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Ces formes s’écrivent respectivement :

a, —d
1Y) = 1—3——2(X3—3X2Y+Y3) +aXY(X-Y)

et
I(Y) = (al—az)(X3—3X2Y+Y3) + 3a, XY(X—-Y).

On voit que I () est pair, pour tous X et Y entiers rationnels si et
seulement si a; — a, est pair. C.q.f.d.

Exemple 2.1 Soit K le corps engendré par « = 5/ — j% Onaada’ =
3l et « — 1 = 6/, donc « est canonique unitaire et K = Q (0), ou 8 est
zéro du polynéme X ° — X2 — 10 X + 8. Les 3 zéros de ce polyndme
forment une base canonique de K et A, = 312,

La condition du théoréme 2.2 étant satisfaite, 2 est diviseur commun
des indices de K.

Remarque 2.2 Si 2 est diviseur commun des indices de K, Og n’est pas
monogene; mais on verra, au chapitre 4, qu’il existe des corps K ou 2
n’est pas diviseur commun des indices et ou Og n’est pas monogene.

Chapitre 3. — LES NOMBRES CUBIQUES CYCLIQUES 6
POUR LESQUELS Z [f] EST L’ANNEAU DES ENTIERS DE Q (6)

Soit # un nombre cubique cyclique construit avec (f, S) (cf. théoréme 1.1).
On cherche des conditions pour que l’anneau des entiers de Q (0) soit
Z [6].

Lemme 3.1 Soit 0 un nombre cubique cyclique, construit avec (f, S),

: : b+d_ b,
tel que Z [0] soit ’anneau des entiers de Q (6). Alors f = — j + —j*,
c c

ou dest égal a 1 oua 3 etou b etc sont des entiers rationnels premiers
entre eux.

Démonstration Soit f = b,j + b,j% b, et b, sont des nombres
rationnels. 1, 0, 07 étant une base d’entiers de O (0), on a
4(1,8,aq0)
—— €
A(1,0, 0%
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D’aprés les formules (1.5) et (1.6), cette condition s’écrit

27

- =5 €Z
B—=p")
Mais (B—p)2 = (j —j D)* (b, —b,)*> = — 3(b;—b,)* La condition
écrit d ————€Z, soit Z.
s’écrit donc by eZ, soi b b, €

Soit b; — b, = —, avec ¢ et d entiers rationnels premiers entre eux et
a

d > 0; la condition

3c :
e Z devient i €Z, ce qui implique, ¢

1 2
et d étant premiers entre eux et d étant positif, d = 1 ou d = 3.

Par ailleurs, 6 € O donc 4 (1, 6, 60) € Z ; soit, d’aprés (1.6) f ' € Z.
> d . .2 2 d d 2
Mais f = (b, + - J+sz;doncﬁﬁ’=b2+bzz+ A
p .
La condition f ' € Z implique, ¢ étant entier, b5 c¢> + b, dc + d?e Z.
Mais de Z, donc cette condition s’écrit b5 c? + b,dce Z, soit

b
b, c(byct+d)e Z. De la on tire b, ce Z, soit b, = —avec be Z.
c

b +d b
On a ainsi obtenu f = ——+—] + —] C.q.f.d.
c

Le théoréme suivant donne des précisions supplémentaires sur f.

Théoréme 3.1 Soit 0 un nombre cubique cyclique tel que I'anneau des
entiers de K = Q (0) soit Z [0] et soit (B, S) 'image de (0, ¢). Alors f
satisfait 'une des conditions suivantes:

| B —?j—l-J —l—?—] ,avechbeZ, b = 1(mod 3),
(3.1) i 2 2
ce/Z et (é_gf;——’-}) = Ag
| i =-Z2—+—3J+éj , avec beZ,b % 0(mod 3),
(3.2) )
ceZ, ¢ =0(mod3) et <l—)—2$>2 = dg
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[

