminant de Q (9),

d'après le collaire 1.4.

b) Cas où (ß, S) satisfait (3.7).

c ß (6 + 3) j + bj 2 n'a pas de facteur rationnel, puisque b fé 0

b2 + 3b + 9 b2 + 36 + 9
(mod 3). (cß) (cß)' I c3 I avec ^ 0 (mod 3),

|c I3 |c I3

différent de 1 et sans facteur carré.

Donc le lemme 1.3 montre que | c | est égal à 1 ou est produit de

+ + 9
nombres premiers congrus à 1 (mod 3), que r est produit

I c |3

de nombres premiers distincts congrus à 1 (mod 3) et que c ß y3 oc

avec y e0Etelque y y'| c|et a entier canonique tel que aa'
b2+ 3b + 9 „
—3 Donc ßß$ E
\c I
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Le théorème 1.2montreque oc engendre (0). La formule (1.5) donne

A (0) - L {ßß')2C ß-ß')2+ç3+9^ (aa')2; 11 s'ensuit

que A (9) (aa')2 est le discriminant de Q (9), d'après le corollaire 1.4.

c) Cas où (ß, S) satisfait (3.8)
Q

-ß (b + 1) j + fcj2 n'a pas de facteur rationnel.

S* 2 i U i 1 ï,2

{^)(^)' 'c|3 ~M3+1

'avec
^

|C|3+
1

" 0(mod3)' diffé"

rent de 1 et sans facteur carré.

Le lemme 1.3 montre que | c est égal à 1 ou est produit de nombres
b2 + b + 1

premiers congrus à 1 (mod 3), que est produit de nombres
M

c
premiers distincts et congrus à 1 (mod 3) et que - ß y a avec y e 0E tel

que y y' | c \ et a entier canonique tel que a a' —3 Donc
b2 + b + 1

'I c

c
ßß'2 $ E3 et a engendre Q (6) (théorème 1.2). Or - ß (b + l)j +

bj2 # ± 1 (mod 3) et y3 + 1 (mod 3), puisque y est produit d'entiers
c

canoniques, donc congrus à une unité (mod 3). L'égalité -ß y3 oc

montre alors que oc =£ + 1 (mod 3), c'est-à-dire que a est un entier canonique

non unitaire.
Il s'ensuit, d'après le corollaire 1.4, que le discriminant de Q (9) est

81 (aar)2.

Et on a ainsi A (9) - ^ (ßßf)2 (ß-ß')2 81 ^ +3 + ^
81 (aa')2. C.q.f.d.

Comme sous-produits de la démonstration de ce théorème, on obtient
les corollaires suivants :

Corollaire 3.1 Si ß satisfait la condition (3.6), Q (9) est modérément

•*' j- • • fb2+b + l\2
ramifie, de discriminant — 1

; si ß satisfait (3.7), Q(9) est modéré-
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ment ramifié, de discriminant
b2 + 3b +

j ; et si ß satisfait (3.8), Q (0) est

b2+b + l\2
sauvagement ramifié, de discriminant 81

Corollaire 3.2 Si ß satisfait l'une des conditions (3.6), (3.7), (3.8),
| c | est égal à 1 ou est produit de nombres premiers congrus à 1 (mod 3).

Remarque 3.2 Si ß satisfait la condition (3.7) (respectivement (3.8)) et si

| c | «= 1, ß est entier canonique et satisfait aussi la condition (2.3)
(respectivement (2.4)) du théorème 2.1.

C'est le seul cas où l'on peut choisir la trace S de manière que, 9 étant
construit avec (ß, S), 1, 0, 62 et 6, (7 0, a2 6 (respectivement 1, 0, c7 0)

forment des bases d'entiers de Q (0).

Définition 3.1 On dit dans ce cas que l'anneau des entiers de Q (0) est

trivialement monogène.
En abandonnant la référence à (ß, S), on peut énoncer:

Théorème 3.3 Soit K/Q une extension cubique cyclique de discriminant
Ak m2. Alors, si 0K est monogène, l'équation diophantienne suivante

est soluble:

Démonstration On garde les notations du théorème 3.2. 0K étant

monogène, il existe 0 e 0K, construit avec un couple (ß, S) qui satisfait l'une
des conditions (3.6), (3.7) ou (3.8).

Si (3.6) est satisfaite, b2 + b + 1 m 3 | c |3, donc l'équation (3.9)
admet la solution (3b, 3 | c |

Si (3.7) est satisfaite, b2 + 3b + 9 m\ c\ 3, donc (3.9) admet la
solution (b, | c |

Si (3.8) est satisfaite, 9(b2 + b+l) m\c\3, donc (3.9) admet la
solution (3b, | c |).

Ce théorème admet le réciproque suivant:

Théorème 3.4 Soit m A 1 un produit de nombres premiers distincts et

congrus à 1 (mod 3).

Alors :

a) si l'équation diophantienne

(3.9) X2 + 3X + 9 mY3



— 197 —

(3.10) X2 + 3X + 9 mY3

est soluble avec X ^ 0 (mod 3) ou avec X 12 (mod 27), il existe

une extension K/Q modérément ramifiée, de discriminant m2 et dont

l'anneau des entiers est monogène.

b) si l'équation diophantienne

(3.11) X2 + X + 1 mY3

est soluble, il existe une extension KjQ sauvagement ramifiée, de

discriminant 81 m2 et dont l'anneau des entiers est monogène.

Démonstration

a) Si {b, c) est une solution de (3.10) avec b ^ 0 (mod 3) le nombre

ß +-/2 satisfait la condition (3.7) du théorème 3.2. Ce
c e

théorème montre que le nombre 6 construit avec (ß, - be) engendre un

corps K tel que 0K Z [0] et AK — m2.

b
Si (b, c) est une solution de (3.10) avec b 12 (mod 27), alors b0 -

c
est un entier congru à 4 (mod 9) et c0 - est entier. Le nombre

° + j H—-j2 satisfait la condition (3.6) du théorème 3.2; ce qui
co co

montre que le nombre 6 construit avec (ß, 0) engendre un corps K tel

que 0K — Z [6] et AK m2.

b) Soit (ib, c) une solution de (3.11). Il faut ô # 1 (mod 3) et c ^ 0 (mod 3).
b + 1 b

Le nombre ß 3- j + 3 -j satisfait la condition (3.8) du théo-
c c

rème 3.2; ce qui montre que le nombre 9 construit avec (ß, 0) engendre
un corps K tel que 0K Z [6] et AK 81 m2. C.q.f.d.

Remarque 3.3 Si (X, Y) est solution de l'équation diophantienne (3.10),
la condition X bsï 12 (mod 27) est équivalente à la condition m 1 (mod 9).


	Chapitre 3. — Les nombres cubiques cycliques θ POUR LESQUELS Z [θ] EST L'ANNEAU DES ENTIERS DE Q (θ)

