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cette méthode en donnant & Y les valeurs de 1 & 100000 et & m une centaine
de valeurs pour chacune des équations a) et b).
Les résultats sont exposés aux chapitres 4 (4.1 et 4.2).

Dans un travail récent [2], M.-N. Gras obtient, par d’autres méthodes,
des résultats semblables aux théorémes 3.3 et 3.4 et donne une liste trés
fournie de corps cubiques cycliques dont ’anneau est soit monogéne, soit
non monogene.

MM. les professeurs F. Chatelet et J.-J. Payan m’ont dirigé et aidé dans
ce travail; je leur exprime ici ma trés vive reconnaissance.

Je remercie aussi M. R. Smadja dont un manuscrit m’a été utile dans la
recherche des conditions du théoréme 3.2 et M™¢ M. Archinard, qui a bien
voulu se charger de la programmation.

Enfin, je remercie le Centre d’économétrie de 1I’Université de Genéve
qui m’a donné accés a ’ordinateur de I’Etat de Genéve.

Chapitre 1. — CONSTRUCTION DES EXTENSIONS CUBIQUES
CYCLIQUES DE Q

On rappelle dans ce chapitre la construction donnée par A. Chatelet.
([1], chap. 1 a IV).

I. NOTATIONS

Dans la suite, K désigne une extension cubique cyclique du corps Q
des rationnels, Oy 'anneau des entiers de K, 4 le discriminant de K /Q
et Gal (K /Q) son groupe de Galois. E désigne le corps Q (j), ou

j= - é + i—ij, Oy ’anneau des entiers de E, 7 le Q-automorphisme de E
défini par 7 j = j * et p' I'élément t B, pour f € E.  désigne aussi le pro-
longement de 7 a4 K (j) ayant K comme corps des invariants. ¢ désigne 4 la
fois un élément non trivial de Gal (K /Q) et son prolongement & X (j) qui
laisse E invariant. E est donc le corps des invariants du groupe cyclique
engendré par o.

0 etant un élément de K, on définit les expressions suivantes (résolvantes
de Lagrange).

<0,6> = 0+ job + j’6*0 o eGal(K/Q)
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Ce sont des éléments de K (j), qui vérifient les propriétés suivantes:

(1.1) o'<0,0> = <6'0,0> = j"<0,0> Il =0,1,2.
¢'<0,6°> = <0d'0,06>> =j'<0,6*> 1=0,1,2,

(1.2) 1<0,6> = <0,06%>>

1
(1.3) 0 =§(S+ <0,0> + <0,0*>)

2. THEOREMES FONDAMENTAUX

On donne ici les résultats essentiels de la construction de Chatelet et
celles de leurs conséquences techniques qui seront utilisées aux chapitres 2
et 3. Pour les démonstrations, on renvoie a [1], en notant que les principales
d’entre elles font intervenir de maniére systématique les propriétés de
< 0, 6> et la théorie de Galois dans K (j)/ Q.

Lemme 1.1 Soit 6 un élément primitif de K. Alors, le nombre f défini
par

<a'0,0 >
<d'0,0% >

est un nombre primitif de £ ne dépendant pas de / et vérifiant f* ' ¢ E 3.
Si @ est un nombre algébrique engendrant un corps cubique cyclique
sur Q et p un générateur de Gal (Q (¢)/ Q) tels que

<plp,p>?
<plo, p*>

1
= f, alors ¢ = ¢'0 — g(S—_T), pour [ =0
loul2etp = o0;SetT:étant les traces de 0 et ¢.

Lemme 1.2 Soit S € Q et f un nombre primitif de E vérifiant 2 B’ ¢ E >.
Alors, il existe un nombre algébrique 6, de trace S, engendrant une extension
cubique cyclique K /Q, et un générateurs o de Gal (K /Q) tels que

<0,0>"2

B =

<0,6%>"

Ces deux lemmes permettent d’énoncer le théoréme fondamental de
cette construction des corps cubiques cycliques.
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Théoréme 1.1 Les formules S = trace (0) et

<0,0>"2
B = a2
<0,0° >
définissent une surjection de I’ensemble des couples (0, o), formés d’un
nombre algébrique engendrant un corps cubique cyclique et d’'un générateur
du groupe de Galois de ce corps, sur ’ensemble des couples (B, S), formés
d’un nombre primitif f de E tel que f% ' ¢ E > et d’un nombre rationnel.
Deux couples (6, o) et (¢, p) ont méme image si et seulement si ¢ = o' 0,
pour/ = 0,1l ou2etp = o.