3 3
B=—-(b+1j+ —bj*, avecheZ, b £ 1(mod 3)
c c
3.3) |
=AK‘

c3

b% +b+1\?
ceZ, ¢ = 0(mod 3) et 81(—————)
Démonstration On obtient ces 3 conditions pour  en prenant succes-

sivement, dans la forme de f donnée par le lemme 3.1, d =1, d = 3 et
b= 0(mod3)etd = 3etb=0(mod 3).

a) d =1
b + 1 . b 2 by A
Alors, f = —j + — ] : L’hypothese Z [0] = Ok entraine 4 (0) =
¢
’ 2 2 1 1
Ay, donc, d’apres (1.9), — — (ﬁﬁ) (B—p")" = Ag, soit encore — 3726
c

b2+b+1

Cette condition entraine 6% + b + 1 = 0 (mod 3), soit b = 1 (mod 3).

b) d = 3eth = 0 (mod 3)
c et d étant premiers entre eux, on a ¢ &= 0 (mod 3).
b +3 b

Onadoncff = —j + ] , et ’égalité 4 (6) = Ag s’écrit
c
b*+3b+9
2 o
¢) d =3eth=0(mod 3)

Comme en b), on voit que ¢ = 0 (mod 3).
3 3

En posant b = 3 by, il vient § = — (by+1)j + — byj>.
c c

by + b, + 1)2

c3

La condition 4 (0) = Ag s’écrit 81( = Ag.

Cette condition ne peut étre satisfaite que si b + b, + 1 = 0 (mod 3),
c’est-a-dire si by == 1 (mod 3). En écrivant b au lieu de b,, on a les condi-
tions (3.3). C.q.f.d.

Ces conditions (3.1), (3.2) et (3.3) sont deux a deux exclusives.

B étant un nombre satisfaisant I'une de ces conditions et 6 étant construit
avec (B, S), il se peut, méme si S est entier, que 6 ne soit pas entier.
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Dans les 3 lemmes qui suivent, on donne des conditions pour que € soit
entier, lorsque S satisfait des conditions proches de (3.1), (3.2) ou (3.3).

Pour que 0 soit entier, il faut et il suffit que les coefficients du polyndéme
(1.4) soient entiers, soit que S € Z et que les 2 conditions suivantes soient
satisfaites:

1
(3.4) 3 (S*—ppyez
1
(3.5) E(S3—3Sﬁﬁ’+ﬁﬁ’(ﬁ +8))eZ

Lemme 3.2 Soit S'e Z et f§ satisfaisant

b+ 1 b
[ B =——j+—j*, avec beZ,
¢ ¢
(3.1) ,
b* +b + 1
celZ et * 3 e’
3¢

Alors, si 0 est construit avec (f, S), une condition nécessaire et suffisante
pour que 6 soit entier est S'= 0 (mod 3) et b = 4 (mod 9).

Démonstration :
b* + b+ 1 b’+b +1
pp = F = 3c. 3
c 3c
. b> +b + 1
est un entier congru a 0 (mod 3), puisque +3 3 €
c

La condition (3.4) est donc équivalente 23 S = 0 (mod 3), et en tenant

: . : 1
compte de ceci, la condition (3.5) est équivalente & — 7 BB (B+p)e Z.

1 b> +b 4+ 1
Le calcul donne — — BB’ Y = 2 :
c e =5 BB (B+5) 27— (2b+1)
b +b+1 . 5
Mais 33 €Z entraine b= + b+ 1 =0 (mod 3), ce qui est

équivalent & b= 1 (mod 3) et & b*> + b + 1 = 3 (mod 9). Ceci entraine
¢ # 0 (mod 3).

b2 +b+1 2b +1

La condition v "3 €Z est donc équivalente a 25 +

I = 0 (mod 9), soit & b = 4 (mod. 9). C.q.f.d.
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Remarque 3.1 La condition b = 4 (mod 9) est équivalente a la condi-

. b +Db+1 _ . "
tion = = 7(mod9) si c=1 (mod 3) et a la condition
c
b> +b + 1
303 = — 7 (mod 9) si c = — 1 (mod 3).
&

Lemme 3.3 Soit S € Z et [ satisfaisant

” b+3 b
B = j+—j*, avec beZ, b % 0(mod 3),
c c

(3.2)’
b2 +3b + 9
+3b+9

C3

ceZ et

~ Alors, si 0 est construit avec (f8, §), une condition nécessaire et suffisante
pour que 0 soit entier est S = — b ¢ (mod 3).

Démonstration b # 0 (mod 3) entraine 5% + 35 + 9= 1 (mod 3).

b? +3b + 9

C3

b2 +3b + 9

02

Donc €Z entraine ¢ =% 0 (mod 3). Il en résulte Bf =

= 1(mod 3); la condition (3.4) est équivalente a S = 0

b*> +3b + 9
3

(mod 3). D’autre part, ' (f+p) = —

(2b + 3) est entier

rationnel et la condition (3.5) entraine la condition plus faible S ° =
— BB (B+pB) (mod 3). D’ol, en tenant compte de S * = § (mod 3) et
b> +3b + 9
C3
b* +3b + 9 , b2 +3b + 9
Mais = ¢ (mod 3) puisque 3
c

C3

¢ =% 0 (mod 3). Il vient S = — b ¢ (mod 3). Réciproquement, on vérifie que
si S = — b c(mod 3), la condition (3.5) est satisfaite. C.q.f.d.

de2b+3= —b(mod 3), S = —

b (mod 3). -

= 1 (mod 3) et

Lemme 3.4 Soit S € Z et 8 satisfaisant

3 3
B =—(b+1)j+ —bj*, avec beZ, ceZ
c c

(3.3
b2 +b + 1
et €

L ¢’
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Alors, si 0 est construit avec (f,.S) ,une condition nécessaire et suffi-
sante pour que 6 soit entier est S = 0 (mod 3).

9 : .
Démonstration pp’ = — (b*> +b+1) est un entier congru a 0 (mod 9),
¢

la condition (3.4) est donc équivalente a S = 0 (mod 3). La condition (3.5)
est alors aussi satisfaite. En effet S = 0 (mod 3) entraine S * == 0 (mod 27)
et 35 ff =0 (mod 27). Donc la condition (3.5) est équivalente a

1
Eﬁﬁ B+p)eZ.

Cette derniére condition est vérifice, car ff' (f +p) = — 27
b* +b + 1 . b> +b + 1
5 (2D 4+ 1) est un entier congru a 0 (mod 27), puisque 3
g ‘ c
eZ. C.q.f.d.

Les résultats précédents permettent de démontrer le théoréme principal
de ce travail:

Théoréeme 3.2 Soit (B, S)e E x Z et soit 0 construit avec (B, S). Alors
Z [0] est anneau des entiers de Q () si et seulement si (8, .S) satisfait I'une
des conditions suivantes:

r b+ 1 b

B=-—j+—-j*, avec beZ, b = 4(mod9), ceZ
% ¢
(3.6) P tb+l ,
et 33 entier différent de + 1 et sans facteur carré.
c
S = 0(mod 3)
b+3 b "
f=——j+-j*,avec beZ, b %20(mod3), ceZ
c c
(3.7) b> +3 +9
et 3 entier différent de +1 et sans facteur carré.
c

S = — bc(mod 3)

3 3
B —_—;(b+])j+—bj2, avec beZ, b#£1(mod3), ceZ
c

(3.8) b»+b+1
et entier différent de + 1 et sans facteur carré.

C3

| S = 0(mod 3)

L’Enseignement mathém., t. XX, fasc. 3-4. 13
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Ces conditions sont deux a deux exclusives et entrainent fB'% ¢ E>.

Démonstration Ces conditions sont nécessaires d’aprés le théoréme 3.1

et les lemmes 3.2, 3.3 et 3.4.

D’aprés ces mémes lemmes, 0 est entier. Il reste donc, pour montrer

que ces conditions sont suffisantes, & montrer que dans chacun de ces cas,
A (0) est le discriminant de Q (6).

a)

b)

cas ou (5, §) satisfait (3.6).
cB = (b+1)j + b j? est sans facteur rationnel. Mais

b> +b + 1 b> +b +1
(cP)(ch) =b>*+b+1=3]|c]? o T avec + entier

3l 7 3fc?
positif distinct de 1 et sans facteurs carrés.