Définition 1.1 Dans la suite, lorsqu’on se référera a cette construction,
on dira que (f5, S) est I'image de (0, 0), que 0 est construit avec (f3, S) et
que f engendre Q (0).

Remarque 1.1 11 découle de la définition de < 0, 0> et de la pro-
priété (1.2) que, si (B, S) est 'image de (0, o), (—pf, —S) est 'image de
(—0,0) et (B, S) celle de (0, ).

On est ainsi amené a la définition suivante:

Définition 1.2 Soit « et f deux éléments de E. o et ff sont dits équivalents
siae {B, 6, — B, — B'}.

Les résultats techniques suivants seront utiles aux chapitres 2 et 3.

Corollaire 1.1 Si 0 est construit avec (f3, S), 0 est zéro du polyndme
3 2, ] 1 3 ’ ’ /
(1.4) X° — SX 3( —ppX — 7(5—3513[3 +BB" (B+B").

Corollaire 1.2 Soit 6 un nombre construit avec (f, S), et soit 4 (0) le
discriminant de 1, 0, 0% et 4 (1,0,00) celui de 1, 6, ¢ 0. On a alors:

1
(1.5) 4(0) = — E(ﬁﬁ')z B-p)*
(1.6) A(1,0,00) = (BB)>
Corollaire 1.3 Soit (f, S) 'image de (6, 6). On a alors:
(1.7) 90> = (B+p'+4S)0 + (j*B+jp' —2S) a0
+(jB+j*B —2S)6%0 + 2Bp" + S?
(1.8) 960620 = (B+B —25)0 + (2B +jB' +S) o0

+(JB+J*B'+5) 00 — BB’ + S
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Théoreme 1.2 Soit (B, S) et (y, T) les images respectives de (0, o) et

(o, p). Alors la condition

y2y/

BB’
est nécessaire et suffisante pour que Q (6) = Q (p) et ¢ = p.

Ce théoréme et la remarque 1.1 permettent de reconnaitre les nombres
engendrant le méme corps cubique cyclique.

e E?

3. L’ANNEAU Og

On rappelle d’abord quelques résultats classiques. Op est intégre,
principal et donc factoriel.

Op=Z2Zj®Zj?>  (somme directe)

Les unités de O, sont + 1, + j, + j * et représentent les 6 classes de
Og/(3) premiéres avec 3.

Les nombres (entiers rationnels) premiers congrus a — 1 (mod 3) sont
irréductibles dans Op, les nombres premiers p congrus a 1 (mod 3) sont de
la forme p = w, w,, w, étant irréductible et w, et w, n’étant pas associés.
Enfin,ona3 = — (j —j )~

Ainsi, les éléments irréductibles de O sontj —j 2, les nombres premiers
congrus a —1 (mod 3), les €léments w, et a)ll, et leurs associ€s.

Lemme 1.3 Soit  un élément de Oy sans facteurs rationnels et soit p un
nombre premier tel que p" divise exactement f f’. Alors, p = 3 et n = 1,
ou p = 1(mod 3) et w, divise exactement f§, w, étant un diviseur irré-
ductible de p.

Démonstration Si 3" divise BB, j — j * divise exactement f, donc
j — j? divise aussi exactement " et 3 divise exactement f f’. Il s’ensuit
que n = 1.

Sip # 3, p est congru a 1 (mod 3), sinon p serait irréductible et divise-
rait . Donc p = w,w, et w) et w," divisent exactement § f’. Comme
w, w, ne divise pas f, il faut que w, (ou w,") divise exactement . C.q.f.d.

Définition 1.3 Un élément de Oy est dit entier canonique s’il n’est
divisible ni par j — j 2, ni par un entier rationnel, ni par un facteur carré.
Un entier canonique o est de la forme w,, w,, ... ®,,, sa norme étant
égale & p, p, ... p,, les p; étant des nombres premiers naturels distincts et

congrus & 1 (mod 3), et satisfait la condition o o’ ¢ E>.
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Réciproquement, un nombre de Oy dont la norme a cette forme est un
entier canonique.

Un entier canonique, étant premier avec 3, appartient a l'une des
6 classes de O/(3), premiéres avec 3. Il est donc congru (mod 3) & une unite.