Donc, d’aprés le lemme 1.3, [ c I est égal a 1 ou est produit de nombres
b> +b +1
3cl®
premiers distinct congrus & 1 (mod 3) et ¢ = (j —j ) 7> «, avec
b> + b + 1.
3lcl’

premiers congrus a 1 (mod 3), est produit de nombres

ye Ogtel queyy’ = ] c | et o entier canonique tel que ao’ ==

oo

le théoréme 1.2, o engendre Q (0).
b*+b+ 1)2

La formule (1.5) donne 4(9) = — %(ﬁﬁ')z (B—p) = ( 303

= (aa’)?; il s’ensuit que 4 (0) = (xa’)* est le discriminant de O (0),
d’aprés le collaire 1.4.

ﬁzﬁ, ]—']2 ¥ 6..13 3, 12 3 > A
On a de plus = —|~——) 997 €E’; donc pp'“¢E’, d’apres
c

Cas ou (f, S) satisfait (3.7).
cBp=(b+3)j +bj? n’a pas de facteur rationnel, puisque b =% 0

b2 +3b+9  b2+3b+9
(mod 3). () (cB) = | | J“M;“ avec +|C‘3 £ 0 (mod 3),

différent de 1 et sans facteur carré.
Donc le lemme 1.3 montre que |c| est égal & 1 ou est produit de
b*> + 3b + 9

|’

nombres premiers congrus a 1 (mod 3), que est produit

de nombres premiers distincts congrus & 1 (mod 3) et que ¢ = y> «
avec ye€ O tel que yy' = |c| et o entier canonique tel que ao’ =
b*> +3b + 9

P . Donc pB’* ¢ E>,
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Le théoréme 1.2 montre que « engendre Q (6). La formule (1.5) donne

b% +3b 4+9\? ) )
4(0) = — 2—17(ﬁﬁ’)2 B-p) = (——}i> — (a)?; il Sensuit

que 4 (0) = (aa’)? est le discriminant de Q (6), d’aprés le corollaire 1.4.
c) Cas ou (8, S) satisfait (3.8)

-;.3 = (b+1)j + bj* n’a pas de facteur rationnel.

b* +b +1 b2 +b + 1 _
Gﬂ <;ﬁ> = lc’? T |3+ , avec T l3+ = 0 (mod 3), diffé-
‘ c c

rent de 1 et sans facteur carré.

Le lemme 1.3 montre que ! c | est égal a 1 ou est produit de nombres

b2 + b + 1

3 est produit de nombres
c

premiers congrus a 1 (mod 3), que

c
premiers distincts et congrus a 1 (mod 3) et que 3 B = y3u avec y € O tel

o . : b +b+1
que yy' = | c| et « entier canonique tel que oo’ = TofF Donc
c

BB'* ¢ E* et o engendre Q (0) (théoréme 1.2). Or EB =b+1)j+
bj* # + 1 (mod 3) et y = + 1 (mod 3), puisque y est produit d’entiers
canoniques, donc congrus a une unité (mod 3). L’égalité —g,B =3

montre alors que « =% + 1 (mod 3) c’est-a-dire que « est un entier cano-
nique non unitaire.

Il s’ensuit, d’aprés le corollaire 1.4, que le discriminant de Q (0) est
81 (o).

Et on a ainsi 4(0) = (/3,8 Y (B—-p)? = 81(

81 (aa’)?. C.q.f.d.
Comme sous-produits de la démonstration de ce théoréme, on obtient
les corollaires suivants:

c

b2+b+1>

Corollaire 3.1 Si f satisfait la condition (3.6), Q (0) est modérément

" L b2 +b+1\*> | o
ramifié, de discriminant 3 ; si f satisfait (3.7), Q (0) est modéré-
c
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b>+3b+9

ment ramifié, de discriminant( 3

2
> ; et si ffsatisfait (3.8), Q (0) est
b*+b+ 1)2

C3

c

sauvagement ramifi€, de discriminant 81 (

Corollaire 3.2 Si f satisfait 'une des conditions (3.6), (3.7), (3.8),
| ¢ | est égal 2 1 ou est produit de nombres premiers congrus & 1 (mod 3).

Remarque 3.2 Si f satisfait la condition (3.7) (respectivement (3.8)) et si
| ¢| = 1, B est entier canonique et satisfait aussi la condition (2.3) (res-
pectivement (2.4)) du théoréme 2.1.

C’est le seul cas ou 'on peut choisir la trace S de maniére que, 6 étant
construit avec (B, S), 1, 0, 0% et 0, 00, 6 0 (respectivement 1, 0, ¢ 0)
forment des bases d’entiers de Q (0).

Définition 3.1 On dit dans ce cas que I'anneau des entiers de Q (6) est
trivialement monogéne.

En abandonnant la référence a (f8, S), on peut énoncer:

Théoréeme 3.3 Soit K /Q une extension cubique cyclique de discriminant
Ax = m?. Alors, si O est monogéne, I’équation diophantienne suivante
est soluble: |

(3.9) ‘ X2 +3X+9=mY’

Démonstration On garde les notations du théoréme 3.2. Oy étant
monogene, il existe 6 € Ok, construit avec un couple (f, §) qui satisfait I'une
des conditions (3.6), (3.7) ou (3.8).

Si (3.6) est satisfaite, b> + b + 1 = m 3| c|? donc Iéquation (3.9)
admet la solution (35, 3 | c|).

Si (3.7) est satisfaite, 5> +3b + 9 =m|c
solution (b, | ¢ |),

Si (3.8) est satisfaite, 9 (b2+b+1) = m|c|? donc (3.9) admet la
solution (35, | a ]).

Ce théoréme admet le réciproque suivant:

3, donc (3.9) admet la

Théoréme 3.4 Soit m # 1 un produit de nombres premiers distincts et
congrus a 1 (mod 3).
Alors:

a) si I’équation diophantienne
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(3.10) X?+3X +9 =mY?

est soluble avec X # 0 (mod 3) ou avec X = 12 (mod 27) il existe
une extension K /Q modérément ramifiée, de discriminant m? et dont
I’anneau des entiers est monogéne.

b) si I’équation diophantienne
(3.11) X’ +X+1=myYy?

est soluble, il existe une extension K /Q sauvagement ramifiée, de
discriminant 81 m? et dont anneau des entiers est monogene.

Démonstration

a) Si (b, ¢) est une solution de (3.10) avec b % 0 (mod 3) le nombre
b + b
f = ~l~ j + —] satisfait la condition (3.7) du théoréme 3.2. Ce
¢

théoréme montre que le nombre 0 construit avec (B, —bc) engendre un
corps K tel que Oy = Z [0] et Ay = m?.

b
Si (b, ¢) est une solution de (3.10) avec b = 12 (mod 27), alors b, = 3

c
est un entier congru a 4 (mod 9) et ¢, = 3 est entier. Le nombre

bO + 1 . bO ‘2 . . ., e r \ M

j + —j° satisfait la condition (3.6) du théoréme 3.2; ce qui
Co Co

montre que le nombre 6 construit avec (f, 0) engendre un corps K tel

que Og = Z [0l et 4y = m?.

b) Soit (b, ¢) une solution de (3.11). Il faut & == 1 (mod 3) et ¢ == 0 (mod 3).

b +1 b ‘
Le nombre f = 3——j + 3- ] satisfait la condition (3.8) du théo-
¢

réme 3.2; ce qui montre que le nombre 0 construit avec (8, 0) engendre

un corps K tel que Ox = Z [0] et Ay = 81 m*. C.q.f.d.

Remarque 3.3 Si (X, Y) est solution de I’équation diophantienne (3.10),
la condition X = 12 (mod 27) est équivalente & la condition m = 7 (mod 9).
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