Définition 1.4 Un entier canonique est dit unitaire positif (respective-
ment négatif) s’il est congru (mod 3) & 1 (respectivement & —1).

Si le signe n’intervient pas, on dit simplement que l’entier canonique
est unitaire. |

Tour entier canonique est le produit d’une unité et d’un entier canoni-
que unitaire positif unique.

Théoreme 1.3 Tout corps cubique cyclique K est engendré par un entier
canonique, défini de mani¢re unique a I’équivalence pres.

Voir [1], chapitre I1I, pour une démonstration.

Des entiers canoniques équivalents étant ensemble unitaires ou non,
on peut donner la définition suivante:

Définition 1.5 K est dit unitaire s’il est engendré par des entiers canoniques
unitaires. (De ces entiers canoniques unitaires, deux sont positifs et deux
sont négatifs).

Le théoréme suivant donne la construction de bases d’entiers d’un
corps K.

Théoréme 1.4 Soit K le corps cubique cyclique engendré par [’entier
canonique «. Alors:

a) si o est unitaire positif (respectivement négatif) et si 0 est construit avec
(o, 1) (respectivement avec (¢,— 1)), 0, ¢ 0, et 6% 0 forment une base
des entiers de K;

b) si o est non unitaire et si 0 est construit avec (3a, 0), 1, 0, ¢ 6 forment
une base des entiers de K.

Définition 1.6 Ces bases sont dites canoniques et construites avec «.

Corollaire 1.4 On conserve les notations du théoréme 1.4. Alors,
a) si K est unitaire, il est modérément ramifié et

AK - (O(OC’)Z
b) si K est non unitaire, il est sauvagement ramifié et

Ag = 81 (an')?.
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Démonstration Ces formules s’obtiennent immédiatement en prenant
les discriminants des bases canoniques par la formule (1.6).

Corollaire 1.5 Soit py, p,, ..., p,, ¥ nombres premiers différents de 1,
distincts et congrus 2 1 (mod 3). Alors il existe 2*~ ! corps modérément
ramifiés de discriminant (p, p, ... p,)* et 2" corps sauvagement ramifiés de
discriminant 81 (p; p, ... p,)>.

Tous les corps cubiques cycliques ont leurs discriminants de cette forme,
sauf un corps unique de discriminant 81.

Pour une démonstration du théoréme 1.4 et du corollaire 1.5, on se
reportera a [1], chapitre IV.

Chapitre 2. — INDICE D’UN NOMBRE DE Og

L’indice d’'un nombre 0 d’une extension finie K /Q est le nombre 7 () =

V/ A(0)/4g, ou A4 (0) est le discriminant de 0 dans K et Ay le discriminant
de K (cf. [3], chap. 111, § 25 et [5]).

Comme au chapitre 1, K /Q désigne dorénavant une extension cubique
cyclique et on va utiliser une base canonique (déf. 1.6) pour calculer I’indice
d’un élément quelconque de Oy.

Lemme 2.1 Soit 0 un élément primitif d’une base canonique de K. Alors,
si @ € Og, 1l existe un nombre y = X0 + Yo 0eOg telqueyy — pe Z

et 1(y) = I(9).

Démonstration On considére le cas ou 6 est construit avec (a, 1), c’est-
a-dire ol « est unitaire positif. 0, ¢ 0 et 6> 0 forment une base d’entiers de
K, donc ¢ = X,0 + X,060+ X,0%0, avec X;eZ, i = 1,2,3. Soit
Yy =@ — X,; alors I()) = 1I(p) et ¥ = (Xo—X3)0 + (X;—X;)00,
d’aprés 0 + 6 0 + 620 = 1. ¢ a la forme requise.

Les cas ol « est unitaire négatif et ou K est non unitaire se démontrent
de maniére semblable. C.q.f.d.

Donc, pour obtenir les indices de tous les nombres de Oy, il suffit de
considérer les nombres de la forme X 0 + Y o 6 o X et Y sont des entiers.

Lemme 2.2 Soit K le corps (modérément ramifi¢) engendré par ’entier
canonique unitaire « = a,j + a,j > et soit 0, ¢ 0, ¢* 0 la base canonique
construite avec «. Alors, siyy = X0 + Yo 0, + I() est égal a:

a1~

3

a a, —da
(2.1) 22X 4 a, XY —aXY: 4+ L2 y3,
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